blob: 364308838aed3bf399bd967aeef00551af193514 [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 1999-2012 Broadcom Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/******************************************************************************
*
* this file contains the Serial Port API code
*
******************************************************************************/
#include <string.h>
#include "bt_target.h"
#include "gki.h"
#include "rfcdefs.h"
#include "port_api.h"
#include "port_int.h"
#include "btm_int.h"
#include "btm_api.h"
#include "rfc_int.h"
#include "l2c_api.h"
#include "sdp_api.h"
/* duration of break in 200ms units */
#define PORT_BREAK_DURATION 1
#include <cutils/log.h>
#define info(fmt, ...) ALOGI ("%s: " fmt,__FUNCTION__, ## __VA_ARGS__)
#define debug(fmt, ...) ALOGD ("%s: " fmt,__FUNCTION__, ## __VA_ARGS__)
#define error(fmt, ...) ALOGE ("## ERROR : %s: " fmt "##",__FUNCTION__, ## __VA_ARGS__)
#define asrt(s) if(!(s)) ALOGE ("## %s assert %s failed at line:%d ##",__FUNCTION__, #s, __LINE__)
/*******************************************************************************
**
** Function RFCOMM_CreateConnection
**
** Description RFCOMM_CreateConnection function is used from the application
** to establish serial port connection to the peer device,
** or allow RFCOMM to accept a connection from the peer
** application.
**
** Parameters: scn - Service Channel Number as registered with
** the SDP (server) or obtained using SDP from
** the peer device (client).
** is_server - TRUE if requesting application is a server
** mtu - Maximum frame size the application can accept
** bd_addr - BD_ADDR of the peer (client)
** mask - specifies events to be enabled. A value
** of zero disables all events.
** p_handle - OUT pointer to the handle.
** p_mgmt_cb - pointer to callback function to receive
** connection up/down events.
** Notes:
**
** Server can call this function with the same scn parameter multiple times if
** it is ready to accept multiple simulteneous connections.
**
** DLCI for the connection is (scn * 2 + 1) if client originates connection on
** existing none initiator multiplexer channel. Otherwise it is (scn * 2).
** For the server DLCI can be changed later if client will be calling it using
** (scn * 2 + 1) dlci.
**
*******************************************************************************/
int RFCOMM_CreateConnection (UINT16 uuid, UINT8 scn, BOOLEAN is_server,
UINT16 mtu, BD_ADDR bd_addr, UINT16 *p_handle,
tPORT_CALLBACK *p_mgmt_cb)
{
tPORT *p_port;
int i;
UINT8 dlci;
tRFC_MCB *p_mcb = port_find_mcb (bd_addr);
UINT16 rfcomm_mtu;
RFCOMM_TRACE_API ("RFCOMM_CreateConnection() BDA: %02x-%02x-%02x-%02x-%02x-%02x",
bd_addr[0], bd_addr[1], bd_addr[2], bd_addr[3], bd_addr[4], bd_addr[5]);
*p_handle = 0;
if (( scn == 0 )||(scn >= PORT_MAX_RFC_PORTS ))
{
/* Server Channel Number(SCN) should be in range 1...30 */
RFCOMM_TRACE_ERROR ("RFCOMM_CreateConnection - invalid SCN");
return (PORT_INVALID_SCN);
}
/* For client that originate connection on the existing none initiator */
/* multiplexer channel DLCI should be odd */
if (p_mcb && !p_mcb->is_initiator && !is_server)
dlci = (scn << 1) + 1;
else
dlci = (scn << 1);
RFCOMM_TRACE_API("RFCOMM_CreateConnection(): scn:%d, dlci:%d, is_server:%d mtu:%d, p_mcb:%p",
scn, dlci, is_server, mtu, p_mcb);
/* For the server side always allocate a new port. On the client side */
/* do not allow the same (dlci, bd_addr) to be opened twice by application */
if (!is_server && ((p_port = port_find_port (dlci, bd_addr)) != NULL))
{
/* if existing port is also a client port */
if (p_port->is_server == FALSE)
{
RFCOMM_TRACE_ERROR ("RFCOMM_CreateConnection - already opened state:%d, RFC state:%d, MCB state:%d",
p_port->state, p_port->rfc.state, p_port->rfc.p_mcb ? p_port->rfc.p_mcb->state : 0);
return (PORT_ALREADY_OPENED);
}
}
if ((p_port = port_allocate_port (dlci, bd_addr)) == NULL)
{
RFCOMM_TRACE_WARNING ("RFCOMM_CreateConnection - no resources");
return (PORT_NO_RESOURCES);
}
RFCOMM_TRACE_API("RFCOMM_CreateConnection(): scn:%d, dlci:%d, is_server:%d mtu:%d, p_mcb:%p, p_port:%p",
scn, dlci, is_server, mtu, p_mcb, p_port);
p_port->default_signal_state = (PORT_DTRDSR_ON | PORT_CTSRTS_ON | PORT_DCD_ON);
switch (uuid)
{
case UUID_PROTOCOL_OBEX:
p_port->default_signal_state = PORT_OBEX_DEFAULT_SIGNAL_STATE;
break;
case UUID_SERVCLASS_SERIAL_PORT:
p_port->default_signal_state = PORT_SPP_DEFAULT_SIGNAL_STATE;
break;
case UUID_SERVCLASS_LAN_ACCESS_USING_PPP:
p_port->default_signal_state = PORT_PPP_DEFAULT_SIGNAL_STATE;
break;
case UUID_SERVCLASS_DIALUP_NETWORKING:
case UUID_SERVCLASS_FAX:
p_port->default_signal_state = PORT_DUN_DEFAULT_SIGNAL_STATE;
break;
}
RFCOMM_TRACE_EVENT ("RFCOMM_CreateConnection dlci:%d signal state:0x%x", dlci, p_port->default_signal_state);
*p_handle = p_port->inx;
p_port->state = PORT_STATE_OPENING;
p_port->uuid = uuid;
p_port->is_server = is_server;
p_port->scn = scn;
p_port->ev_mask = 0;
/* If the MTU is not specified (0), keep MTU decision until the
* PN frame has to be send
* at that time connection should be established and we
* will know for sure our prefered MTU
