blob: 519261231d76bff8bffcd9dfe851f82a6a9172f3 [file] [log] [blame]
//
// win_iocp_socket_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_WIN_IOCP_SOCKET_SERVICE_HPP
#define BOOST_ASIO_DETAIL_WIN_IOCP_SOCKET_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/win_iocp_io_service_fwd.hpp>
#if defined(BOOST_ASIO_HAS_IOCP)
#include <boost/asio/detail/push_options.hpp>
#include <cstring>
#include <boost/shared_ptr.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/weak_ptr.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/socket_base.hpp>
#include <boost/asio/detail/bind_handler.hpp>
#include <boost/asio/detail/handler_alloc_helpers.hpp>
#include <boost/asio/detail/handler_invoke_helpers.hpp>
#include <boost/asio/detail/mutex.hpp>
#include <boost/asio/detail/select_reactor.hpp>
#include <boost/asio/detail/socket_holder.hpp>
#include <boost/asio/detail/socket_ops.hpp>
#include <boost/asio/detail/socket_types.hpp>
#include <boost/asio/detail/win_iocp_io_service.hpp>
namespace boost {
namespace asio {
namespace detail {
template <typename Protocol>
class win_iocp_socket_service
: public boost::asio::detail::service_base<win_iocp_socket_service<Protocol> >
{
public:
// The protocol type.
typedef Protocol protocol_type;
// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
// Base class for all operations.
typedef win_iocp_io_service::operation operation;
struct noop_deleter { void operator()(void*) {} };
typedef boost::shared_ptr<void> shared_cancel_token_type;
typedef boost::weak_ptr<void> weak_cancel_token_type;
// The native type of a socket.
class native_type
{
public:
native_type(socket_type s)
: socket_(s),
have_remote_endpoint_(false)
{
}
native_type(socket_type s, const endpoint_type& ep)
: socket_(s),
have_remote_endpoint_(true),
remote_endpoint_(ep)
{
}
void operator=(socket_type s)
{
socket_ = s;
have_remote_endpoint_ = false;
remote_endpoint_ = endpoint_type();
}
operator socket_type() const
{
return socket_;
}
HANDLE as_handle() const
{
return reinterpret_cast<HANDLE>(socket_);
}
bool have_remote_endpoint() const
{
return have_remote_endpoint_;
}
endpoint_type remote_endpoint() const
{
return remote_endpoint_;
}
private:
socket_type socket_;
bool have_remote_endpoint_;
endpoint_type remote_endpoint_;
};
// The type of the reactor used for connect operations.
typedef detail::select_reactor<true> reactor_type;
// The implementation type of the socket.
class implementation_type
{
public:
// Default constructor.
implementation_type()
: socket_(invalid_socket),
flags_(0),
cancel_token_(),
protocol_(endpoint_type().protocol()),
next_(0),
prev_(0)
{
}
private:
// Only this service will have access to the internal values.
friend class win_iocp_socket_service;
// The native socket representation.
native_type socket_;
enum
{
enable_connection_aborted = 1, // User wants connection_aborted errors.
close_might_block = 2, // User set linger option for blocking close.
user_set_non_blocking = 4 // The user wants a non-blocking socket.
};
// Flags indicating the current state of the socket.
unsigned char flags_;
// We use a shared pointer as a cancellation token here to work around the
// broken Windows support for cancellation. MSDN says that when you call
// closesocket any outstanding WSARecv or WSASend operations will complete
// with the error ERROR_OPERATION_ABORTED. In practice they complete with
// ERROR_NETNAME_DELETED, which means you can't tell the difference between
// a local cancellation and the socket being hard-closed by the peer.
shared_cancel_token_type cancel_token_;
// The protocol associated with the socket.
protocol_type protocol_;
// Per-descriptor data used by the reactor.
reactor_type::per_descriptor_data reactor_data_;
#if defined(BOOST_ASIO_ENABLE_CANCELIO)
// The ID of the thread from which it is safe to cancel asynchronous
// operations. 0 means no asynchronous operations have been started yet.
// ~0 means asynchronous operations have been started from more than one
// thread, and cancellation is not supported for the socket.
DWORD safe_cancellation_thread_id_;
#endif // defined(BOOST_ASIO_ENABLE_CANCELIO)
// Pointers to adjacent socket implementations in linked list.
implementation_type* next_;
implementation_type* prev_;
};
// The maximum number of buffers to support in a single operation.
enum { max_buffers = 64 < max_iov_len ? 64 : max_iov_len };
// Constructor.
win_iocp_socket_service(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<
win_iocp_socket_service<Protocol> >(io_service),
iocp_service_(boost::asio::use_service<win_iocp_io_service>(io_service)),
reactor_(0),
mutex_(),
impl_list_(0)
{
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
// Close all implementations, causing all operations to complete.
boost::asio::detail::mutex::scoped_lock lock(mutex_);
implementation_type* impl = impl_list_;
while (impl)
{
boost::system::error_code ignored_ec;
close_for_destruction(*impl);
impl = impl->next_;
}
}
// Construct a new socket implementation.
void construct(implementation_type& impl)
{
impl.socket_ = invalid_socket;
impl.flags_ = 0;
impl.cancel_token_.reset();
#if defined(BOOST_ASIO_ENABLE_CANCELIO)
impl.safe_cancellation_thread_id_ = 0;
#endif // defined(BOOST_ASIO_ENABLE_CANCELIO)
// Insert implementation into linked list of all implementations.
boost::asio::detail::mutex::scoped_lock lock(mutex_);
impl.next_ = impl_list_;
impl.prev_ = 0;
if (impl_list_)
impl_list_->prev_ = &impl;
impl_list_ = &impl;
}
// Destroy a socket implementation.
void destroy(implementation_type& impl)
{
close_for_destruction(impl);
// Remove implementation from linked list of all implementations.
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (impl_list_ == &impl)
impl_list_ = impl.next_;
if (impl.prev_)
impl.prev_->next_ = impl.next_;
if (impl.next_)
impl.next_->prev_= impl.prev_;
impl.next_ = 0;
impl.prev_ = 0;
}
// Open a new socket implementation.
boost::system::error_code open(implementation_type& impl,
const protocol_type& protocol, boost::system::error_code& ec)
{
if (is_open(impl))
{
ec = boost::asio::error::already_open;
return ec;
}
socket_holder sock(socket_ops::socket(protocol.family(), protocol.type(),
protocol.protocol(), ec));
if (sock.get() == invalid_socket)
return ec;
HANDLE sock_as_handle = reinterpret_cast<HANDLE>(sock.get());
if (iocp_service_.register_handle(sock_as_handle, ec))
return ec;
impl.socket_ = sock.release();
impl.flags_ = 0;
impl.cancel_token_.reset(static_cast<void*>(0), noop_deleter());
impl.protocol_ = protocol;
ec = boost::system::error_code();
return ec;
}
// Assign a native socket to a socket implementation.
boost::system::error_code assign(implementation_type& impl,
const protocol_type& protocol, const native_type& native_socket,
boost::system::error_code& ec)
{
if (is_open(impl))
{
ec = boost::asio::error::already_open;
return ec;
}
if (iocp_service_.register_handle(native_socket.as_handle(), ec))
return ec;
impl.socket_ = native_socket;
impl.flags_ = 0;
impl.cancel_token_.reset(static_cast<void*>(0), noop_deleter());
impl.protocol_ = protocol;
ec = boost::system::error_code();
return ec;
}
// Determine whether the socket is open.
bool is_open(const implementation_type& impl) const
{
return impl.socket_ != invalid_socket;
}
// Destroy a socket implementation.
boost::system::error_code close(implementation_type& impl,
boost::system::error_code& ec)
{
if (is_open(impl))
{
// Check if the reactor was created, in which case we need to close the
// socket on the reactor as well to cancel any operations that might be
// running there.
