blob: d8977f8d3c47babf12a46f48970a562034c21f86 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <vector>
#include "base/bind.h"
#include "base/file_util.h"
#include "base/logging.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "chrome/browser/chromeos/power/cpu_data_collector.h"
#include "chrome/browser/chromeos/power/power_data_collector.h"
#include "content/public/browser/browser_thread.h"
namespace chromeos {
namespace {
// The sampling of CPU idle or CPU freq data should not take more than this
// limit.
const int kSamplingDurationLimitMs = 500;
// The CPU data is sampled every |kCpuDataSamplePeriodSec| seconds.
const int kCpuDataSamplePeriodSec = 30;
// The value in the file /sys/devices/system/cpu/cpu<n>/online which indicates
// that CPU-n is online.
const int kCpuOnlineStatus = 1;
// The base of the path to the files and directories which contain CPU data in
// the sysfs.
const char kCpuDataPathBase[] = "/sys/devices/system/cpu";
// Suffix of the path to the file listing the range of possible CPUs on the
// system.
const char kPossibleCpuPathSuffix[] = "/possible";
// Format of the suffix of the path to the file which contains information
// about a particular CPU being online or offline.
const char kCpuOnlinePathSuffixFormat[] = "/cpu%d/online";
// Format of the suffix of the path to the file which contains freq state
// information of a CPU.
const char kCpuFreqTimeInStatePathSuffixFormat[] =
"/cpu%d/cpufreq/stats/time_in_state";
// Format of the suffix of the path to the directory which contains information
// about an idle state of a CPU on the system.
const char kCpuIdleStateDirPathSuffixFormat[] = "/cpu%d/cpuidle/state%d";
// Format of the suffix of the path to the file which contains the name of an
// idle state of a CPU.
const char kCpuIdleStateNamePathSuffixFormat[] = "/cpu%d/cpuidle/state%d/name";
// Format of the suffix of the path which contains information about time spent
// in an idle state on a CPU.
const char kCpuIdleStateTimePathSuffixFormat[] = "/cpu%d/cpuidle/state%d/time";
// Returns the index at which |str| is in |vector|. If |str| is not present in
// |vector|, then it is added to it before its index is returned.
size_t IndexInVector(const std::string& str,
std::vector<std::string>* vector) {
for (size_t i = 0; i < vector->size(); ++i) {
if (str == (*vector)[i])
return i;
}
// If this is reached, then it means |str| is not present in vector. Add it.
vector->push_back(str);
return vector->size() - 1;
}
// Returns true if the |i|-th CPU is online; false otherwise.
bool CpuIsOnline(const int i) {
const std::string online_file_format = base::StringPrintf(
"%s%s", kCpuDataPathBase, kCpuOnlinePathSuffixFormat);
const std::string cpu_online_file = base::StringPrintf(
online_file_format.c_str(), i);
if (!base::PathExists(base::FilePath(cpu_online_file))) {
// If the 'online' status file is missing, then it means that the CPU is
// not hot-pluggable and hence is always online.
return true;
}
int online;
std::string cpu_online_string;
if (base::ReadFileToString(base::FilePath(cpu_online_file),
&cpu_online_string)) {
base::TrimWhitespace(cpu_online_string, base::TRIM_ALL, &cpu_online_string);
if (base::StringToInt(cpu_online_string, &online))
return online == kCpuOnlineStatus;
}
LOG(ERROR) << "Bad format or error reading " << cpu_online_file << ". "
<< "Assuming offline.";
return false;
}
// Samples the CPU idle state information from sysfs. |cpu_count| is the number
// of possible CPUs on the system. Sample at index i in |idle_samples|
// corresponds to the idle state information of the i-th CPU.
void SampleCpuIdleData(
int cpu_count,
std::vector<std::string>* cpu_idle_state_names,
std::vector<CpuDataCollector::StateOccupancySample>* idle_samples) {
base::Time start_time = base::Time::Now();
for (int cpu = 0; cpu < cpu_count; ++cpu) {
CpuDataCollector::StateOccupancySample idle_sample;
idle_sample.time = base::Time::Now();
idle_sample.time_in_state.reserve(cpu_idle_state_names->size());
if (!CpuIsOnline(cpu)) {
idle_sample.cpu_online = false;
} else {
idle_sample.cpu_online = true;
const std::string idle_state_dir_format = base::StringPrintf(
"%s%s", kCpuDataPathBase, kCpuIdleStateDirPathSuffixFormat);
for (int state_count = 0; ; ++state_count) {
std::string idle_state_dir = base::StringPrintf(
idle_state_dir_format.c_str(), cpu, state_count);
// This insures us from the unlikely case wherein the 'cpuidle_stats'
// kernel module is not loaded. This could happen on a VM.