*/
rfcomm_mtu = L2CAP_MTU_SIZE - RFCOMM_DATA_OVERHEAD;
if (mtu)
p_port->mtu = (mtu < rfcomm_mtu) ? mtu : rfcomm_mtu;
else
p_port->mtu = rfcomm_mtu;
/* server doesn't need to release port when closing */
if( is_server )
{
p_port->keep_port_handle = TRUE;
/* keep mtu that user asked, p_port->mtu could be updated during param negotiation */
p_port->keep_mtu = p_port->mtu;
}
p_port->local_ctrl.modem_signal = p_port->default_signal_state;
p_port->local_ctrl.fc = FALSE;
p_port->p_mgmt_callback = p_mgmt_cb;
for (i = 0; i < BD_ADDR_LEN; i++)
p_port->bd_addr[i] = bd_addr[i];
/* If this is not initiator of the connection need to just wait */
if (p_port->is_server)
{
return (PORT_SUCCESS);
}
/* Open will be continued after security checks are passed */
return port_open_continue (p_port);
}
/*******************************************************************************
**
** Function RFCOMM_RemoveConnection
**
** Description This function is called to close the specified connection.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
**
*******************************************************************************/
int RFCOMM_RemoveConnection (UINT16 handle)
{
tPORT *p_port;
RFCOMM_TRACE_API ("RFCOMM_RemoveConnection() handle:%d", handle);
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
RFCOMM_TRACE_ERROR ("RFCOMM_RemoveConnection() BAD handle:%d", handle);
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
RFCOMM_TRACE_EVENT ("RFCOMM_RemoveConnection() Not opened:%d", handle);
return (PORT_SUCCESS);
}
p_port->state = PORT_STATE_CLOSING;
port_start_close (p_port);
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function RFCOMM_RemoveServer
**
** Description This function is called to close the server port.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
**
*******************************************************************************/
int RFCOMM_RemoveServer (UINT16 handle)
{
tPORT *p_port;
RFCOMM_TRACE_API ("RFCOMM_RemoveServer() handle:%d", handle);
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
RFCOMM_TRACE_ERROR ("RFCOMM_RemoveServer() BAD handle:%d", handle);
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
/* Do not report any events to the client any more. */
p_port->p_mgmt_callback = NULL;
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
RFCOMM_TRACE_EVENT ("RFCOMM_RemoveServer() Not opened:%d", handle);
return (PORT_SUCCESS);
}
/* this port will be deallocated after closing */
p_port->keep_port_handle = FALSE;
p_port->state = PORT_STATE_CLOSING;
port_start_close (p_port);
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_SetEventCallback
**
** Description This function is called to provide an address of the
** function which will be called when one of the events
** specified in the mask occures.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** p_callback - address of the callback function which should
** be called from the RFCOMM when an event
** specified in the mask occures.
**
**
*******************************************************************************/
int PORT_SetEventCallback (UINT16 port_handle, tPORT_CALLBACK *p_port_cb)
{
tPORT *p_port;
/* Check if handle is valid to avoid crashing */
if ((port_handle == 0) || (port_handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[port_handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
RFCOMM_TRACE_API ("PORT_SetEventCallback() handle:%d", port_handle);
p_port->p_callback = p_port_cb;
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_ClearKeepHandleFlag
**
** Description This function is called to clear the keep handle flag
** which will cause not to keep the port handle open when closed
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
**
*******************************************************************************/
int PORT_ClearKeepHandleFlag (UINT16 port_handle)
{
tPORT *p_port;
/* Check if handle is valid to avoid crashing */
if ((port_handle == 0) || (port_handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[port_handle - 1];
p_port->keep_port_handle = 0;
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_SetDataCallback
**
** Description This function is when a data packet is received
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** p_callback - address of the callback function which should
** be called from the RFCOMM when data packet
** is received.
**
**
*******************************************************************************/
int PORT_SetDataCallback (UINT16 port_handle, tPORT_DATA_CALLBACK *p_port_cb)
{
tPORT *p_port;
RFCOMM_TRACE_API ("PORT_SetDataCallback() handle:%d cb 0x%x", port_handle, p_port_cb);
/* Check if handle is valid to avoid crashing */
if ((port_handle == 0) || (port_handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[port_handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
p_port->p_data_callback = p_port_cb;
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_SetCODataCallback
**
** Description This function is when a data packet is received
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** p_callback - address of the callback function which should