reactor_type* reactor = static_cast<reactor_type*>(
interlocked_compare_exchange_pointer(
reinterpret_cast<void**>(&reactor_), 0, 0));
if (reactor)
reactor->close_descriptor(impl.socket_, impl.reactor_data_);
if (socket_ops::close(impl.socket_, ec) == socket_error_retval)
return ec;
impl.socket_ = invalid_socket;
impl.flags_ = 0;
impl.cancel_token_.reset();
#if defined(BOOST_ASIO_ENABLE_CANCELIO)
impl.safe_cancellation_thread_id_ = 0;
#endif // defined(BOOST_ASIO_ENABLE_CANCELIO)
}
ec = boost::system::error_code();
return ec;
}
// Get the native socket representation.
native_type native(implementation_type& impl)
{
return impl.socket_;
}
// Cancel all operations associated with the socket.
boost::system::error_code cancel(implementation_type& impl,
boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return ec;
}
else if (FARPROC cancel_io_ex_ptr = ::GetProcAddress(
::GetModuleHandleA("KERNEL32"), "CancelIoEx"))
{
// The version of Windows supports cancellation from any thread.
typedef BOOL (WINAPI* cancel_io_ex_t)(HANDLE, LPOVERLAPPED);
cancel_io_ex_t cancel_io_ex = (cancel_io_ex_t)cancel_io_ex_ptr;
socket_type sock = impl.socket_;
HANDLE sock_as_handle = reinterpret_cast<HANDLE>(sock);
if (!cancel_io_ex(sock_as_handle, 0))
{
DWORD last_error = ::GetLastError();
if (last_error == ERROR_NOT_FOUND)
{
// ERROR_NOT_FOUND means that there were no operations to be
// cancelled. We swallow this error to match the behaviour on other
// platforms.
ec = boost::system::error_code();
}
else
{
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
}
}
else
{
ec = boost::system::error_code();
}
}
#if defined(BOOST_ASIO_ENABLE_CANCELIO)
else if (impl.safe_cancellation_thread_id_ == 0)
{
// No operations have been started, so there's nothing to cancel.
ec = boost::system::error_code();
}
else if (impl.safe_cancellation_thread_id_ == ::GetCurrentThreadId())
{
// Asynchronous operations have been started from the current thread only,
// so it is safe to try to cancel them using CancelIo.
socket_type sock = impl.socket_;
HANDLE sock_as_handle = reinterpret_cast<HANDLE>(sock);
if (!::CancelIo(sock_as_handle))
{
DWORD last_error = ::GetLastError();
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
}
else
{
ec = boost::system::error_code();
}
}
else
{
// Asynchronous operations have been started from more than one thread,
// so cancellation is not safe.
ec = boost::asio::error::operation_not_supported;
}
#else // defined(BOOST_ASIO_ENABLE_CANCELIO)
else
{
// Cancellation is not supported as CancelIo may not be used.
ec = boost::asio::error::operation_not_supported;
}
#endif // defined(BOOST_ASIO_ENABLE_CANCELIO)
return ec;
}
// Determine whether the socket is at the out-of-band data mark.
bool at_mark(const implementation_type& impl,
boost::system::error_code& ec) const
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return false;
}
boost::asio::detail::ioctl_arg_type value = 0;
socket_ops::ioctl(impl.socket_, SIOCATMARK, &value, ec);
return ec ? false : value != 0;
}
// Determine the number of bytes available for reading.
std::size_t available(const implementation_type& impl,
boost::system::error_code& ec) const
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
boost::asio::detail::ioctl_arg_type value = 0;
socket_ops::ioctl(impl.socket_, FIONREAD, &value, ec);
return ec ? static_cast<std::size_t>(0) : static_cast<std::size_t>(value);
}
// Bind the socket to the specified local endpoint.
boost::system::error_code bind(implementation_type& impl,
const endpoint_type& endpoint, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return ec;
}
socket_ops::bind(impl.socket_, endpoint.data(), endpoint.size(), ec);
return ec;
}
// Place the socket into the state where it will listen for new connections.
boost::system::error_code listen(implementation_type& impl, int backlog,
boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return ec;
}
socket_ops::listen(impl.socket_, backlog, ec);
return ec;
}
// Set a socket option.
template <typename Option>
boost::system::error_code set_option(implementation_type& impl,
const Option& option, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return ec;
}
if (option.level(impl.protocol_) == custom_socket_option_level
&& option.name(impl.protocol_) == enable_connection_aborted_option)
{
if (option.size(impl.protocol_) != sizeof(int))
{
ec = boost::asio::error::invalid_argument;
}
else
{
if (*reinterpret_cast<const int*>(option.data(impl.protocol_)))
impl.flags_ |= implementation_type::enable_connection_aborted;
else
impl.flags_ &= ~implementation_type::enable_connection_aborted;
ec = boost::system::error_code();
}
return ec;
}
else
{
if (option.level(impl.protocol_) == SOL_SOCKET
&& option.name(impl.protocol_) == SO_LINGER)
{
const ::linger* linger_option =
reinterpret_cast<const ::linger*>(option.data(impl.protocol_));
if (linger_option->l_onoff != 0 && linger_option->l_linger != 0)
impl.flags_ |= implementation_type::close_might_block;
else
impl.flags_ &= ~implementation_type::close_might_block;
}
socket_ops::setsockopt(impl.socket_,
option.level(impl.protocol_), option.name(impl.protocol_),
option.data(impl.protocol_), option.size(impl.protocol_), ec);
return ec;
}
}
// Set a socket option.
template <typename Option>
boost::system::error_code get_option(const implementation_type& impl,
Option& option, boost::system::error_code& ec) const
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return ec;
}
if (option.level(impl.protocol_) == custom_socket_option_level
&& option.name(impl.protocol_) == enable_connection_aborted_option)
{
if (option.size(impl.protocol_) != sizeof(int))
{
ec = boost::asio::error::invalid_argument;
}
else
{
int* target = reinterpret_cast<int*>(option.data(impl.protocol_));
if (impl.flags_ & implementation_type::enable_connection_aborted)
*target = 1;
else
*target = 0;
option.resize(impl.protocol_, sizeof(int));
ec = boost::system::error_code();
}
return ec;
}
else
{
size_t size = option.size(impl.protocol_);
socket_ops::getsockopt(impl.socket_,
option.level(impl.protocol_), option.name(impl.protocol_),
option.data(impl.protocol_), &size, ec);
if (!ec)
option.resize(impl.protocol_, size);
return ec;
}
}
// Perform an IO control command on the socket.
template <typename IO_Control_Command>
boost::system::error_code io_control(implementation_type& impl,
IO_Control_Command& command, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return ec;
}
socket_ops::ioctl(impl.socket_, command.name(),
static_cast<ioctl_arg_type*>(command.data()), ec);
if (!ec && command.name() == static_cast<int>(FIONBIO))
{
if (*static_cast<ioctl_arg_type*>(command.data()))
impl.flags_ |= implementation_type::user_set_non_blocking;
else
impl.flags_ &= ~implementation_type::user_set_non_blocking;
}
return ec;
}
// Get the local endpoint.
endpoint_type local_endpoint(const implementation_type& impl,
boost::system::error_code& ec) const
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return endpoint_type();
}
endpoint_type endpoint;
std::size_t addr_len = endpoint.capacity();
if (socket_ops::getsockname(impl.socket_, endpoint.data(), &addr_len, ec))
return endpoint_type();
endpoint.resize(addr_len);
return endpoint;
}
// Get the remote endpoint.
endpoint_type remote_endpoint(const implementation_type& impl,
boost::system::error_code& ec) const
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return endpoint_type();
}
if (impl.socket_.have_remote_endpoint())
{
// Check if socket is still connected.
DWORD connect_time = 0;
size_t connect_time_len = sizeof(connect_time);
if (socket_ops::getsockopt(impl.socket_, SOL_SOCKET, SO_CONNECT_TIME,
&connect_time, &connect_time_len, ec) == socket_error_retval)
{
return endpoint_type();
}
if (connect_time == 0xFFFFFFFF)
{
ec = boost::asio::error::not_connected;
return endpoint_type();
}
ec = boost::system::error_code();
return impl.socket_.remote_endpoint();
}
else
{
endpoint_type endpoint;
std::size_t addr_len = endpoint.capacity();
if (socket_ops::getpeername(impl.socket_, endpoint.data(), &addr_len, ec))
return endpoint_type();
endpoint.resize(addr_len);
return endpoint;
}
}
/// Disable sends or receives on the socket.
boost::system::error_code shutdown(implementation_type& impl,
socket_base::shutdown_type what, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return ec;
}
socket_ops::shutdown(impl.socket_, what, ec);
return ec;
}
// Send the given data to the peer. Returns the number of bytes sent.
template <typename ConstBufferSequence>
size_t send(implementation_type& impl, const ConstBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
// Copy buffers into WSABUF array.
