blob: 60ae893d9d4c502af3f7f4bc554c3eedb2136615 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/renderer/media/rtc_video_decoder.h"
#include "base/bind.h"
#include "base/logging.h"
#include "base/memory/ref_counted.h"
#include "base/message_loop/message_loop_proxy.h"
#include "base/metrics/histogram.h"
#include "base/numerics/safe_conversions.h"
#include "base/stl_util.h"
#include "base/synchronization/waitable_event.h"
#include "base/task_runner_util.h"
#include "content/child/child_thread.h"
#include "content/renderer/media/native_handle_impl.h"
#include "gpu/command_buffer/common/mailbox_holder.h"
#include "media/base/bind_to_current_loop.h"
#include "media/filters/gpu_video_accelerator_factories.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/webrtc/common_video/interface/texture_video_frame.h"
#include "third_party/webrtc/system_wrappers/interface/ref_count.h"
namespace content {
const int32 RTCVideoDecoder::ID_LAST = 0x3FFFFFFF;
const int32 RTCVideoDecoder::ID_HALF = 0x20000000;
const int32 RTCVideoDecoder::ID_INVALID = -1;
// Maximum number of concurrent VDA::Decode() operations RVD will maintain.
// Higher values allow better pipelining in the GPU, but also require more
// resources.
static const size_t kMaxInFlightDecodes = 8;
// Size of shared-memory segments we allocate. Since we reuse them we let them
// be on the beefy side.
static const size_t kSharedMemorySegmentBytes = 100 << 10;
// Maximum number of allocated shared-memory segments.
static const int kMaxNumSharedMemorySegments = 16;
// Maximum number of pending WebRTC buffers that are waiting for the shared
// memory. 10 seconds for 30 fps.
static const size_t kMaxNumOfPendingBuffers = 300;
// A shared memory segment and its allocated size. This class has the ownership
// of |shm|.
class RTCVideoDecoder::SHMBuffer {
public:
SHMBuffer(base::SharedMemory* shm, size_t size);
~SHMBuffer();
base::SharedMemory* const shm;
const size_t size;
};
RTCVideoDecoder::SHMBuffer::SHMBuffer(base::SharedMemory* shm, size_t size)
: shm(shm), size(size) {}
RTCVideoDecoder::SHMBuffer::~SHMBuffer() { shm->Close(); }
RTCVideoDecoder::BufferData::BufferData(int32 bitstream_buffer_id,
uint32_t timestamp,
size_t size)
: bitstream_buffer_id(bitstream_buffer_id),
timestamp(timestamp),
size(size) {}
RTCVideoDecoder::BufferData::BufferData() {}
RTCVideoDecoder::BufferData::~BufferData() {}
RTCVideoDecoder::RTCVideoDecoder(
webrtc::VideoCodecType type,
const scoped_refptr<media::GpuVideoAcceleratorFactories>& factories)
: video_codec_type_(type),
factories_(factories),
decoder_texture_target_(0),
next_picture_buffer_id_(0),
state_(UNINITIALIZED),
decode_complete_callback_(NULL),
num_shm_buffers_(0),
next_bitstream_buffer_id_(0),
reset_bitstream_buffer_id_(ID_INVALID),
weak_factory_(this) {
DCHECK(!factories_->GetTaskRunner()->BelongsToCurrentThread());
}
RTCVideoDecoder::~RTCVideoDecoder() {
DVLOG(2) << "~RTCVideoDecoder";
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
DestroyVDA();
// Delete all shared memories.
STLDeleteElements(&available_shm_segments_);
STLDeleteValues(&bitstream_buffers_in_decoder_);
STLDeleteContainerPairFirstPointers(decode_buffers_.begin(),
decode_buffers_.end());
decode_buffers_.clear();
// Delete WebRTC input buffers.
for (std::deque<std::pair<webrtc::EncodedImage, BufferData> >::iterator it =
pending_buffers_.begin();
it != pending_buffers_.end();
++it) {
delete[] it->first._buffer;
}
}
// static
scoped_ptr<RTCVideoDecoder> RTCVideoDecoder::Create(
webrtc::VideoCodecType type,
const scoped_refptr<media::GpuVideoAcceleratorFactories>& factories) {
scoped_ptr<RTCVideoDecoder> decoder;
// Convert WebRTC codec type to media codec profile.