** be called from the RFCOMM when data packet
** is received.
**
**
*******************************************************************************/
int PORT_SetDataCOCallback (UINT16 port_handle, tPORT_DATA_CO_CALLBACK *p_port_cb)
{
tPORT *p_port;
RFCOMM_TRACE_API ("PORT_SetDataCOCallback() handle:%d cb 0x%x", port_handle, p_port_cb);
/* Check if handle is valid to avoid crashing */
if ((port_handle == 0) || (port_handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[port_handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
p_port->p_data_co_callback = p_port_cb;
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_SetEventMask
**
** Description This function is called to close the specified connection.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** mask - Bitmask of the events the host is interested in
**
*******************************************************************************/
int PORT_SetEventMask (UINT16 port_handle, UINT32 mask)
{
tPORT *p_port;
RFCOMM_TRACE_API ("PORT_SetEventMask() handle:%d mask:0x%x", port_handle, mask);
/* Check if handle is valid to avoid crashing */
if ((port_handle == 0) || (port_handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[port_handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
p_port->ev_mask = mask;
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_CheckConnection
**
** Description This function returns PORT_SUCCESS if connection referenced
** by handle is up and running
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** bd_addr - OUT bd_addr of the peer
** p_lcid - OUT L2CAP's LCID
**
*******************************************************************************/
int PORT_CheckConnection (UINT16 handle, BD_ADDR bd_addr, UINT16 *p_lcid)
{
tPORT *p_port;
RFCOMM_TRACE_API ("PORT_CheckConnection() handle:%d", handle);
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
if (!p_port->rfc.p_mcb
|| !p_port->rfc.p_mcb->peer_ready
|| (p_port->rfc.state != RFC_STATE_OPENED))
{
return (PORT_LINE_ERR);
}
memcpy (bd_addr, p_port->rfc.p_mcb->bd_addr, BD_ADDR_LEN);
if (p_lcid)
*p_lcid = p_port->rfc.p_mcb->lcid;
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_IsOpening
**
** Description This function returns TRUE if there is any RFCOMM connection
** opening in process.
**
** Parameters: TRUE if any connection opening is found
** bd_addr - bd_addr of the peer
**
*******************************************************************************/
BOOLEAN PORT_IsOpening (BD_ADDR bd_addr)
{
UINT8 xx, yy;
tRFC_MCB *p_mcb = NULL;
tPORT *p_port;
BOOLEAN found_port;
/* Check for any rfc_mcb which is in the middle of opening. */
for (xx = 0; xx < MAX_BD_CONNECTIONS; xx++)
{
if ((rfc_cb.port.rfc_mcb[xx].state > RFC_MX_STATE_IDLE) &&
(rfc_cb.port.rfc_mcb[xx].state < RFC_MX_STATE_CONNECTED))
{
memcpy (bd_addr, rfc_cb.port.rfc_mcb[xx].bd_addr, BD_ADDR_LEN);
return TRUE;
}
if (rfc_cb.port.rfc_mcb[xx].state == RFC_MX_STATE_CONNECTED)
{
found_port = FALSE;
p_mcb = &rfc_cb.port.rfc_mcb[xx];
p_port = &rfc_cb.port.port[0];
for (yy = 0; yy < MAX_RFC_PORTS; yy++, p_port++)
{
if (p_port->rfc.p_mcb == p_mcb)
{
found_port = TRUE;
break;
}
}
if ((!found_port) ||
(found_port && (p_port->rfc.state < RFC_STATE_OPENED)))
{
/* Port is not established yet. */
memcpy (bd_addr, rfc_cb.port.rfc_mcb[xx].bd_addr, BD_ADDR_LEN);
return TRUE;
}
}
}
return FALSE;
}
/*******************************************************************************
**
** Function PORT_SetState
**
** Description This function configures connection according to the
** specifications in the tPORT_STATE structure.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** p_settings - Pointer to a tPORT_STATE structure containing
** configuration information for the connection.
**
**
*******************************************************************************/
int PORT_SetState (UINT16 handle, tPORT_STATE *p_settings)
{
tPORT *p_port;
UINT8 baud_rate;
RFCOMM_TRACE_API ("PORT_SetState() handle:%d", handle);
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
if (p_port->line_status)
{
return (PORT_LINE_ERR);
}
RFCOMM_TRACE_API ("PORT_SetState() handle:%d FC_TYPE:0x%x", handle,
p_settings->fc_type);
baud_rate = p_port->user_port_pars.baud_rate;
p_port->user_port_pars = *p_settings;
/* for now we've been asked to pass only baud rate */
if (baud_rate != p_settings->baud_rate)
{
port_start_par_neg (p_port);
}
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_GetRxQueueCnt
**
** Description This function return number of buffers on the rx queue.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** p_rx_queue_count - Pointer to return queue count in.