::WSABUF bufs[max_buffers];
typename ConstBufferSequence::const_iterator iter = buffers.begin();
typename ConstBufferSequence::const_iterator end = buffers.end();
DWORD i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
boost::asio::const_buffer buffer(*iter);
bufs[i].len = static_cast<u_long>(boost::asio::buffer_size(buffer));
bufs[i].buf = const_cast<char*>(
boost::asio::buffer_cast<const char*>(buffer));
total_buffer_size += boost::asio::buffer_size(buffer);
}
// A request to receive 0 bytes on a stream socket is a no-op.
if (impl.protocol_.type() == SOCK_STREAM && total_buffer_size == 0)
{
ec = boost::system::error_code();
return 0;
}
// Send the data.
DWORD bytes_transferred = 0;
int result = ::WSASend(impl.socket_, bufs,
i, &bytes_transferred, flags, 0, 0);
if (result != 0)
{
DWORD last_error = ::WSAGetLastError();
if (last_error == ERROR_NETNAME_DELETED)
last_error = WSAECONNRESET;
else if (last_error == ERROR_PORT_UNREACHABLE)
last_error = WSAECONNREFUSED;
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
return 0;
}
ec = boost::system::error_code();
return bytes_transferred;
}
// Wait until data can be sent without blocking.
size_t send(implementation_type& impl, const null_buffers&,
socket_base::message_flags, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
// Wait for socket to become ready.
socket_ops::poll_write(impl.socket_, ec);
return 0;
}
template <typename ConstBufferSequence, typename Handler>
class send_operation
: public operation
{
public:
send_operation(win_iocp_io_service& io_service,
weak_cancel_token_type cancel_token,
const ConstBufferSequence& buffers, Handler handler)
: operation(io_service,
&send_operation<ConstBufferSequence, Handler>::do_completion_impl,
&send_operation<ConstBufferSequence, Handler>::destroy_impl),
work_(io_service.get_io_service()),
cancel_token_(cancel_token),
buffers_(buffers),
handler_(handler)
{
}
private:
static void do_completion_impl(operation* op,
DWORD last_error, size_t bytes_transferred)
{
// Take ownership of the operation object.
typedef send_operation<ConstBufferSequence, Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
// Check whether buffers are still valid.
typename ConstBufferSequence::const_iterator iter
= handler_op->buffers_.begin();
typename ConstBufferSequence::const_iterator end
= handler_op->buffers_.end();
while (iter != end)
{
boost::asio::const_buffer buffer(*iter);
boost::asio::buffer_cast<const char*>(buffer);
++iter;
}
#endif // defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
// Map non-portable errors to their portable counterparts.
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
if (ec.value() == ERROR_NETNAME_DELETED)
{
if (handler_op->cancel_token_.expired())
ec = boost::asio::error::operation_aborted;
else
ec = boost::asio::error::connection_reset;
}
else if (ec.value() == ERROR_PORT_UNREACHABLE)
{
ec = boost::asio::error::connection_refused;
}
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made.
Handler handler(handler_op->handler_);
// Free the memory associated with the handler.
ptr.reset();
// Call the handler.
boost_asio_handler_invoke_helpers::invoke(
detail::bind_handler(handler, ec, bytes_transferred), &handler);
}
static void destroy_impl(operation* op)
{
// Take ownership of the operation object.
typedef send_operation<ConstBufferSequence, Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
// A sub-object of the handler may be the true owner of the memory
// associated with the handler. Consequently, a local copy of the handler
// is required to ensure that any owning sub-object remains valid until
// after we have deallocated the memory here.
Handler handler(handler_op->handler_);
(void)handler;
// Free the memory associated with the handler.
ptr.reset();
}
boost::asio::io_service::work work_;
weak_cancel_token_type cancel_token_;
ConstBufferSequence buffers_;
Handler handler_;
};
// Start an asynchronous send. The data being sent must be valid for the
// lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename Handler>
void async_send(implementation_type& impl, const ConstBufferSequence& buffers,
socket_base::message_flags flags, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor, 0));
return;
}
#if defined(BOOST_ASIO_ENABLE_CANCELIO)
// Update the ID of the thread from which cancellation is safe.
if (impl.safe_cancellation_thread_id_ == 0)
impl.safe_cancellation_thread_id_ = ::GetCurrentThreadId();
else if (impl.safe_cancellation_thread_id_ != ::GetCurrentThreadId())
impl.safe_cancellation_thread_id_ = ~DWORD(0);
#endif // defined(BOOST_ASIO_ENABLE_CANCELIO)
// Allocate and construct an operation to wrap the handler.
typedef send_operation<ConstBufferSequence, Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(handler);
handler_ptr<alloc_traits> ptr(raw_ptr, iocp_service_,
impl.cancel_token_, buffers, handler);
// Copy buffers into WSABUF array.
::WSABUF bufs[max_buffers];
typename ConstBufferSequence::const_iterator iter = buffers.begin();
typename ConstBufferSequence::const_iterator end = buffers.end();
DWORD i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
boost::asio::const_buffer buffer(*iter);
bufs[i].len = static_cast<u_long>(boost::asio::buffer_size(buffer));
bufs[i].buf = const_cast<char*>(
boost::asio::buffer_cast<const char*>(buffer));
total_buffer_size += boost::asio::buffer_size(buffer);
}
// A request to receive 0 bytes on a stream socket is a no-op.
if (impl.protocol_.type() == SOCK_STREAM && total_buffer_size == 0)
{
boost::asio::io_service::work work(this->get_io_service());
ptr.reset();
boost::system::error_code error;
iocp_service_.post(bind_handler(handler, error, 0));
return;
}
// Send the data.
DWORD bytes_transferred = 0;
int result = ::WSASend(impl.socket_, bufs, i,
&bytes_transferred, flags, ptr.get(), 0);
DWORD last_error = ::WSAGetLastError();
// Check if the operation completed immediately.
if (result != 0 && last_error != WSA_IO_PENDING)
{
boost::asio::io_service::work work(this->get_io_service());
ptr.reset();
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
iocp_service_.post(bind_handler(handler, ec, bytes_transferred));
}
else
{
ptr.release();
}
}
template <typename Handler>
class null_buffers_operation
{
public:
null_buffers_operation(boost::asio::io_service& io_service, Handler handler)
: work_(io_service),
handler_(handler)
{
}
bool perform(boost::system::error_code&,
std::size_t& bytes_transferred)
{
bytes_transferred = 0;
return true;
}
void complete(const boost::system::error_code& ec,
std::size_t bytes_transferred)
{
work_.get_io_service().post(bind_handler(
handler_, ec, bytes_transferred));
}
private:
boost::asio::io_service::work work_;
Handler handler_;
};
// Start an asynchronous wait until data can be sent without blocking.
template <typename Handler>
void async_send(implementation_type& impl, const null_buffers&,
socket_base::message_flags, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor, 0));
}
else
{
// Check if the reactor was already obtained from the io_service.
reactor_type* reactor = static_cast<reactor_type*>(
interlocked_compare_exchange_pointer(
reinterpret_cast<void**>(&reactor_), 0, 0));
if (!reactor)
{
reactor = &(boost::asio::use_service<reactor_type>(
this->get_io_service()));
interlocked_exchange_pointer(
reinterpret_cast<void**>(&reactor_), reactor);
}
reactor->start_write_op(impl.socket_, impl.reactor_data_,
null_buffers_operation<Handler>(this->get_io_service(), handler),
false);
}
}
// Send a datagram to the specified endpoint. Returns the number of bytes
// sent.
template <typename ConstBufferSequence>
size_t send_to(implementation_type& impl, const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
// Copy buffers into WSABUF array.