media::VideoCodecProfile profile;
switch (type) {
case webrtc::kVideoCodecVP8:
profile = media::VP8PROFILE_ANY;
break;
case webrtc::kVideoCodecH264:
profile = media::H264PROFILE_MAIN;
break;
default:
DVLOG(2) << "Video codec not supported:" << type;
return decoder.Pass();
}
base::WaitableEvent waiter(true, false);
decoder.reset(new RTCVideoDecoder(type, factories));
decoder->factories_->GetTaskRunner()->PostTask(
FROM_HERE,
base::Bind(&RTCVideoDecoder::CreateVDA,
base::Unretained(decoder.get()),
profile,
&waiter));
waiter.Wait();
// vda can be NULL if the codec is not supported.
if (decoder->vda_ != NULL) {
decoder->state_ = INITIALIZED;
} else {
factories->GetTaskRunner()->DeleteSoon(FROM_HERE, decoder.release());
}
return decoder.Pass();
}
int32_t RTCVideoDecoder::InitDecode(const webrtc::VideoCodec* codecSettings,
int32_t /*numberOfCores*/) {
DVLOG(2) << "InitDecode";
DCHECK_EQ(video_codec_type_, codecSettings->codecType);
if (codecSettings->codecType == webrtc::kVideoCodecVP8 &&
codecSettings->codecSpecific.VP8.feedbackModeOn) {
LOG(ERROR) << "Feedback mode not supported";
return RecordInitDecodeUMA(WEBRTC_VIDEO_CODEC_ERROR);
}
base::AutoLock auto_lock(lock_);
if (state_ == UNINITIALIZED || state_ == DECODE_ERROR) {
LOG(ERROR) << "VDA is not initialized. state=" << state_;
return RecordInitDecodeUMA(WEBRTC_VIDEO_CODEC_UNINITIALIZED);
}
// Create some shared memory if the queue is empty.
if (available_shm_segments_.size() == 0) {
factories_->GetTaskRunner()->PostTask(
FROM_HERE,
base::Bind(&RTCVideoDecoder::CreateSHM,
weak_factory_.GetWeakPtr(),
kMaxInFlightDecodes,
kSharedMemorySegmentBytes));
}
return RecordInitDecodeUMA(WEBRTC_VIDEO_CODEC_OK);
}
int32_t RTCVideoDecoder::Decode(
const webrtc::EncodedImage& inputImage,
bool missingFrames,
const webrtc::RTPFragmentationHeader* /*fragmentation*/,
const webrtc::CodecSpecificInfo* /*codecSpecificInfo*/,
int64_t /*renderTimeMs*/) {
DVLOG(3) << "Decode";
base::AutoLock auto_lock(lock_);
if (state_ == UNINITIALIZED || decode_complete_callback_ == NULL) {
LOG(ERROR) << "The decoder has not initialized.";
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (state_ == DECODE_ERROR) {
LOG(ERROR) << "Decoding error occurred.";
return WEBRTC_VIDEO_CODEC_ERROR;
}
if (missingFrames || !inputImage._completeFrame) {
DLOG(ERROR) << "Missing or incomplete frames.";
// Unlike the SW decoder in libvpx, hw decoder cannot handle broken frames.
// Return an error to request a key frame.
return WEBRTC_VIDEO_CODEC_ERROR;
}
// Most platforms' VDA implementations support mid-stream resolution change
// internally. Platforms whose VDAs fail to support mid-stream resolution
// change gracefully need to have their clients cover for them, and we do that
// here.
#ifdef ANDROID
const bool kVDACanHandleMidstreamResize = false;
#else
const bool kVDACanHandleMidstreamResize = true;
#endif
bool need_to_reset_for_midstream_resize = false;
if (inputImage._frameType == webrtc::kKeyFrame) {
DVLOG(2) << "Got key frame. size=" << inputImage._encodedWidth << "x"
<< inputImage._encodedHeight;
gfx::Size prev_frame_size = frame_size_;
frame_size_.SetSize(inputImage._encodedWidth, inputImage._encodedHeight);
if (!kVDACanHandleMidstreamResize && !prev_frame_size.IsEmpty() &&
prev_frame_size != frame_size_) {
need_to_reset_for_midstream_resize = true;
}
} else if (IsFirstBufferAfterReset(next_bitstream_buffer_id_,
reset_bitstream_buffer_id_)) {
// TODO(wuchengli): VDA should handle it. Remove this when
// http://crosbug.com/p/21913 is fixed.