**
*******************************************************************************/
int PORT_GetRxQueueCnt (UINT16 handle, UINT16 *p_rx_queue_count)
{
tPORT *p_port;
RFCOMM_TRACE_API ("PORT_GetRxQueueCnt() handle:%d", handle);
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
if (p_port->line_status)
{
return (PORT_LINE_ERR);
}
*p_rx_queue_count = p_port->rx.queue_size;
RFCOMM_TRACE_API ("PORT_GetRxQueueCnt() p_rx_queue_count:%d, p_port->rx.queue.count = %d",
*p_rx_queue_count, p_port->rx.queue_size);
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_GetState
**
** Description This function is called to fill tPORT_STATE structure
** with the curremt control settings for the port
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** p_settings - Pointer to a tPORT_STATE structure in which
** configuration information is returned.
**
*******************************************************************************/
int PORT_GetState (UINT16 handle, tPORT_STATE *p_settings)
{
tPORT *p_port;
RFCOMM_TRACE_API ("PORT_GetState() handle:%d", handle);
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
if (p_port->line_status)
{
return (PORT_LINE_ERR);
}
*p_settings = p_port->user_port_pars;
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_Control
**
** Description This function directs a specified connection to pass control
** control information to the peer device.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** signal = specify the function to be passed
**
*******************************************************************************/
int PORT_Control (UINT16 handle, UINT8 signal)
{
tPORT *p_port;
UINT8 old_modem_signal;
RFCOMM_TRACE_API ("PORT_Control() handle:%d signal:0x%x", handle, signal);
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
old_modem_signal = p_port->local_ctrl.modem_signal;
p_port->local_ctrl.break_signal = 0;
switch (signal)
{
case PORT_SET_CTSRTS:
p_port->local_ctrl.modem_signal |= PORT_CTSRTS_ON;
break;
case PORT_CLR_CTSRTS:
p_port->local_ctrl.modem_signal &= ~PORT_CTSRTS_ON;
break;
case PORT_SET_DTRDSR:
p_port->local_ctrl.modem_signal |= PORT_DTRDSR_ON;
break;
case PORT_CLR_DTRDSR:
p_port->local_ctrl.modem_signal &= ~PORT_DTRDSR_ON;
break;
case PORT_SET_RI:
p_port->local_ctrl.modem_signal |= PORT_RING_ON;
break;
case PORT_CLR_RI:
p_port->local_ctrl.modem_signal &= ~PORT_RING_ON;
break;
case PORT_SET_DCD:
p_port->local_ctrl.modem_signal |= PORT_DCD_ON;
break;
case PORT_CLR_DCD:
p_port->local_ctrl.modem_signal &= ~PORT_DCD_ON;
break;
}
if (signal == PORT_BREAK)
p_port->local_ctrl.break_signal = PORT_BREAK_DURATION;
else if (p_port->local_ctrl.modem_signal == old_modem_signal)
return (PORT_SUCCESS);
port_start_control (p_port);
RFCOMM_TRACE_EVENT ("PORT_Control DTR_DSR : %d, RTS_CTS : %d, RI : %d, DCD : %d",
((p_port->local_ctrl.modem_signal & MODEM_SIGNAL_DTRDSR) ? 1 : 0),
((p_port->local_ctrl.modem_signal & MODEM_SIGNAL_RTSCTS) ? 1 : 0),
((p_port->local_ctrl.modem_signal & MODEM_SIGNAL_RI) ? 1 : 0),
((p_port->local_ctrl.modem_signal & MODEM_SIGNAL_DCD) ? 1 : 0));
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_FlowControl
**
** Description This function directs a specified connection to pass
** flow control message to the peer device. Enable flag passed
** shows if port can accept more data.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** enable - enables data flow
**
*******************************************************************************/
int PORT_FlowControl (UINT16 handle, BOOLEAN enable)
{
tPORT *p_port;
BOOLEAN old_fc;
UINT32 events;
RFCOMM_TRACE_API ("PORT_FlowControl() handle:%d enable: %d", handle, enable);
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
if (!p_port->rfc.p_mcb)
{
return (PORT_NOT_OPENED);
}
p_port->rx.user_fc = !enable;
if (p_port->rfc.p_mcb->flow == PORT_FC_CREDIT)
{
if (!p_port->rx.user_fc)
{
port_flow_control_peer(p_port, TRUE, 0);
}
}
else
{
old_fc = p_port->local_ctrl.fc;
/* FC is set if user is set or peer is set */
p_port->local_ctrl.fc = (p_port->rx.user_fc | p_port->rx.peer_fc);
if (p_port->local_ctrl.fc != old_fc)
port_start_control (p_port);
}
/* Need to take care of the case when we could not deliver events */
/* to the application because we were flow controlled */
if (enable && (p_port->rx.queue_size != 0))
{
events = PORT_EV_RXCHAR;
if (p_port->rx_flag_ev_pending)
{
p_port->rx_flag_ev_pending = FALSE;
events |= PORT_EV_RXFLAG;
}
events &= p_port->ev_mask;
if (p_port->p_callback && events)
{
p_port->p_callback (events, p_port->inx);
}
}
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_FlowControl_MaxCredit
**
** Description This function directs a specified connection to pass
** flow control message to the peer device. Enable flag passed
** shows if port can accept more data. It also sends max credit
** when data flow enabled
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** enable - enables data flow