::WSABUF bufs[max_buffers];
typename ConstBufferSequence::const_iterator iter = buffers.begin();
typename ConstBufferSequence::const_iterator end = buffers.end();
DWORD i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
boost::asio::const_buffer buffer(*iter);
bufs[i].len = static_cast<u_long>(boost::asio::buffer_size(buffer));
bufs[i].buf = const_cast<char*>(
boost::asio::buffer_cast<const char*>(buffer));
}
// Send the data.
DWORD bytes_transferred = 0;
int result = ::WSASendTo(impl.socket_, bufs, i, &bytes_transferred,
flags, destination.data(), static_cast<int>(destination.size()), 0, 0);
if (result != 0)
{
DWORD last_error = ::WSAGetLastError();
if (last_error == ERROR_PORT_UNREACHABLE)
last_error = WSAECONNREFUSED;
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
return 0;
}
ec = boost::system::error_code();
return bytes_transferred;
}
// Wait until data can be sent without blocking.
size_t send_to(implementation_type& impl, const null_buffers&,
socket_base::message_flags, const endpoint_type&,
boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
// Wait for socket to become ready.
socket_ops::poll_write(impl.socket_, ec);
return 0;
}
template <typename ConstBufferSequence, typename Handler>
class send_to_operation
: public operation
{
public:
send_to_operation(win_iocp_io_service& io_service,
const ConstBufferSequence& buffers, Handler handler)
: operation(io_service,
&send_to_operation<ConstBufferSequence, Handler>::do_completion_impl,
&send_to_operation<ConstBufferSequence, Handler>::destroy_impl),
work_(io_service.get_io_service()),
buffers_(buffers),
handler_(handler)
{
}
private:
static void do_completion_impl(operation* op,
DWORD last_error, size_t bytes_transferred)
{
// Take ownership of the operation object.
typedef send_to_operation<ConstBufferSequence, Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
// Check whether buffers are still valid.
typename ConstBufferSequence::const_iterator iter
= handler_op->buffers_.begin();
typename ConstBufferSequence::const_iterator end
= handler_op->buffers_.end();
while (iter != end)
{
boost::asio::const_buffer buffer(*iter);
boost::asio::buffer_cast<const char*>(buffer);
++iter;
}
#endif // defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
// Map non-portable errors to their portable counterparts.
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
if (ec.value() == ERROR_PORT_UNREACHABLE)
{
ec = boost::asio::error::connection_refused;
}
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made.
Handler handler(handler_op->handler_);
// Free the memory associated with the handler.
ptr.reset();
// Call the handler.
boost_asio_handler_invoke_helpers::invoke(
detail::bind_handler(handler, ec, bytes_transferred), &handler);
}
static void destroy_impl(operation* op)
{
// Take ownership of the operation object.
typedef send_to_operation<ConstBufferSequence, Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
// A sub-object of the handler may be the true owner of the memory
// associated with the handler. Consequently, a local copy of the handler
// is required to ensure that any owning sub-object remains valid until
// after we have deallocated the memory here.
Handler handler(handler_op->handler_);
(void)handler;
// Free the memory associated with the handler.
ptr.reset();
}
boost::asio::io_service::work work_;
ConstBufferSequence buffers_;
Handler handler_;
};
// Start an asynchronous send. The data being sent must be valid for the
// lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename Handler>
void async_send_to(implementation_type& impl,
const ConstBufferSequence& buffers, const endpoint_type& destination,
socket_base::message_flags flags, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor, 0));
return;
}
#if defined(BOOST_ASIO_ENABLE_CANCELIO)
// Update the ID of the thread from which cancellation is safe.
if (impl.safe_cancellation_thread_id_ == 0)
impl.safe_cancellation_thread_id_ = ::GetCurrentThreadId();
else if (impl.safe_cancellation_thread_id_ != ::GetCurrentThreadId())
impl.safe_cancellation_thread_id_ = ~DWORD(0);
#endif // defined(BOOST_ASIO_ENABLE_CANCELIO)
// Allocate and construct an operation to wrap the handler.
typedef send_to_operation<ConstBufferSequence, Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(handler);
handler_ptr<alloc_traits> ptr(raw_ptr, iocp_service_, buffers, handler);
// Copy buffers into WSABUF array.
::WSABUF bufs[max_buffers];
typename ConstBufferSequence::const_iterator iter = buffers.begin();
typename ConstBufferSequence::const_iterator end = buffers.end();
DWORD i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
boost::asio::const_buffer buffer(*iter);
bufs[i].len = static_cast<u_long>(boost::asio::buffer_size(buffer));
bufs[i].buf = const_cast<char*>(
boost::asio::buffer_cast<const char*>(buffer));
}
// Send the data.
DWORD bytes_transferred = 0;
int result = ::WSASendTo(impl.socket_, bufs, i, &bytes_transferred, flags,
destination.data(), static_cast<int>(destination.size()), ptr.get(), 0);
DWORD last_error = ::WSAGetLastError();
// Check if the operation completed immediately.
if (result != 0 && last_error != WSA_IO_PENDING)
{
boost::asio::io_service::work work(this->get_io_service());
ptr.reset();
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
iocp_service_.post(bind_handler(handler, ec, bytes_transferred));
}
else
{
ptr.release();
}
}
// Start an asynchronous wait until data can be sent without blocking.
template <typename Handler>
void async_send_to(implementation_type& impl, const null_buffers&,
socket_base::message_flags, const endpoint_type&, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor, 0));
}
else
{
// Check if the reactor was already obtained from the io_service.
reactor_type* reactor = static_cast<reactor_type*>(
interlocked_compare_exchange_pointer(
reinterpret_cast<void**>(&reactor_), 0, 0));
if (!reactor)
{
reactor = &(boost::asio::use_service<reactor_type>(
this->get_io_service()));
interlocked_exchange_pointer(
reinterpret_cast<void**>(&reactor_), reactor);
}
reactor->start_write_op(impl.socket_, impl.reactor_data_,
null_buffers_operation<Handler>(this->get_io_service(), handler),
false);
}
}
// Receive some data from the peer. Returns the number of bytes received.
template <typename MutableBufferSequence>
size_t receive(implementation_type& impl,
const MutableBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
// Copy buffers into WSABUF array.
::WSABUF bufs[max_buffers];
typename MutableBufferSequence::const_iterator iter = buffers.begin();
typename MutableBufferSequence::const_iterator end = buffers.end();
DWORD i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
boost::asio::mutable_buffer buffer(*iter);
bufs[i].len = static_cast<u_long>(boost::asio::buffer_size(buffer));
bufs[i].buf = boost::asio::buffer_cast<char*>(buffer);
total_buffer_size += boost::asio::buffer_size(buffer);
}
// A request to receive 0 bytes on a stream socket is a no-op.
if (impl.protocol_.type() == SOCK_STREAM && total_buffer_size == 0)
{
ec = boost::system::error_code();
return 0;
}
// Receive some data.
DWORD bytes_transferred = 0;
DWORD recv_flags = flags;
int result = ::WSARecv(impl.socket_, bufs, i,
&bytes_transferred, &recv_flags, 0, 0);
if (result != 0)
{
DWORD last_error = ::WSAGetLastError();
if (last_error == ERROR_NETNAME_DELETED)
last_error = WSAECONNRESET;
else if (last_error == ERROR_PORT_UNREACHABLE)
last_error = WSAECONNREFUSED;
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
return 0;
}
if (bytes_transferred == 0 && impl.protocol_.type() == SOCK_STREAM)
{
ec = boost::asio::error::eof;
return 0;
}
ec = boost::system::error_code();
return bytes_transferred;
}
// Wait until data can be received without blocking.
size_t receive(implementation_type& impl, const null_buffers&,
socket_base::message_flags, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
// Wait for socket to become ready.
socket_ops::poll_read(impl.socket_, ec);
return 0;
}
template <typename MutableBufferSequence, typename Handler>
class receive_operation
: public operation
{
public:
receive_operation(int protocol_type, win_iocp_io_service& io_service,
weak_cancel_token_type cancel_token,
const MutableBufferSequence& buffers, Handler handler)
: operation(io_service,
&receive_operation<
MutableBufferSequence, Handler>::do_completion_impl,
&receive_operation<
MutableBufferSequence, Handler>::destroy_impl),
protocol_type_(protocol_type),
work_(io_service.get_io_service()),
cancel_token_(cancel_token),
buffers_(buffers),
handler_(handler)
{
}
private:
static void do_completion_impl(operation* op,
DWORD last_error, size_t bytes_transferred)
{
// Take ownership of the operation object.
typedef receive_operation<MutableBufferSequence, Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
// Check whether buffers are still valid.
typename MutableBufferSequence::const_iterator iter
= handler_op->buffers_.begin();
typename MutableBufferSequence::const_iterator end
= handler_op->buffers_.end();
while (iter != end)
{
boost::asio::mutable_buffer buffer(*iter);
boost::asio::buffer_cast<char*>(buffer);
++iter;
}
#endif // defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
// Map non-portable errors to their portable counterparts.