DVLOG(1) << "The first frame should be a key frame. Drop this.";
return WEBRTC_VIDEO_CODEC_ERROR;
}
// Create buffer metadata.
BufferData buffer_data(next_bitstream_buffer_id_,
inputImage._timeStamp,
inputImage._length);
// Mask against 30 bits, to avoid (undefined) wraparound on signed integer.
next_bitstream_buffer_id_ = (next_bitstream_buffer_id_ + 1) & ID_LAST;
// If a shared memory segment is available, there are no pending buffers, and
// this isn't a mid-stream resolution change, then send the buffer for decode
// immediately. Otherwise, save the buffer in the queue for later decode.
scoped_ptr<SHMBuffer> shm_buffer;
if (!need_to_reset_for_midstream_resize && pending_buffers_.size() == 0)
shm_buffer = GetSHM_Locked(inputImage._length);
if (!shm_buffer) {
if (!SaveToPendingBuffers_Locked(inputImage, buffer_data))
return WEBRTC_VIDEO_CODEC_ERROR;
if (need_to_reset_for_midstream_resize) {
base::AutoUnlock auto_unlock(lock_);
Reset();
}
return WEBRTC_VIDEO_CODEC_OK;
}
SaveToDecodeBuffers_Locked(inputImage, shm_buffer.Pass(), buffer_data);
factories_->GetTaskRunner()->PostTask(
FROM_HERE,
base::Bind(&RTCVideoDecoder::RequestBufferDecode,
weak_factory_.GetWeakPtr()));
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t RTCVideoDecoder::RegisterDecodeCompleteCallback(
webrtc::DecodedImageCallback* callback) {
DVLOG(2) << "RegisterDecodeCompleteCallback";
base::AutoLock auto_lock(lock_);
decode_complete_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t RTCVideoDecoder::Release() {
DVLOG(2) << "Release";
// Do not destroy VDA because WebRTC can call InitDecode and start decoding
// again.
return Reset();
}
int32_t RTCVideoDecoder::Reset() {
DVLOG(2) << "Reset";
base::AutoLock auto_lock(lock_);
if (state_ == UNINITIALIZED) {
LOG(ERROR) << "Decoder not initialized.";
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (next_bitstream_buffer_id_ != 0)
reset_bitstream_buffer_id_ = next_bitstream_buffer_id_ - 1;
else
reset_bitstream_buffer_id_ = ID_LAST;
// If VDA is already resetting, no need to request the reset again.
if (state_ != RESETTING) {
state_ = RESETTING;
factories_->GetTaskRunner()->PostTask(
FROM_HERE,
base::Bind(&RTCVideoDecoder::ResetInternal,
weak_factory_.GetWeakPtr()));
}
return WEBRTC_VIDEO_CODEC_OK;
}
void RTCVideoDecoder::ProvidePictureBuffers(uint32 count,
const gfx::Size& size,
uint32 texture_target) {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
DVLOG(3) << "ProvidePictureBuffers. texture_target=" << texture_target;
if (!vda_)
return;
std::vector<uint32> texture_ids;
std::vector<gpu::Mailbox> texture_mailboxes;
decoder_texture_target_ = texture_target;
if (!factories_->CreateTextures(count,
size,
&texture_ids,
&texture_mailboxes,
decoder_texture_target_)) {
NotifyError(media::VideoDecodeAccelerator::PLATFORM_FAILURE);
return;
}
DCHECK_EQ(count, texture_ids.size());
DCHECK_EQ(count, texture_mailboxes.size());
std::vector<media::PictureBuffer> picture_buffers;
for (size_t i = 0; i < texture_ids.size(); ++i) {
picture_buffers.push_back(media::PictureBuffer(
next_picture_buffer_id_++, size, texture_ids[i], texture_mailboxes[i]));
bool inserted = assigned_picture_buffers_.insert(std::make_pair(
picture_buffers.back().id(), picture_buffers.back())).second;
DCHECK(inserted);
}
vda_->AssignPictureBuffers(picture_buffers);
}
void RTCVideoDecoder::DismissPictureBuffer(int32 id) {
DVLOG(3) << "DismissPictureBuffer. id=" << id;
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
std::map<int32, media::PictureBuffer>::iterator it =
assigned_picture_buffers_.find(id);
if (it == assigned_picture_buffers_.end()) {
NOTREACHED() << "Missing picture buffer: " << id;
return;
}
media::PictureBuffer buffer_to_dismiss = it->second;
assigned_picture_buffers_.erase(it);
if (!picture_buffers_at_display_.count(id)) {
// We can delete the texture immediately as it's not being displayed.
factories_->DeleteTexture(buffer_to_dismiss.texture_id());
return;
}
// Not destroying a texture in display in |picture_buffers_at_display_|.