if (!base::DirectoryExists(base::FilePath(idle_state_dir)))
break;
const std::string name_file_format = base::StringPrintf(
"%s%s", kCpuDataPathBase, kCpuIdleStateNamePathSuffixFormat);
const std::string name_file_path = base::StringPrintf(
name_file_format.c_str(), cpu, state_count);
DCHECK(base::PathExists(base::FilePath(name_file_path)));
const std::string time_file_format = base::StringPrintf(
"%s%s", kCpuDataPathBase, kCpuIdleStateTimePathSuffixFormat);
const std::string time_file_path = base::StringPrintf(
time_file_format.c_str(), cpu, state_count);
DCHECK(base::PathExists(base::FilePath(time_file_path)));
std::string state_name, occupancy_time_string;
int64 occupancy_time_usec;
if (!base::ReadFileToString(base::FilePath(name_file_path),
&state_name) ||
!base::ReadFileToString(base::FilePath(time_file_path),
&occupancy_time_string)) {
// If an error occurs reading/parsing single state data, drop all the
// samples as an incomplete sample can mislead consumers of this
// sample.
LOG(ERROR) << "Error reading idle state from "
<< idle_state_dir << ". Dropping sample.";
idle_samples->clear();
return;
}
base::TrimWhitespace(state_name, base::TRIM_ALL, &state_name);
base::TrimWhitespace(
occupancy_time_string, base::TRIM_ALL, &occupancy_time_string);
if (base::StringToInt64(occupancy_time_string, &occupancy_time_usec)) {
// idle state occupancy time in sysfs is recorded in microseconds.
int64 time_in_state_ms = occupancy_time_usec / 1000;
size_t index = IndexInVector(state_name, cpu_idle_state_names);
if (index >= idle_sample.time_in_state.size())
idle_sample.time_in_state.resize(index + 1);
idle_sample.time_in_state[index] = time_in_state_ms;
} else {
LOG(ERROR) << "Bad format in " << time_file_path << ". "
<< "Dropping sample.";
idle_samples->clear();
return;
}
}
}
idle_samples->push_back(idle_sample);
}
// If there was an interruption in sampling (like system suspended),
// discard the samples!
int64 delay =
base::TimeDelta(base::Time::Now() - start_time).InMilliseconds();
if (delay > kSamplingDurationLimitMs) {
idle_samples->clear();
LOG(WARNING) << "Dropped an idle state sample due to excessive time delay: "
<< delay << "milliseconds.";
}
}
// Samples the CPU freq state information from sysfs. |cpu_count| is the number
// of possible CPUs on the system. Sample at index i in |freq_samples|
// corresponds to the freq state information of the i-th CPU.
void SampleCpuFreqData(
int cpu_count,
std::vector<std::string>* cpu_freq_state_names,
std::vector<CpuDataCollector::StateOccupancySample>* freq_samples) {
base::Time start_time = base::Time::Now();
for (int cpu = 0; cpu < cpu_count; ++cpu) {
CpuDataCollector::StateOccupancySample freq_sample;
freq_sample.time_in_state.reserve(cpu_freq_state_names->size());
if (!CpuIsOnline(cpu)) {
freq_sample.time = base::Time::Now();
freq_sample.cpu_online = false;
} else {
freq_sample.cpu_online = true;
const std::string time_in_state_path_format = base::StringPrintf(
"%s%s", kCpuDataPathBase, kCpuFreqTimeInStatePathSuffixFormat);
const std::string time_in_state_path = base::StringPrintf(
time_in_state_path_format.c_str(), cpu);
if (!base::PathExists(base::FilePath(time_in_state_path))) {
// If the path to the 'time_in_state' for a single CPU is missing,
// then 'time_in_state' for all CPUs is missing. This could happen
// on a VM where the 'cpufreq_stats' kernel module is not loaded.