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
if (ec.value() == ERROR_NETNAME_DELETED)
{
if (handler_op->cancel_token_.expired())
ec = boost::asio::error::operation_aborted;
else
ec = boost::asio::error::connection_reset;
}
else if (ec.value() == ERROR_PORT_UNREACHABLE)
{
ec = boost::asio::error::connection_refused;
}
// Check for connection closed.
else if (!ec && bytes_transferred == 0
&& handler_op->protocol_type_ == SOCK_STREAM
&& !boost::is_same<MutableBufferSequence, null_buffers>::value)
{
ec = boost::asio::error::eof;
}
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made.
Handler handler(handler_op->handler_);
// Free the memory associated with the handler.
ptr.reset();
// Call the handler.
boost_asio_handler_invoke_helpers::invoke(
detail::bind_handler(handler, ec, bytes_transferred), &handler);
}
static void destroy_impl(operation* op)
{
// Take ownership of the operation object.
typedef receive_operation<MutableBufferSequence, Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
// A sub-object of the handler may be the true owner of the memory
// associated with the handler. Consequently, a local copy of the handler
// is required to ensure that any owning sub-object remains valid until
// after we have deallocated the memory here.
Handler handler(handler_op->handler_);
(void)handler;
// Free the memory associated with the handler.
ptr.reset();
}
int protocol_type_;
boost::asio::io_service::work work_;
weak_cancel_token_type cancel_token_;
MutableBufferSequence buffers_;
Handler handler_;
};
// Start an asynchronous receive. The buffer for the data being received
// must be valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence, typename Handler>
void async_receive(implementation_type& impl,
const MutableBufferSequence& buffers,
socket_base::message_flags flags, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor, 0));
return;
}
#if defined(BOOST_ASIO_ENABLE_CANCELIO)
// Update the ID of the thread from which cancellation is safe.
if (impl.safe_cancellation_thread_id_ == 0)
impl.safe_cancellation_thread_id_ = ::GetCurrentThreadId();
else if (impl.safe_cancellation_thread_id_ != ::GetCurrentThreadId())
impl.safe_cancellation_thread_id_ = ~DWORD(0);
#endif // defined(BOOST_ASIO_ENABLE_CANCELIO)
// Allocate and construct an operation to wrap the handler.
typedef receive_operation<MutableBufferSequence, Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(handler);
int protocol_type = impl.protocol_.type();
handler_ptr<alloc_traits> ptr(raw_ptr, protocol_type,
iocp_service_, impl.cancel_token_, buffers, handler);
// Copy buffers into WSABUF array.
::WSABUF bufs[max_buffers];
typename MutableBufferSequence::const_iterator iter = buffers.begin();
typename MutableBufferSequence::const_iterator end = buffers.end();
DWORD i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
boost::asio::mutable_buffer buffer(*iter);
bufs[i].len = static_cast<u_long>(boost::asio::buffer_size(buffer));
bufs[i].buf = boost::asio::buffer_cast<char*>(buffer);
total_buffer_size += boost::asio::buffer_size(buffer);
}
// A request to receive 0 bytes on a stream socket is a no-op.
if (impl.protocol_.type() == SOCK_STREAM && total_buffer_size == 0)
{
boost::asio::io_service::work work(this->get_io_service());
ptr.reset();
boost::system::error_code error;
iocp_service_.post(bind_handler(handler, error, 0));
return;
}
// Receive some data.
DWORD bytes_transferred = 0;
DWORD recv_flags = flags;
int result = ::WSARecv(impl.socket_, bufs, i,
&bytes_transferred, &recv_flags, ptr.get(), 0);
DWORD last_error = ::WSAGetLastError();
if (result != 0 && last_error != WSA_IO_PENDING)
{
boost::asio::io_service::work work(this->get_io_service());
ptr.reset();
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
iocp_service_.post(bind_handler(handler, ec, bytes_transferred));
}
else
{
ptr.release();
}
}
// Wait until data can be received without blocking.
template <typename Handler>
void async_receive(implementation_type& impl, const null_buffers& buffers,
socket_base::message_flags flags, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor, 0));
}
else if (impl.protocol_.type() == SOCK_STREAM)
{
// For stream sockets on Windows, we may issue a 0-byte overlapped
// WSARecv to wait until there is data available on the socket.
#if defined(BOOST_ASIO_ENABLE_CANCELIO)
// Update the ID of the thread from which cancellation is safe.
if (impl.safe_cancellation_thread_id_ == 0)
impl.safe_cancellation_thread_id_ = ::GetCurrentThreadId();
else if (impl.safe_cancellation_thread_id_ != ::GetCurrentThreadId())
impl.safe_cancellation_thread_id_ = ~DWORD(0);
#endif // defined(BOOST_ASIO_ENABLE_CANCELIO)
// Allocate and construct an operation to wrap the handler.
typedef receive_operation<null_buffers, Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(handler);
int protocol_type = impl.protocol_.type();
handler_ptr<alloc_traits> ptr(raw_ptr, protocol_type,
iocp_service_, impl.cancel_token_, buffers, handler);
// Issue a receive operation with an empty buffer.
::WSABUF buf = { 0, 0 };
DWORD bytes_transferred = 0;
DWORD recv_flags = flags;
int result = ::WSARecv(impl.socket_, &buf, 1,
&bytes_transferred, &recv_flags, ptr.get(), 0);
DWORD last_error = ::WSAGetLastError();
if (result != 0 && last_error != WSA_IO_PENDING)
{
boost::asio::io_service::work work(this->get_io_service());
ptr.reset();
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
iocp_service_.post(bind_handler(handler, ec, bytes_transferred));
}
else
{
ptr.release();
}
}
else
{
// Check if the reactor was already obtained from the io_service.
reactor_type* reactor = static_cast<reactor_type*>(
interlocked_compare_exchange_pointer(
reinterpret_cast<void**>(&reactor_), 0, 0));
if (!reactor)
{
reactor = &(boost::asio::use_service<reactor_type>(
this->get_io_service()));
interlocked_exchange_pointer(
reinterpret_cast<void**>(&reactor_), reactor);
}
if (flags & socket_base::message_out_of_band)
{
reactor->start_except_op(impl.socket_, impl.reactor_data_,
null_buffers_operation<Handler>(this->get_io_service(), handler));
}
else
{
reactor->start_read_op(impl.socket_, impl.reactor_data_,
null_buffers_operation<Handler>(this->get_io_service(), handler),
false);
}
}
}
// Receive a datagram with the endpoint of the sender. Returns the number of
// bytes received.
template <typename MutableBufferSequence>
size_t receive_from(implementation_type& impl,
const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags,
boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
// Copy buffers into WSABUF array.
::WSABUF bufs[max_buffers];
typename MutableBufferSequence::const_iterator iter = buffers.begin();
typename MutableBufferSequence::const_iterator end = buffers.end();
DWORD i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
boost::asio::mutable_buffer buffer(*iter);
bufs[i].len = static_cast<u_long>(boost::asio::buffer_size(buffer));
bufs[i].buf = boost::asio::buffer_cast<char*>(buffer);
}
// Receive some data.