// Postpone deletion until after it's returned to us.
}
void RTCVideoDecoder::PictureReady(const media::Picture& picture) {
DVLOG(3) << "PictureReady";
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
std::map<int32, media::PictureBuffer>::iterator it =
assigned_picture_buffers_.find(picture.picture_buffer_id());
if (it == assigned_picture_buffers_.end()) {
NOTREACHED() << "Missing picture buffer: " << picture.picture_buffer_id();
NotifyError(media::VideoDecodeAccelerator::PLATFORM_FAILURE);
return;
}
const media::PictureBuffer& pb = it->second;
// Validate picture rectangle from GPU.
if (picture.visible_rect().IsEmpty() ||
!gfx::Rect(pb.size()).Contains(picture.visible_rect())) {
NOTREACHED() << "Invalid picture size from VDA: "
<< picture.visible_rect().ToString() << " should fit in "
<< pb.size().ToString();
NotifyError(media::VideoDecodeAccelerator::PLATFORM_FAILURE);
return;
}
// Create a media::VideoFrame.
uint32_t timestamp = 0;
GetBufferData(picture.bitstream_buffer_id(), &timestamp);
scoped_refptr<media::VideoFrame> frame =
CreateVideoFrame(picture, pb, timestamp);
bool inserted =
picture_buffers_at_display_.insert(std::make_pair(
picture.picture_buffer_id(),
pb.texture_id())).second;
DCHECK(inserted);
// Create a WebRTC video frame.
webrtc::RefCountImpl<NativeHandleImpl>* handle =
new webrtc::RefCountImpl<NativeHandleImpl>(frame);
webrtc::TextureVideoFrame decoded_image(handle,
picture.visible_rect().width(),
picture.visible_rect().height(),
timestamp,
0);
// Invoke decode callback. WebRTC expects no callback after Reset or Release.
{
base::AutoLock auto_lock(lock_);
DCHECK(decode_complete_callback_ != NULL);
if (IsBufferAfterReset(picture.bitstream_buffer_id(),
reset_bitstream_buffer_id_)) {
decode_complete_callback_->Decoded(decoded_image);
}
}
}
static void ReadPixelsSyncInner(
const scoped_refptr<media::GpuVideoAcceleratorFactories>& factories,
uint32 texture_id,
const gfx::Rect& visible_rect,
const SkBitmap& pixels,
base::WaitableEvent* event) {
factories->ReadPixels(texture_id, visible_rect, pixels);
event->Signal();
}
static void ReadPixelsSync(
const scoped_refptr<media::GpuVideoAcceleratorFactories>& factories,
uint32 texture_id,
const gfx::Rect& visible_rect,
const SkBitmap& pixels) {
base::WaitableEvent event(true, false);
if (!factories->GetTaskRunner()->PostTask(FROM_HERE,
base::Bind(&ReadPixelsSyncInner,
factories,
texture_id,
visible_rect,
pixels,
&event)))
return;
event.Wait();
}
scoped_refptr<media::VideoFrame> RTCVideoDecoder::CreateVideoFrame(
const media::Picture& picture,
const media::PictureBuffer& pb,
uint32_t timestamp) {
gfx::Rect visible_rect(picture.visible_rect());
DCHECK(decoder_texture_target_);
// Convert timestamp from 90KHz to ms.