**
*******************************************************************************/
int PORT_FlowControl_MaxCredit (UINT16 handle, BOOLEAN enable)
{
tPORT *p_port;
BOOLEAN old_fc;
UINT32 events;
RFCOMM_TRACE_API ("PORT_FlowControl() handle:%d enable: %d", handle, enable);
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
if (!p_port->rfc.p_mcb)
{
return (PORT_NOT_OPENED);
}
p_port->rx.user_fc = !enable;
if (p_port->rfc.p_mcb->flow == PORT_FC_CREDIT)
{
if (!p_port->rx.user_fc)
{
port_flow_control_peer(p_port, TRUE, p_port->credit_rx);
}
}
else
{
old_fc = p_port->local_ctrl.fc;
/* FC is set if user is set or peer is set */
p_port->local_ctrl.fc = (p_port->rx.user_fc | p_port->rx.peer_fc);
if (p_port->local_ctrl.fc != old_fc)
port_start_control (p_port);
}
/* Need to take care of the case when we could not deliver events */
/* to the application because we were flow controlled */
if (enable && (p_port->rx.queue_size != 0))
{
events = PORT_EV_RXCHAR;
if (p_port->rx_flag_ev_pending)
{
p_port->rx_flag_ev_pending = FALSE;
events |= PORT_EV_RXFLAG;
}
events &= p_port->ev_mask;
if (p_port->p_callback && events)
{
p_port->p_callback (events, p_port->inx);
}
}
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_GetModemStatus
**
** Description This function retrieves modem control signals. Normally
** application will call this function after a callback
** function is called with notification that one of signals
** has been changed.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** p_signal - specify the pointer to control signals info
**
*******************************************************************************/
int PORT_GetModemStatus (UINT16 handle, UINT8 *p_signal)
{
tPORT *p_port;
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
*p_signal = p_port->peer_ctrl.modem_signal;
RFCOMM_TRACE_API ("PORT_GetModemStatus() handle:%d signal:%x", handle, *p_signal);
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_ClearError
**
** Description This function retreives information about a communications
** error and reports current status of a connection. The
** function should be called when an error occures to clear
** the connection error flag and to enable additional read
** and write operations.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** p_errors - pointer of the variable to receive error codes
** p_status - pointer to the tPORT_STATUS structur to receive
** connection status
**
*******************************************************************************/
int PORT_ClearError (UINT16 handle, UINT16 *p_errors, tPORT_STATUS *p_status)
{
tPORT *p_port;
RFCOMM_TRACE_API ("PORT_ClearError() handle:%d", handle);
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
*p_errors = p_port->line_status;
/* This is the only call to clear error status. We can not clear */
/* connection failed status. To clean it port should be closed and reopened */
p_port->line_status = (p_port->line_status & LINE_STATUS_FAILED);
PORT_GetQueueStatus (handle, p_status);
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_SendError
**
** Description This function send a communications error to the peer device
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** errors - receive error codes
**
*******************************************************************************/
int PORT_SendError (UINT16 handle, UINT8 errors)
{
tPORT *p_port;
RFCOMM_TRACE_API ("PORT_SendError() handle:%d errors:0x%x", handle, errors);
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
if (!p_port->rfc.p_mcb)
{
return (PORT_NOT_OPENED);
}
RFCOMM_LineStatusReq (p_port->rfc.p_mcb, p_port->dlci, errors);
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_GetQueueStatus
**
** Description This function reports current status of a connection.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** p_status - pointer to the tPORT_STATUS structur to receive
** connection status
**
*******************************************************************************/
int PORT_GetQueueStatus (UINT16 handle, tPORT_STATUS *p_status)
{
tPORT *p_port;
/* RFCOMM_TRACE_API ("PORT_GetQueueStatus() handle:%d", handle); */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
p_status->in_queue_size = (UINT16) p_port->rx.queue_size;
p_status->out_queue_size = (UINT16) p_port->tx.queue_size;
p_status->mtu_size = (UINT16) p_port->peer_mtu;
p_status->flags = 0;
if (!(p_port->peer_ctrl.modem_signal & PORT_CTSRTS_ON))
p_status->flags |= PORT_FLAG_CTS_HOLD;
if (!(p_port->peer_ctrl.modem_signal & PORT_DTRDSR_ON))
p_status->flags |= PORT_FLAG_DSR_HOLD;
if (!(p_port->peer_ctrl.modem_signal & PORT_DCD_ON))
p_status->flags |= PORT_FLAG_RLSD_HOLD;
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_Purge
**
** Description This function discards all the data from the output or
** input queues of the specified connection.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** purge_flags - specify the action to take.