DWORD bytes_transferred = 0;
DWORD recv_flags = flags;
int endpoint_size = static_cast<int>(sender_endpoint.capacity());
int result = ::WSARecvFrom(impl.socket_, bufs, i, &bytes_transferred,
&recv_flags, sender_endpoint.data(), &endpoint_size, 0, 0);
if (result != 0)
{
DWORD last_error = ::WSAGetLastError();
if (last_error == ERROR_PORT_UNREACHABLE)
last_error = WSAECONNREFUSED;
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
return 0;
}
if (bytes_transferred == 0 && impl.protocol_.type() == SOCK_STREAM)
{
ec = boost::asio::error::eof;
return 0;
}
sender_endpoint.resize(static_cast<std::size_t>(endpoint_size));
ec = boost::system::error_code();
return bytes_transferred;
}
// Wait until data can be received without blocking.
size_t receive_from(implementation_type& impl,
const null_buffers&, endpoint_type& sender_endpoint,
socket_base::message_flags, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
// Wait for socket to become ready.
socket_ops::poll_read(impl.socket_, ec);
// Reset endpoint since it can be given no sensible value at this time.
sender_endpoint = endpoint_type();
return 0;
}
template <typename MutableBufferSequence, typename Handler>
class receive_from_operation
: public operation
{
public:
receive_from_operation(int protocol_type, win_iocp_io_service& io_service,
endpoint_type& endpoint, const MutableBufferSequence& buffers,
Handler handler)
: operation(io_service,
&receive_from_operation<
MutableBufferSequence, Handler>::do_completion_impl,
&receive_from_operation<
MutableBufferSequence, Handler>::destroy_impl),
protocol_type_(protocol_type),
endpoint_(endpoint),
endpoint_size_(static_cast<int>(endpoint.capacity())),
work_(io_service.get_io_service()),
buffers_(buffers),
handler_(handler)
{
}
int& endpoint_size()
{
return endpoint_size_;
}
private:
static void do_completion_impl(operation* op,
DWORD last_error, size_t bytes_transferred)
{
// Take ownership of the operation object.
typedef receive_from_operation<MutableBufferSequence, Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
// Check whether buffers are still valid.
typename MutableBufferSequence::const_iterator iter
= handler_op->buffers_.begin();
typename MutableBufferSequence::const_iterator end
= handler_op->buffers_.end();
while (iter != end)
{
boost::asio::mutable_buffer buffer(*iter);
boost::asio::buffer_cast<char*>(buffer);
++iter;
}
#endif // defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
// Map non-portable errors to their portable counterparts.
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
if (ec.value() == ERROR_PORT_UNREACHABLE)
{
ec = boost::asio::error::connection_refused;
}
// Check for connection closed.
if (!ec && bytes_transferred == 0
&& handler_op->protocol_type_ == SOCK_STREAM)
{
ec = boost::asio::error::eof;
}
// Record the size of the endpoint returned by the operation.
handler_op->endpoint_.resize(handler_op->endpoint_size_);
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made.
Handler handler(handler_op->handler_);
// Free the memory associated with the handler.
ptr.reset();
// Call the handler.
boost_asio_handler_invoke_helpers::invoke(
detail::bind_handler(handler, ec, bytes_transferred), &handler);
}
static void destroy_impl(operation* op)
{
// Take ownership of the operation object.
typedef receive_from_operation<MutableBufferSequence, Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
// A sub-object of the handler may be the true owner of the memory
// associated with the handler. Consequently, a local copy of the handler
// is required to ensure that any owning sub-object remains valid until
// after we have deallocated the memory here.
Handler handler(handler_op->handler_);
(void)handler;
// Free the memory associated with the handler.
ptr.reset();
}
int protocol_type_;
endpoint_type& endpoint_;
int endpoint_size_;
boost::asio::io_service::work work_;
MutableBufferSequence buffers_;
Handler handler_;
};
// Start an asynchronous receive. The buffer for the data being received and
// the sender_endpoint object must both be valid for the lifetime of the
// asynchronous operation.
template <typename MutableBufferSequence, typename Handler>
void async_receive_from(implementation_type& impl,
const MutableBufferSequence& buffers, endpoint_type& sender_endp,
socket_base::message_flags flags, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor, 0));
return;
}
#if defined(BOOST_ASIO_ENABLE_CANCELIO)
// Update the ID of the thread from which cancellation is safe.
if (impl.safe_cancellation_thread_id_ == 0)
impl.safe_cancellation_thread_id_ = ::GetCurrentThreadId();
else if (impl.safe_cancellation_thread_id_ != ::GetCurrentThreadId())
impl.safe_cancellation_thread_id_ = ~DWORD(0);
#endif // defined(BOOST_ASIO_ENABLE_CANCELIO)
// Allocate and construct an operation to wrap the handler.
typedef receive_from_operation<MutableBufferSequence, Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(handler);
int protocol_type = impl.protocol_.type();
handler_ptr<alloc_traits> ptr(raw_ptr, protocol_type,
iocp_service_, sender_endp, buffers, handler);
// Copy buffers into WSABUF array.
::WSABUF bufs[max_buffers];
typename MutableBufferSequence::const_iterator iter = buffers.begin();
typename MutableBufferSequence::const_iterator end = buffers.end();
DWORD i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
boost::asio::mutable_buffer buffer(*iter);
bufs[i].len = static_cast<u_long>(boost::asio::buffer_size(buffer));
bufs[i].buf = boost::asio::buffer_cast<char*>(buffer);
}
// Receive some data.
DWORD bytes_transferred = 0;
DWORD recv_flags = flags;
int result = ::WSARecvFrom(impl.socket_, bufs, i, &bytes_transferred,
&recv_flags, sender_endp.data(), &ptr.get()->endpoint_size(),
ptr.get(), 0);
DWORD last_error = ::WSAGetLastError();
if (result != 0 && last_error != WSA_IO_PENDING)
{
boost::asio::io_service::work work(this->get_io_service());
ptr.reset();
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
iocp_service_.post(bind_handler(handler, ec, bytes_transferred));
}
else
{
ptr.release();
}
}
// Wait until data can be received without blocking.
template <typename Handler>
void async_receive_from(implementation_type& impl,
const null_buffers&, endpoint_type& sender_endpoint,
socket_base::message_flags flags, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor, 0));
}
else
{
// Check if the reactor was already obtained from the io_service.
reactor_type* reactor = static_cast<reactor_type*>(
interlocked_compare_exchange_pointer(
reinterpret_cast<void**>(&reactor_), 0, 0));
if (!reactor)
{
reactor = &(boost::asio::use_service<reactor_type>(
this->get_io_service()));
interlocked_exchange_pointer(
reinterpret_cast<void**>(&reactor_), reactor);
}
// Reset endpoint since it can be given no sensible value at this time.
sender_endpoint = endpoint_type();
if (flags & socket_base::message_out_of_band)
{
reactor->start_except_op(impl.socket_, impl.reactor_data_,
null_buffers_operation<Handler>(this->get_io_service(), handler));
}
else
{
reactor->start_read_op(impl.socket_, impl.reactor_data_,
null_buffers_operation<Handler>(this->get_io_service(), handler),
false);
}
}
}
// Accept a new connection.
template <typename Socket>
boost::system::error_code accept(implementation_type& impl, Socket& peer,
endpoint_type* peer_endpoint, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return ec;
}
// We cannot accept a socket that is already open.
if (peer.is_open())
{
ec = boost::asio::error::already_open;
return ec;
}
for (;;)
{
socket_holder new_socket;
std::size_t addr_len = 0;
if (peer_endpoint)
{
addr_len = peer_endpoint->capacity();
new_socket.reset(socket_ops::accept(impl.socket_,
peer_endpoint->data(), &addr_len, ec));
}
else
{
new_socket.reset(socket_ops::accept(impl.socket_, 0, 0, ec));
}
if (ec)
{
if (ec == boost::asio::error::connection_aborted
&& !(impl.flags_ & implementation_type::enable_connection_aborted))
{
// Retry accept operation.