base::TimeDelta timestamp_ms = base::TimeDelta::FromInternalValue(
base::checked_cast<uint64_t>(timestamp) * 1000 / 90);
return media::VideoFrame::WrapNativeTexture(
make_scoped_ptr(new gpu::MailboxHolder(
pb.texture_mailbox(), decoder_texture_target_, 0)),
media::BindToCurrentLoop(base::Bind(&RTCVideoDecoder::ReleaseMailbox,
weak_factory_.GetWeakPtr(),
factories_,
picture.picture_buffer_id(),
pb.texture_id())),
pb.size(),
visible_rect,
visible_rect.size(),
timestamp_ms,
base::Bind(&ReadPixelsSync, factories_, pb.texture_id(), visible_rect));
}
void RTCVideoDecoder::NotifyEndOfBitstreamBuffer(int32 id) {
DVLOG(3) << "NotifyEndOfBitstreamBuffer. id=" << id;
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
std::map<int32, SHMBuffer*>::iterator it =
bitstream_buffers_in_decoder_.find(id);
if (it == bitstream_buffers_in_decoder_.end()) {
NotifyError(media::VideoDecodeAccelerator::PLATFORM_FAILURE);
NOTREACHED() << "Missing bitstream buffer: " << id;
return;
}
{
base::AutoLock auto_lock(lock_);
PutSHM_Locked(scoped_ptr<SHMBuffer>(it->second));
}
bitstream_buffers_in_decoder_.erase(it);
RequestBufferDecode();
}
void RTCVideoDecoder::NotifyFlushDone() {
DVLOG(3) << "NotifyFlushDone";
NOTREACHED() << "Unexpected flush done notification.";
}
void RTCVideoDecoder::NotifyResetDone() {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
DVLOG(3) << "NotifyResetDone";
if (!vda_)
return;
input_buffer_data_.clear();
{
base::AutoLock auto_lock(lock_);
state_ = INITIALIZED;
}
// Send the pending buffers for decoding.
RequestBufferDecode();
}
void RTCVideoDecoder::NotifyError(media::VideoDecodeAccelerator::Error error) {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
if (!vda_)
return;
LOG(ERROR) << "VDA Error:" << error;
UMA_HISTOGRAM_ENUMERATION("Media.RTCVideoDecoderError",
error,
media::VideoDecodeAccelerator::LARGEST_ERROR_ENUM);
DestroyVDA();
base::AutoLock auto_lock(lock_);
state_ = DECODE_ERROR;
}
void RTCVideoDecoder::RequestBufferDecode() {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
if (!vda_)
return;
MovePendingBuffersToDecodeBuffers();
while (CanMoreDecodeWorkBeDone()) {
// Get a buffer and data from the queue.
SHMBuffer* shm_buffer = NULL;
BufferData buffer_data;
{
base::AutoLock auto_lock(lock_);
// Do not request decode if VDA is resetting.
if (decode_buffers_.size() == 0 || state_ == RESETTING)
return;
shm_buffer = decode_buffers_.front().first;
buffer_data = decode_buffers_.front().second;
decode_buffers_.pop_front();
// Drop the buffers before Reset or Release is called.
if (!IsBufferAfterReset(buffer_data.bitstream_buffer_id,
reset_bitstream_buffer_id_)) {
PutSHM_Locked(scoped_ptr<SHMBuffer>(shm_buffer));
continue;
}
}
// Create a BitstreamBuffer and send to VDA to decode.
media::BitstreamBuffer bitstream_buffer(buffer_data.bitstream_buffer_id,
shm_buffer->shm->handle(),
buffer_data.size);
bool inserted = bitstream_buffers_in_decoder_
.insert(std::make_pair(bitstream_buffer.id(), shm_buffer)).second;
DCHECK(inserted);
RecordBufferData(buffer_data);
vda_->Decode(bitstream_buffer);
}
}
bool RTCVideoDecoder::CanMoreDecodeWorkBeDone() {
return bitstream_buffers_in_decoder_.size() < kMaxInFlightDecodes;
}
bool RTCVideoDecoder::IsBufferAfterReset(int32 id_buffer, int32 id_reset) {
if (id_reset == ID_INVALID)
return true;
int32 diff = id_buffer - id_reset;
if (diff <= 0)
diff += ID_LAST + 1;
return diff < ID_HALF;
}
bool RTCVideoDecoder::IsFirstBufferAfterReset(int32 id_buffer, int32 id_reset) {
if (id_reset == ID_INVALID)
return id_buffer == 0;
return id_buffer == ((id_reset + 1) & ID_LAST);
}
void RTCVideoDecoder::SaveToDecodeBuffers_Locked(
const webrtc::EncodedImage& input_image,
scoped_ptr<SHMBuffer> shm_buffer,
const BufferData& buffer_data) {
memcpy(shm_buffer->shm->memory(), input_image._buffer, input_image._length);
std::pair<SHMBuffer*, BufferData> buffer_pair =
std::make_pair(shm_buffer.release(), buffer_data);
// Store the buffer and the metadata to the queue.