**
*******************************************************************************/
int PORT_Purge (UINT16 handle, UINT8 purge_flags)
{
tPORT *p_port;
BT_HDR *p_buf;
UINT16 count;
UINT32 events;
RFCOMM_TRACE_API ("PORT_Purge() handle:%d flags:0x%x", handle, purge_flags);
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
if (purge_flags & PORT_PURGE_RXCLEAR)
{
PORT_SCHEDULE_LOCK; /* to prevent missing credit */
count = p_port->rx.queue.count;
while ((p_buf = (BT_HDR *)GKI_dequeue (&p_port->rx.queue)) != NULL)
GKI_freebuf (p_buf);
p_port->rx.queue_size = 0;
PORT_SCHEDULE_UNLOCK;
/* If we flowed controlled peer based on rx_queue size enable data again */
if (count)
port_flow_control_peer (p_port, TRUE, count);
}
if (purge_flags & PORT_PURGE_TXCLEAR)
{
PORT_SCHEDULE_LOCK; /* to prevent tx.queue_size from being negative */
while ((p_buf = (BT_HDR *)GKI_dequeue (&p_port->tx.queue)) != NULL)
GKI_freebuf (p_buf);
p_port->tx.queue_size = 0;
PORT_SCHEDULE_UNLOCK;
events = PORT_EV_TXEMPTY;
events |= port_flow_control_user (p_port);
events &= p_port->ev_mask;
if ((p_port->p_callback != NULL) && events)
(p_port->p_callback)(events, p_port->inx);
}
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_ReadData
**
** Description Normally not GKI aware application will call this function
** after receiving PORT_EV_RXCHAR event.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** p_data - Data area
** max_len - Byte count requested
** p_len - Byte count received
**
*******************************************************************************/
int PORT_ReadData (UINT16 handle, char *p_data, UINT16 max_len, UINT16 *p_len)
{
tPORT *p_port;
BT_HDR *p_buf;
UINT16 count;
RFCOMM_TRACE_API ("PORT_ReadData() handle:%d max_len:%d", handle, max_len);
/* Initialize this in case of an error */
*p_len = 0;
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
if (p_port->line_status)
{
return (PORT_LINE_ERR);
}
p_buf = (BT_HDR *)GKI_getfirst (&p_port->rx.queue);
if (!p_buf)
return (PORT_SUCCESS);
count = 0;
while (max_len && p_buf)
{
if (p_buf->len > max_len)
{
memcpy (p_data, (UINT8 *)(p_buf + 1) + p_buf->offset, max_len);
p_buf->offset += max_len;
p_buf->len -= max_len;
*p_len += max_len;
PORT_SCHEDULE_LOCK;
p_port->rx.queue_size -= max_len;
PORT_SCHEDULE_UNLOCK;
break;
}
else
{
memcpy (p_data, (UINT8 *)(p_buf + 1) + p_buf->offset, p_buf->len);
*p_len += p_buf->len;
max_len -= p_buf->len;
PORT_SCHEDULE_LOCK;
p_port->rx.queue_size -= p_buf->len;
if (max_len)
{
p_data += p_buf->len;
p_buf = (BT_HDR *)GKI_getnext (p_buf);
}
GKI_freebuf (GKI_dequeue (&p_port->rx.queue));
PORT_SCHEDULE_UNLOCK;
count++;
}
}
if (*p_len == 1)
{
RFCOMM_TRACE_EVENT ("PORT_ReadData queue:%d returned:%d %x", p_port->rx.queue_size, *p_len, (p_data[0]));
}
else
{
RFCOMM_TRACE_EVENT ("PORT_ReadData queue:%d returned:%d", p_port->rx.queue_size, *p_len);
}
/* If rfcomm suspended traffic from the peer based on the rx_queue_size */
/* check if it can be resumed now */
port_flow_control_peer (p_port, TRUE, count);
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_Read
**
** Description Normally application will call this function after receiving
** PORT_EV_RXCHAR event.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** pp_buf - pointer to address of buffer with data,
**
*******************************************************************************/
int PORT_Read (UINT16 handle, BT_HDR **pp_buf)
{
tPORT *p_port;
BT_HDR *p_buf;
RFCOMM_TRACE_API ("PORT_Read() handle:%d", handle);
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
if (p_port->line_status)
{
return (PORT_LINE_ERR);
}
PORT_SCHEDULE_LOCK;
p_buf = (BT_HDR *)GKI_dequeue (&p_port->rx.queue);
if (p_buf)
{
p_port->rx.queue_size -= p_buf->len;
PORT_SCHEDULE_UNLOCK;
/* If rfcomm suspended traffic from the peer based on the rx_queue_size */
/* check if it can be resumed now */
port_flow_control_peer (p_port, TRUE, 1);
}
else
{
PORT_SCHEDULE_UNLOCK;
}
*pp_buf = p_buf;