continue;
}
else
{
return ec;
}
}
if (peer_endpoint)
peer_endpoint->resize(addr_len);
peer.assign(impl.protocol_, new_socket.get(), ec);
if (!ec)
new_socket.release();
return ec;
}
}
template <typename Socket, typename Handler>
class accept_operation
: public operation
{
public:
accept_operation(win_iocp_io_service& io_service,
socket_type socket, socket_type new_socket, Socket& peer,
const protocol_type& protocol, endpoint_type* peer_endpoint,
bool enable_connection_aborted, Handler handler)
: operation(io_service,
&accept_operation<Socket, Handler>::do_completion_impl,
&accept_operation<Socket, Handler>::destroy_impl),
io_service_(io_service),
socket_(socket),
new_socket_(new_socket),
peer_(peer),
protocol_(protocol),
peer_endpoint_(peer_endpoint),
work_(io_service.get_io_service()),
enable_connection_aborted_(enable_connection_aborted),
handler_(handler)
{
}
socket_type new_socket()
{
return new_socket_.get();
}
void* output_buffer()
{
return output_buffer_;
}
DWORD address_length()
{
return sizeof(sockaddr_storage_type) + 16;
}
private:
static void do_completion_impl(operation* op, DWORD last_error, size_t)
{
// Take ownership of the operation object.
typedef accept_operation<Socket, Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
// Map Windows error ERROR_NETNAME_DELETED to connection_aborted.
if (last_error == ERROR_NETNAME_DELETED)
{
last_error = WSAECONNABORTED;
}
// Restart the accept operation if we got the connection_aborted error
// and the enable_connection_aborted socket option is not set.
if (last_error == WSAECONNABORTED
&& !ptr.get()->enable_connection_aborted_)
{
// Reset OVERLAPPED structure.
ptr.get()->Internal = 0;
ptr.get()->InternalHigh = 0;
ptr.get()->Offset = 0;
ptr.get()->OffsetHigh = 0;
ptr.get()->hEvent = 0;
// Create a new socket for the next connection, since the AcceptEx call
// fails with WSAEINVAL if we try to reuse the same socket.
boost::system::error_code ec;
ptr.get()->new_socket_.reset();
ptr.get()->new_socket_.reset(socket_ops::socket(
ptr.get()->protocol_.family(), ptr.get()->protocol_.type(),
ptr.get()->protocol_.protocol(), ec));
if (ptr.get()->new_socket() != invalid_socket)
{
// Accept a connection.
DWORD bytes_read = 0;
BOOL result = ::AcceptEx(ptr.get()->socket_, ptr.get()->new_socket(),
ptr.get()->output_buffer(), 0, ptr.get()->address_length(),
ptr.get()->address_length(), &bytes_read, ptr.get());
last_error = ::WSAGetLastError();
// Check if the operation completed immediately.
if (!result && last_error != WSA_IO_PENDING)
{
if (last_error == ERROR_NETNAME_DELETED
|| last_error == WSAECONNABORTED)
{
// Post this handler so that operation will be restarted again.
ptr.get()->io_service_.post_completion(ptr.get(), last_error, 0);
ptr.release();
return;
}
else
{
// Operation already complete. Continue with rest of this handler.
}
}
else
{
// Asynchronous operation has been successfully restarted.
ptr.release();
return;
}
}
}
// Get the address of the peer.
endpoint_type peer_endpoint;
if (last_error == 0)
{
LPSOCKADDR local_addr = 0;
int local_addr_length = 0;
LPSOCKADDR remote_addr = 0;
int remote_addr_length = 0;
GetAcceptExSockaddrs(handler_op->output_buffer(), 0,
handler_op->address_length(), handler_op->address_length(),
&local_addr, &local_addr_length, &remote_addr, &remote_addr_length);
if (static_cast<std::size_t>(remote_addr_length)
> peer_endpoint.capacity())
{
last_error = WSAEINVAL;
}
else
{
using namespace std; // For memcpy.
memcpy(peer_endpoint.data(), remote_addr, remote_addr_length);
peer_endpoint.resize(static_cast<std::size_t>(remote_addr_length));
}
}
// Need to set the SO_UPDATE_ACCEPT_CONTEXT option so that getsockname
// and getpeername will work on the accepted socket.
if (last_error == 0)
{
SOCKET update_ctx_param = handler_op->socket_;
boost::system::error_code ec;
if (socket_ops::setsockopt(handler_op->new_socket_.get(),
SOL_SOCKET, SO_UPDATE_ACCEPT_CONTEXT,
&update_ctx_param, sizeof(SOCKET), ec) != 0)
{
last_error = ec.value();
}
}
// If the socket was successfully accepted, transfer ownership of the
// socket to the peer object.
if (last_error == 0)
{
boost::system::error_code ec;
handler_op->peer_.assign(handler_op->protocol_,
native_type(handler_op->new_socket_.get(), peer_endpoint), ec);
if (ec)
last_error = ec.value();
else
handler_op->new_socket_.release();
}
// Pass endpoint back to caller.
if (handler_op->peer_endpoint_)
*handler_op->peer_endpoint_ = peer_endpoint;
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made.
Handler handler(handler_op->handler_);
// Free the memory associated with the handler.
ptr.reset();
// Call the handler.
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
boost_asio_handler_invoke_helpers::invoke(
detail::bind_handler(handler, ec), &handler);
}
static void destroy_impl(operation* op)
{
// Take ownership of the operation object.
typedef accept_operation<Socket, Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
// A sub-object of the handler may be the true owner of the memory
// associated with the handler. Consequently, a local copy of the handler
// is required to ensure that any owning sub-object remains valid until
// after we have deallocated the memory here.
Handler handler(handler_op->handler_);
(void)handler;
// Free the memory associated with the handler.
ptr.reset();
}
win_iocp_io_service& io_service_;
socket_type socket_;
socket_holder new_socket_;
Socket& peer_;
protocol_type protocol_;
endpoint_type* peer_endpoint_;
boost::asio::io_service::work work_;
unsigned char output_buffer_[(sizeof(sockaddr_storage_type) + 16) * 2];
bool enable_connection_aborted_;
Handler handler_;
};
// Start an asynchronous accept. The peer and peer_endpoint objects
// must be valid until the accept's handler is invoked.
template <typename Socket, typename Handler>
void async_accept(implementation_type& impl, Socket& peer,
endpoint_type* peer_endpoint, Handler handler)
{
// Check whether acceptor has been initialised.
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor));
return;
}
// Check that peer socket has not already been opened.
if (peer.is_open())
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::already_open));
return;
}
#if defined(BOOST_ASIO_ENABLE_CANCELIO)
// Update the ID of the thread from which cancellation is safe.
if (impl.safe_cancellation_thread_id_ == 0)
impl.safe_cancellation_thread_id_ = ::GetCurrentThreadId();
else if (impl.safe_cancellation_thread_id_ != ::GetCurrentThreadId())
impl.safe_cancellation_thread_id_ = ~DWORD(0);
#endif // defined(BOOST_ASIO_ENABLE_CANCELIO)
// Create a new socket for the connection.
boost::system::error_code ec;
socket_holder sock(socket_ops::socket(impl.protocol_.family(),
impl.protocol_.type(), impl.protocol_.protocol(), ec));
if (sock.get() == invalid_socket)
{
this->get_io_service().post(bind_handler(handler, ec));
return;
}
// Allocate and construct an operation to wrap the handler.
typedef accept_operation<Socket, Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(handler);
socket_type new_socket = sock.get();
bool enable_connection_aborted =
(impl.flags_ & implementation_type::enable_connection_aborted);
handler_ptr<alloc_traits> ptr(raw_ptr,
iocp_service_, impl.socket_, new_socket, peer, impl.protocol_,
peer_endpoint, enable_connection_aborted, handler);
sock.release();
// Accept a connection.