decode_buffers_.push_back(buffer_pair);
}
bool RTCVideoDecoder::SaveToPendingBuffers_Locked(
const webrtc::EncodedImage& input_image,
const BufferData& buffer_data) {
DVLOG(2) << "SaveToPendingBuffers_Locked"
<< ". pending_buffers size=" << pending_buffers_.size()
<< ". decode_buffers_ size=" << decode_buffers_.size()
<< ". available_shm size=" << available_shm_segments_.size();
// Queued too many buffers. Something goes wrong.
if (pending_buffers_.size() >= kMaxNumOfPendingBuffers) {
LOG(WARNING) << "Too many pending buffers!";
return false;
}
// Clone the input image and save it to the queue.
uint8_t* buffer = new uint8_t[input_image._length];
// TODO(wuchengli): avoid memcpy. Extend webrtc::VideoDecoder::Decode()
// interface to take a non-const ptr to the frame and add a method to the
// frame that will swap buffers with another.
memcpy(buffer, input_image._buffer, input_image._length);
webrtc::EncodedImage encoded_image(
buffer, input_image._length, input_image._length);
std::pair<webrtc::EncodedImage, BufferData> buffer_pair =
std::make_pair(encoded_image, buffer_data);
pending_buffers_.push_back(buffer_pair);
return true;
}
void RTCVideoDecoder::MovePendingBuffersToDecodeBuffers() {
base::AutoLock auto_lock(lock_);
while (pending_buffers_.size() > 0) {
// Get a pending buffer from the queue.
const webrtc::EncodedImage& input_image = pending_buffers_.front().first;
const BufferData& buffer_data = pending_buffers_.front().second;
// Drop the frame if it comes before Reset or Release.
if (!IsBufferAfterReset(buffer_data.bitstream_buffer_id,
reset_bitstream_buffer_id_)) {
delete[] input_image._buffer;
pending_buffers_.pop_front();
continue;
}
// Get shared memory and save it to decode buffers.
scoped_ptr<SHMBuffer> shm_buffer = GetSHM_Locked(input_image._length);
if (!shm_buffer)
return;
SaveToDecodeBuffers_Locked(input_image, shm_buffer.Pass(), buffer_data);
delete[] input_image._buffer;
pending_buffers_.pop_front();
}
}
void RTCVideoDecoder::ResetInternal() {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
DVLOG(2) << "ResetInternal";
if (vda_)
vda_->Reset();
}
// static
void RTCVideoDecoder::ReleaseMailbox(
base::WeakPtr<RTCVideoDecoder> decoder,
const scoped_refptr<media::GpuVideoAcceleratorFactories>& factories,
int64 picture_buffer_id,
uint32 texture_id,
uint32 release_sync_point) {
DCHECK(factories->GetTaskRunner()->BelongsToCurrentThread());
factories->WaitSyncPoint(release_sync_point);
if (decoder) {
decoder->ReusePictureBuffer(picture_buffer_id);
return;
}
// It's the last chance to delete the texture after display,
// because RTCVideoDecoder was destructed.
factories->DeleteTexture(texture_id);
}
void RTCVideoDecoder::ReusePictureBuffer(int64 picture_buffer_id) {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
DVLOG(3) << "ReusePictureBuffer. id=" << picture_buffer_id;
DCHECK(!picture_buffers_at_display_.empty());
PictureBufferTextureMap::iterator display_iterator =
picture_buffers_at_display_.find(picture_buffer_id);
uint32 texture_id = display_iterator->second;
DCHECK(display_iterator != picture_buffers_at_display_.end());
picture_buffers_at_display_.erase(display_iterator);
if (!assigned_picture_buffers_.count(picture_buffer_id)) {
// This picture was dismissed while in display, so we postponed deletion.
factories_->DeleteTexture(texture_id);
return;
}
// DestroyVDA() might already have been called.
if (vda_)
vda_->ReusePictureBuffer(picture_buffer_id);
}
void RTCVideoDecoder::CreateVDA(media::VideoCodecProfile profile,
base::WaitableEvent* waiter) {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
vda_ = factories_->CreateVideoDecodeAccelerator();
if (vda_ && !vda_->Initialize(profile, this))
vda_.release()->Destroy();
waiter->Signal();
}
void RTCVideoDecoder::DestroyTextures() {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
// Not destroying PictureBuffers in |picture_buffers_at_display_| yet, since
// their textures may still be in use by the user of this RTCVideoDecoder.