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function port_write
**
** Description This function when a data packet is received from the apper
** layer task.
**
** Parameters: p_port - pointer to address of port control block
** p_buf - pointer to address of buffer with data,
**
*******************************************************************************/
static int port_write (tPORT *p_port, BT_HDR *p_buf)
{
/* We should not allow to write data in to server port when connection is not opened */
if (p_port->is_server && (p_port->rfc.state != RFC_STATE_OPENED))
{
GKI_freebuf (p_buf);
return (PORT_CLOSED);
}
/* Keep the data in pending queue if peer does not allow data, or */
/* Peer is not ready or Port is not yet opened or initial port control */
/* command has not been sent */
if (p_port->tx.peer_fc
|| !p_port->rfc.p_mcb
|| !p_port->rfc.p_mcb->peer_ready
|| (p_port->rfc.state != RFC_STATE_OPENED)
|| ((p_port->port_ctrl & (PORT_CTRL_REQ_SENT | PORT_CTRL_IND_RECEIVED)) !=
(PORT_CTRL_REQ_SENT | PORT_CTRL_IND_RECEIVED)))
{
if ((p_port->tx.queue_size > PORT_TX_CRITICAL_WM)
|| (p_port->tx.queue.count > PORT_TX_BUF_CRITICAL_WM))
{
RFCOMM_TRACE_WARNING ("PORT_Write: Queue size: %d",
p_port->tx.queue_size);
GKI_freebuf (p_buf);
if ((p_port->p_callback != NULL) && (p_port->ev_mask & PORT_EV_ERR))
p_port->p_callback (PORT_EV_ERR, p_port->inx);
return (PORT_TX_FULL);
}
RFCOMM_TRACE_EVENT ("PORT_Write : Data is enqued. flow disabled %d peer_ready %d state %d ctrl_state %x",
p_port->tx.peer_fc,
(p_port->rfc.p_mcb && p_port->rfc.p_mcb->peer_ready),
p_port->rfc.state,
p_port->port_ctrl);
GKI_enqueue (&p_port->tx.queue, p_buf);
p_port->tx.queue_size += p_buf->len;
return (PORT_CMD_PENDING);
}
else
{
RFCOMM_TRACE_EVENT ("PORT_Write : Data is being sent");
RFCOMM_DataReq (p_port->rfc.p_mcb, p_port->dlci, p_buf);
return (PORT_SUCCESS);
}
}
/*******************************************************************************
**
** Function PORT_Write
**
** Description This function when a data packet is received from the apper
** layer task.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** pp_buf - pointer to address of buffer with data,
**
*******************************************************************************/
int PORT_Write (UINT16 handle, BT_HDR *p_buf)
{
tPORT *p_port;
UINT32 event = 0;
int rc;
RFCOMM_TRACE_API ("PORT_Write() handle:%d", handle);
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
GKI_freebuf (p_buf);
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
GKI_freebuf (p_buf);
return (PORT_NOT_OPENED);
}
if (p_port->line_status)
{
RFCOMM_TRACE_WARNING ("PORT_Write: Data dropped line_status:0x%x",
p_port->line_status);
GKI_freebuf (p_buf);
return (PORT_LINE_ERR);
}
rc = port_write (p_port, p_buf);
event |= port_flow_control_user (p_port);
switch (rc)
{
case PORT_TX_FULL:
event |= PORT_EV_ERR;
break;
case PORT_SUCCESS:
event |= (PORT_EV_TXCHAR | PORT_EV_TXEMPTY);
break;
}
/* Mask out all events that are not of interest to user */
event &= p_port->ev_mask;
/* Send event to the application */
if (p_port->p_callback && event)
(p_port->p_callback)(event, p_port->inx);
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_WriteDataCO
**
** Description Normally not GKI aware application will call this function
** to send data to the port by callout functions
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** fd - socket fd
** p_len - Byte count returned
**
*******************************************************************************/
int PORT_WriteDataCO (UINT16 handle, int* p_len)
{
tPORT *p_port;
BT_HDR *p_buf;
UINT32 event = 0;
int rc = 0;
UINT16 length;
RFCOMM_TRACE_API ("PORT_WriteDataCO() handle:%d", handle);
int written;
*p_len = 0;
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
RFCOMM_TRACE_WARNING ("PORT_WriteDataByFd() no port state:%d", p_port->state);
return (PORT_NOT_OPENED);
}
if (!p_port->peer_mtu)
{
RFCOMM_TRACE_ERROR ("PORT_WriteDataByFd() peer_mtu:%d", p_port->peer_mtu);
return (PORT_UNKNOWN_ERROR);
}
int available = 0;
//if(ioctl(fd, FIONREAD, &available) < 0)
if(p_port->p_data_co_callback(handle, (UINT8*)&available, sizeof(available),
DATA_CO_CALLBACK_TYPE_OUTGOING_SIZE) == FALSE)
{
RFCOMM_TRACE_ERROR("p_data_co_callback DATA_CO_CALLBACK_TYPE_INCOMING_SIZE failed, available:%d", available);
return (PORT_UNKNOWN_ERROR);
}
if(available == 0)
return PORT_SUCCESS;
/* Length for each buffer is the smaller of GKI buffer, peer MTU, or max_len */
length = RFCOMM_DATA_POOL_BUF_SIZE -
(UINT16)(sizeof(BT_HDR) + L2CAP_MIN_OFFSET + RFCOMM_DATA_OVERHEAD);
/* If there are buffers scheduled for transmission check if requested */
/* data fits into the end of the queue */
PORT_SCHEDULE_LOCK;