DWORD bytes_read = 0;
BOOL result = ::AcceptEx(impl.socket_, ptr.get()->new_socket(),
ptr.get()->output_buffer(), 0, ptr.get()->address_length(),
ptr.get()->address_length(), &bytes_read, ptr.get());
DWORD last_error = ::WSAGetLastError();
// Check if the operation completed immediately.
if (!result && last_error != WSA_IO_PENDING)
{
if (!enable_connection_aborted
&& (last_error == ERROR_NETNAME_DELETED
|| last_error == WSAECONNABORTED))
{
// Post handler so that operation will be restarted again. We do not
// perform the AcceptEx again here to avoid the possibility of starving
// other handlers.
iocp_service_.post_completion(ptr.get(), last_error, 0);
ptr.release();
}
else
{
boost::asio::io_service::work work(this->get_io_service());
ptr.reset();
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
iocp_service_.post(bind_handler(handler, ec));
}
}
else
{
ptr.release();
}
}
// Connect the socket to the specified endpoint.
boost::system::error_code connect(implementation_type& impl,
const endpoint_type& peer_endpoint, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return ec;
}
// Perform the connect operation.
socket_ops::connect(impl.socket_,
peer_endpoint.data(), peer_endpoint.size(), ec);
return ec;
}
template <typename Handler>
class connect_operation
{
public:
connect_operation(socket_type socket, bool user_set_non_blocking,
boost::asio::io_service& io_service, Handler handler)
: socket_(socket),
user_set_non_blocking_(user_set_non_blocking),
io_service_(io_service),
work_(io_service),
handler_(handler)
{
}
bool perform(boost::system::error_code& ec,
std::size_t& bytes_transferred)
{
bytes_transferred = 0;
// Check whether the operation was successful.
if (ec)
return true;
// Get the error code from the connect operation.
int connect_error = 0;
size_t connect_error_len = sizeof(connect_error);
if (socket_ops::getsockopt(socket_, SOL_SOCKET, SO_ERROR,
&connect_error, &connect_error_len, ec) == socket_error_retval)
return true;
// If connection failed then post the handler with the error code.
if (connect_error)
{
ec = boost::system::error_code(connect_error,
boost::asio::error::get_system_category());
return true;
}
// Revert socket to blocking mode unless the user requested otherwise.
if (!user_set_non_blocking_)
{
ioctl_arg_type non_blocking = 0;
if (socket_ops::ioctl(socket_, FIONBIO, &non_blocking, ec))
return true;
}
// Post the result of the successful connection operation.
ec = boost::system::error_code();
return true;
}
void complete(const boost::system::error_code& ec, std::size_t)
{
io_service_.post(bind_handler(handler_, ec));
}
private:
socket_type socket_;
bool user_set_non_blocking_;
boost::asio::io_service& io_service_;
boost::asio::io_service::work work_;
Handler handler_;
};
// Start an asynchronous connect.
template <typename Handler>
void async_connect(implementation_type& impl,
const endpoint_type& peer_endpoint, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor));
return;
}
#if defined(BOOST_ASIO_ENABLE_CANCELIO)
// Update the ID of the thread from which cancellation is safe.
if (impl.safe_cancellation_thread_id_ == 0)
impl.safe_cancellation_thread_id_ = ::GetCurrentThreadId();
else if (impl.safe_cancellation_thread_id_ != ::GetCurrentThreadId())
impl.safe_cancellation_thread_id_ = ~DWORD(0);
#endif // defined(BOOST_ASIO_ENABLE_CANCELIO)
// Check if the reactor was already obtained from the io_service.
reactor_type* reactor = static_cast<reactor_type*>(
interlocked_compare_exchange_pointer(
reinterpret_cast<void**>(&reactor_), 0, 0));
if (!reactor)
{
reactor = &(boost::asio::use_service<reactor_type>(
this->get_io_service()));
interlocked_exchange_pointer(
reinterpret_cast<void**>(&reactor_), reactor);
}
// Mark the socket as non-blocking so that the connection will take place
// asynchronously.
ioctl_arg_type non_blocking = 1;
boost::system::error_code ec;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ec))
{
this->get_io_service().post(bind_handler(handler, ec));
return;
}
// Start the connect operation.
if (socket_ops::connect(impl.socket_, peer_endpoint.data(),
peer_endpoint.size(), ec) == 0)
{
// Revert socket to blocking mode unless the user requested otherwise.
if (!(impl.flags_ & implementation_type::user_set_non_blocking))
{
non_blocking = 0;
socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ec);
}
// The connect operation has finished successfully so we need to post the
// handler immediately.
this->get_io_service().post(bind_handler(handler, ec));
}
else if (ec == boost::asio::error::in_progress
|| ec == boost::asio::error::would_block)
{
// The connection is happening in the background, and we need to wait
// until the socket becomes writeable.
boost::shared_ptr<bool> completed(new bool(false));
reactor->start_connect_op(impl.socket_, impl.reactor_data_,
connect_operation<Handler>(
impl.socket_,
(impl.flags_ & implementation_type::user_set_non_blocking) != 0,
this->get_io_service(), handler));
}
else
{
// Revert socket to blocking mode unless the user requested otherwise.
if (!(impl.flags_ & implementation_type::user_set_non_blocking))
{
non_blocking = 0;
boost::system::error_code ignored_ec;
socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ignored_ec);
}
// The connect operation has failed, so post the handler immediately.
this->get_io_service().post(bind_handler(handler, ec));
}
}
private:
// Helper function to close a socket when the associated object is being
// destroyed.
void close_for_destruction(implementation_type& impl)
{
if (is_open(impl))
{
// Check if the reactor was created, in which case we need to close the
// socket on the reactor as well to cancel any operations that might be
// running there.
reactor_type* reactor = static_cast<reactor_type*>(
interlocked_compare_exchange_pointer(
reinterpret_cast<void**>(&reactor_), 0, 0));
if (reactor)
reactor->close_descriptor(impl.socket_, impl.reactor_data_);
// The socket destructor must not block. If the user has changed the
// linger option to block in the foreground, we will change it back to the
// default so that the closure is performed in the background.
if (impl.flags_ & implementation_type::close_might_block)
{
::linger opt;
opt.l_onoff = 0;
opt.l_linger = 0;
boost::system::error_code ignored_ec;
socket_ops::setsockopt(impl.socket_,
SOL_SOCKET, SO_LINGER, &opt, sizeof(opt), ignored_ec);
}
boost::system::error_code ignored_ec;
socket_ops::close(impl.socket_, ignored_ec);
impl.socket_ = invalid_socket;
impl.flags_ = 0;
impl.cancel_token_.reset();
#if defined(BOOST_ASIO_ENABLE_CANCELIO)
impl.safe_cancellation_thread_id_ = 0;
#endif // defined(BOOST_ASIO_ENABLE_CANCELIO)
}
}
// Helper function to emulate InterlockedCompareExchangePointer functionality
// for:
// - very old Platform SDKs; and
// - platform SDKs where MSVC's /Wp64 option causes spurious warnings.
void* interlocked_compare_exchange_pointer(void** dest, void* exch, void* cmp)
{
#if defined(_M_IX86)
return reinterpret_cast<void*>(InterlockedCompareExchange(
reinterpret_cast<PLONG>(dest), reinterpret_cast<LONG>(exch),
reinterpret_cast<LONG>(cmp)));
#else
return InterlockedCompareExchangePointer(dest, exch, cmp);
#endif
}
// Helper function to emulate InterlockedExchangePointer functionality for:
// - very old Platform SDKs; and
// - platform SDKs where MSVC's /Wp64 option causes spurious warnings.
void* interlocked_exchange_pointer(void** dest, void* val)
{
#if defined(_M_IX86)
return reinterpret_cast<void*>(InterlockedExchange(
reinterpret_cast<PLONG>(dest), reinterpret_cast<LONG>(val)));
#else
return InterlockedExchangePointer(dest, val);
#endif
}
// The IOCP service used for running asynchronous operations and dispatching
// handlers.
win_iocp_io_service& iocp_service_;
// The reactor used for performing connect operations. This object is created
// only if needed.
reactor_type* reactor_;
// Mutex to protect access to the linked list of implementations.
boost::asio::detail::mutex mutex_;
// The head of a linked list of all implementations.
implementation_type* impl_list_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_ASIO_HAS_IOCP)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_WIN_IOCP_SOCKET_SERVICE_HPP