LOG(ERROR) << "CPU freq stats not available in sysfs.";
freq_samples->clear();
return;
}
std::string time_in_state_string;
// Note time as close to reading the file as possible. This is not
// possible for idle state samples as the information for each state there
// is recorded in different files.
base::Time now = base::Time::Now();
if (!base::ReadFileToString(base::FilePath(time_in_state_path),
&time_in_state_string)) {
LOG(ERROR) << "Error reading " << time_in_state_path << ". "
<< "Dropping sample.";
freq_samples->clear();
return;
}
freq_sample.time = now;
std::vector<std::string> lines;
base::SplitString(time_in_state_string, '\n', &lines);
// The last line could end with '\n'. Ignore the last empty string in
// such cases.
size_t state_count = lines.size();
if (state_count > 0 && lines.back().empty())
state_count -= 1;
for (size_t state = 0; state < state_count; ++state) {
std::vector<std::string> pair;
int freq_in_khz;
int64 occupancy_time_centisecond;
// Occupancy of each state is in the format "<state> <time>"
base::SplitString(lines[state], ' ', &pair);
for (size_t s = 0; s < pair.size(); ++s)
base::TrimWhitespace(pair[s], base::TRIM_ALL, &pair[s]);
if (pair.size() == 2 &&
base::StringToInt(pair[0], &freq_in_khz) &&
base::StringToInt64(pair[1], &occupancy_time_centisecond)) {
const std::string state_name = base::IntToString(freq_in_khz / 1000);
size_t index = IndexInVector(state_name, cpu_freq_state_names);
if (index >= freq_sample.time_in_state.size())
freq_sample.time_in_state.resize(index + 1);
// The occupancy time is in units of centiseconds.
freq_sample.time_in_state[index] = occupancy_time_centisecond * 10;
} else {
LOG(ERROR) << "Bad format in " << time_in_state_path << ". "
<< "Dropping sample.";
freq_samples->clear();
return;
}
}
}
freq_samples->push_back(freq_sample);
}
// If there was an interruption in sampling (like system suspended),
// discard the samples!
int64 delay =
base::TimeDelta(base::Time::Now() - start_time).InMilliseconds();
if (delay > kSamplingDurationLimitMs) {
freq_samples->clear();
LOG(WARNING) << "Dropped a freq state sample due to excessive time delay: "
<< delay << "milliseconds.";
}
}
// Samples CPU idle and CPU freq data from sysfs. This function should run on
// the blocking pool as reading from sysfs is a blocking task. Elements at
// index i in |idle_samples| and |freq_samples| correspond to the idle and
// freq samples of CPU i. This also function reads the number of CPUs from
// sysfs if *|cpu_count| < 0.
void SampleCpuStateOnBlockingPool(
int* cpu_count,
std::vector<std::string>* cpu_idle_state_names,
std::vector<CpuDataCollector::StateOccupancySample>* idle_samples,
std::vector<std::string>* cpu_freq_state_names,
std::vector<CpuDataCollector::StateOccupancySample>* freq_samples) {
DCHECK(!content::BrowserThread::CurrentlyOn(content::BrowserThread::UI));
if (*cpu_count < 0) {
// Set |cpu_count_| to 1. If it is something else, it will get corrected
// later. A system will at least have one CPU. Hence, a value of 1 here
// will serve as a default value in case of errors.
*cpu_count = 1;
const std::string possible_cpu_path = base::StringPrintf(
"%s%s", kCpuDataPathBase, kPossibleCpuPathSuffix);
if (!base::PathExists(base::FilePath(possible_cpu_path))) {
LOG(ERROR) << "File listing possible CPUs missing. "
<< "Defaulting CPU count to 1.";
} else {
std::string possible_string;
if (base::ReadFileToString(base::FilePath(possible_cpu_path),
&possible_string)) {
int max_cpu;
// The possible CPUs are listed in the format "0-N". Hence, N is present
// in the substring starting at offset 2.
base::TrimWhitespace(possible_string, base::TRIM_ALL, &possible_string);
if (possible_string.find("-") != std::string::npos &&
possible_string.length() > 2 &&
base::StringToInt(possible_string.substr(2), &max_cpu)) {
*cpu_count = max_cpu + 1;
} else {
LOG(ERROR) << "Unknown format in the file listing possible CPUs. "
<< "Defaulting CPU count to 1.";
}
} else {
LOG(ERROR) << "Error reading the file listing possible CPUs. "
<< "Defaulting CPU count to 1.";
}
}
}
// Initialize the deques in the data vectors.