for (PictureBufferTextureMap::iterator it =
picture_buffers_at_display_.begin();
it != picture_buffers_at_display_.end();
++it) {
assigned_picture_buffers_.erase(it->first);
}
for (std::map<int32, media::PictureBuffer>::iterator it =
assigned_picture_buffers_.begin();
it != assigned_picture_buffers_.end();
++it) {
factories_->DeleteTexture(it->second.texture_id());
}
assigned_picture_buffers_.clear();
}
void RTCVideoDecoder::DestroyVDA() {
DVLOG(2) << "DestroyVDA";
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
if (vda_)
vda_.release()->Destroy();
DestroyTextures();
base::AutoLock auto_lock(lock_);
state_ = UNINITIALIZED;
}
scoped_ptr<RTCVideoDecoder::SHMBuffer> RTCVideoDecoder::GetSHM_Locked(
size_t min_size) {
// Reuse a SHM if possible.
SHMBuffer* ret = NULL;
if (!available_shm_segments_.empty() &&
available_shm_segments_.back()->size >= min_size) {
ret = available_shm_segments_.back();
available_shm_segments_.pop_back();
}
// Post to vda thread to create shared memory if SHM cannot be reused or the
// queue is almost empty.
if (num_shm_buffers_ < kMaxNumSharedMemorySegments &&
(ret == NULL || available_shm_segments_.size() <= 1)) {
factories_->GetTaskRunner()->PostTask(
FROM_HERE,
base::Bind(&RTCVideoDecoder::CreateSHM,
weak_factory_.GetWeakPtr(),
1,
min_size));
}
return scoped_ptr<SHMBuffer>(ret);
}
void RTCVideoDecoder::PutSHM_Locked(scoped_ptr<SHMBuffer> shm_buffer) {
available_shm_segments_.push_back(shm_buffer.release());
}
void RTCVideoDecoder::CreateSHM(int number, size_t min_size) {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
DVLOG(2) << "CreateSHM. size=" << min_size;
int number_to_allocate;
{
base::AutoLock auto_lock(lock_);
number_to_allocate =
std::min(kMaxNumSharedMemorySegments - num_shm_buffers_, number);
}
size_t size_to_allocate = std::max(min_size, kSharedMemorySegmentBytes);
for (int i = 0; i < number_to_allocate; i++) {
base::SharedMemory* shm = factories_->CreateSharedMemory(size_to_allocate);
if (shm != NULL) {
base::AutoLock auto_lock(lock_);
num_shm_buffers_++;
PutSHM_Locked(
scoped_ptr<SHMBuffer>(new SHMBuffer(shm, size_to_allocate)));
}
}
// Kick off the decoding.
RequestBufferDecode();
}
void RTCVideoDecoder::RecordBufferData(const BufferData& buffer_data) {
input_buffer_data_.push_front(buffer_data);
// Why this value? Because why not. avformat.h:MAX_REORDER_DELAY is 16, but
// that's too small for some pathological B-frame test videos. The cost of
// using too-high a value is low (192 bits per extra slot).
static const size_t kMaxInputBufferDataSize = 128;
// Pop from the back of the list, because that's the oldest and least likely
// to be useful in the future data.
if (input_buffer_data_.size() > kMaxInputBufferDataSize)
input_buffer_data_.pop_back();
}
void RTCVideoDecoder::GetBufferData(int32 bitstream_buffer_id,
uint32_t* timestamp) {
for (std::list<BufferData>::iterator it = input_buffer_data_.begin();
it != input_buffer_data_.end();
++it) {
if (it->bitstream_buffer_id != bitstream_buffer_id)
continue;
*timestamp = it->timestamp;
return;
}
NOTREACHED() << "Missing bitstream buffer id: " << bitstream_buffer_id;
}
int32_t RTCVideoDecoder::RecordInitDecodeUMA(int32_t status) {
// Logging boolean is enough to know if HW decoding has been used. Also,
// InitDecode is less likely to return an error so enum is not used here.
bool sample = (status == WEBRTC_VIDEO_CODEC_OK) ? true : false;
UMA_HISTOGRAM_BOOLEAN("Media.RTCVideoDecoderInitDecodeSuccess", sample);
return status;
}
void RTCVideoDecoder::DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent()
const {
DCHECK(factories_->GetTaskRunner()->BelongsToCurrentThread());
}
} // namespace content