SampleCpuIdleData(*cpu_count, cpu_idle_state_names, idle_samples);
SampleCpuFreqData(*cpu_count, cpu_freq_state_names, freq_samples);
}
} // namespace
// Set |cpu_count_| to -1 and let SampleCpuStateOnBlockingPool discover the
// correct number of CPUs.
CpuDataCollector::CpuDataCollector() : cpu_count_(-1), weak_ptr_factory_(this) {
}
CpuDataCollector::~CpuDataCollector() {
}
void CpuDataCollector::Start() {
timer_.Start(FROM_HERE,
base::TimeDelta::FromSeconds(kCpuDataSamplePeriodSec),
this,
&CpuDataCollector::PostSampleCpuState);
}
void CpuDataCollector::PostSampleCpuState() {
int* cpu_count = new int(cpu_count_);
std::vector<std::string>* cpu_idle_state_names =
new std::vector<std::string>(cpu_idle_state_names_);
std::vector<StateOccupancySample>* idle_samples =
new std::vector<StateOccupancySample>;
std::vector<std::string>* cpu_freq_state_names =
new std::vector<std::string>(cpu_freq_state_names_);
std::vector<StateOccupancySample>* freq_samples =
new std::vector<StateOccupancySample>;
content::BrowserThread::PostBlockingPoolTaskAndReply(
FROM_HERE,
base::Bind(&SampleCpuStateOnBlockingPool,
base::Unretained(cpu_count),
base::Unretained(cpu_idle_state_names),
base::Unretained(idle_samples),
base::Unretained(cpu_freq_state_names),
base::Unretained(freq_samples)),
base::Bind(&CpuDataCollector::SaveCpuStateSamplesOnUIThread,
weak_ptr_factory_.GetWeakPtr(),
base::Owned(cpu_count),
base::Owned(cpu_idle_state_names),
base::Owned(idle_samples),
base::Owned(cpu_freq_state_names),
base::Owned(freq_samples)));
}
void CpuDataCollector::SaveCpuStateSamplesOnUIThread(
const int* cpu_count,
const std::vector<std::string>* cpu_idle_state_names,
const std::vector<CpuDataCollector::StateOccupancySample>* idle_samples,
const std::vector<std::string>* cpu_freq_state_names,
const std::vector<CpuDataCollector::StateOccupancySample>* freq_samples) {
DCHECK(content::BrowserThread::CurrentlyOn(content::BrowserThread::UI));
cpu_count_ = *cpu_count;
// |idle_samples| or |freq_samples| could be empty sometimes (for example, if
// sampling was interrupted due to system suspension). Iff they are not empty,
// they will have one sample each for each of the CPUs.
if (!idle_samples->empty()) {
// When committing the first sample, resize the data vector to the number of
// CPUs on the system. This number should be the same as the number of
// samples in |idle_samples|.
if (cpu_idle_state_data_.empty()) {
cpu_idle_state_data_.resize(idle_samples->size());
} else {
DCHECK_EQ(idle_samples->size(), cpu_idle_state_data_.size());
}
for (size_t i = 0; i < cpu_idle_state_data_.size(); ++i)
AddSample(&cpu_idle_state_data_[i], (*idle_samples)[i]);
cpu_idle_state_names_ = *cpu_idle_state_names;
}
if (!freq_samples->empty()) {
// As with idle samples, resize the data vector before committing the first
// sample.
if (cpu_freq_state_data_.empty()) {
cpu_freq_state_data_.resize(freq_samples->size());
} else {
DCHECK_EQ(freq_samples->size(), cpu_freq_state_data_.size());
}
for (size_t i = 0; i < cpu_freq_state_data_.size(); ++i)
AddSample(&cpu_freq_state_data_[i], (*freq_samples)[i]);
cpu_freq_state_names_ = *cpu_freq_state_names;
}
}
CpuDataCollector::StateOccupancySample::StateOccupancySample()
: cpu_online(false) {
}
CpuDataCollector::StateOccupancySample::~StateOccupancySample() {
}
} // namespace chromeos