if (((p_buf = (BT_HDR *)p_port->tx.queue.p_last) != NULL)
&& (((int)p_buf->len + available) <= (int)p_port->peer_mtu)
&& (((int)p_buf->len + available) <= (int)length))
{
//if(recv(fd, (UINT8 *)(p_buf + 1) + p_buf->offset + p_buf->len, available, 0) != available)
if(p_port->p_data_co_callback(handle, (UINT8 *)(p_buf + 1) + p_buf->offset + p_buf->len,
available, DATA_CO_CALLBACK_TYPE_OUTGOING) == FALSE)
{
error("p_data_co_callback DATA_CO_CALLBACK_TYPE_OUTGOING failed, available:%d", available);
PORT_SCHEDULE_UNLOCK;
return (PORT_UNKNOWN_ERROR);
}
//memcpy ((UINT8 *)(p_buf + 1) + p_buf->offset + p_buf->len, p_data, max_len);
p_port->tx.queue_size += (UINT16)available;
*p_len = available;
p_buf->len += (UINT16)available;
PORT_SCHEDULE_UNLOCK;
return (PORT_SUCCESS);
}
PORT_SCHEDULE_UNLOCK;
//int max_read = length < p_port->peer_mtu ? length : p_port->peer_mtu;
//max_read = available < max_read ? available : max_read;
while (available)
{
/* if we're over buffer high water mark, we're done */
if ((p_port->tx.queue_size > PORT_TX_HIGH_WM)
|| (p_port->tx.queue.count > PORT_TX_BUF_HIGH_WM))
{
port_flow_control_user(p_port);
event |= PORT_EV_FC;
debug("tx queue is full,tx.queue_size:%d,tx.queue.count:%d,available:%d",
p_port->tx.queue_size, p_port->tx.queue.count, available);
break;
}
/* continue with rfcomm data write */
p_buf = (BT_HDR *)GKI_getpoolbuf (RFCOMM_DATA_POOL_ID);
if (!p_buf)
break;
p_buf->offset = L2CAP_MIN_OFFSET + RFCOMM_MIN_OFFSET;
p_buf->layer_specific = handle;
if (p_port->peer_mtu < length)
length = p_port->peer_mtu;
if (available < (int)length)
length = (UINT16)available;
p_buf->len = length;
p_buf->event = BT_EVT_TO_BTU_SP_DATA;
//memcpy ((UINT8 *)(p_buf + 1) + p_buf->offset, p_data, length);
//if(recv(fd, (UINT8 *)(p_buf + 1) + p_buf->offset, (int)length, 0) != (int)length)
if(p_port->p_data_co_callback(handle, (UINT8 *)(p_buf + 1) + p_buf->offset, length,
DATA_CO_CALLBACK_TYPE_OUTGOING) == FALSE)
{
error("p_data_co_callback DATA_CO_CALLBACK_TYPE_OUTGOING failed, length:%d", length);
return (PORT_UNKNOWN_ERROR);
}
RFCOMM_TRACE_EVENT ("PORT_WriteData %d bytes", length);
rc = port_write (p_port, p_buf);
/* If queue went below the threashold need to send flow control */
event |= port_flow_control_user (p_port);
if (rc == PORT_SUCCESS)
event |= PORT_EV_TXCHAR;
if ((rc != PORT_SUCCESS) && (rc != PORT_CMD_PENDING))
break;
*p_len += length;
available -= (int)length;
}
if (!available && (rc != PORT_CMD_PENDING) && (rc != PORT_TX_QUEUE_DISABLED))
event |= PORT_EV_TXEMPTY;
/* Mask out all events that are not of interest to user */
event &= p_port->ev_mask;
/* Send event to the application */
if (p_port->p_callback && event)
(p_port->p_callback)(event, p_port->inx);
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_WriteData
**
** Description Normally not GKI aware application will call this function
** to send data to the port.
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** p_data - Data area
** max_len - Byte count requested
** p_len - Byte count received
**
*******************************************************************************/
int PORT_WriteData (UINT16 handle, char *p_data, UINT16 max_len, UINT16 *p_len)
{
tPORT *p_port;
BT_HDR *p_buf;
UINT32 event = 0;
int rc = 0;
UINT16 length;
RFCOMM_TRACE_API ("PORT_WriteData() max_len:%d", max_len);
*p_len = 0;
/* Check if handle is valid to avoid crashing */
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
RFCOMM_TRACE_WARNING ("PORT_WriteData() no port state:%d", p_port->state);
return (PORT_NOT_OPENED);
}
if (!max_len || !p_port->peer_mtu)
{
RFCOMM_TRACE_ERROR ("PORT_WriteData() peer_mtu:%d", p_port->peer_mtu);
return (PORT_UNKNOWN_ERROR);
}
/* Length for each buffer is the smaller of GKI buffer, peer MTU, or max_len */
length = RFCOMM_DATA_POOL_BUF_SIZE -
(UINT16)(sizeof(BT_HDR) + L2CAP_MIN_OFFSET + RFCOMM_DATA_OVERHEAD);
/* If there are buffers scheduled for transmission check if requested */
/* data fits into the end of the queue */
PORT_SCHEDULE_LOCK;
if (((p_buf = (BT_HDR *)p_port->tx.queue.p_last) != NULL)
&& ((p_buf->len + max_len) <= p_port->peer_mtu)
&& ((p_buf->len + max_len) <= length))
{
memcpy ((UINT8 *)(p_buf + 1) + p_buf->offset + p_buf->len, p_data, max_len);
p_port->tx.queue_size += max_len;
*p_len = max_len;
p_buf->len += max_len;
PORT_SCHEDULE_UNLOCK;
return (PORT_SUCCESS);
}
PORT_SCHEDULE_UNLOCK;
while (max_len)
{
/* if we're over buffer high water mark, we're done */
if ((p_port->tx.queue_size > PORT_TX_HIGH_WM)
|| (p_port->tx.queue.count > PORT_TX_BUF_HIGH_WM))
break;
/* continue with rfcomm data write */
p_buf = (BT_HDR *)GKI_getpoolbuf (RFCOMM_DATA_POOL_ID);
if (!p_buf)
break;
p_buf->offset = L2CAP_MIN_OFFSET + RFCOMM_MIN_OFFSET;
p_buf->layer_specific = handle;
if (p_port->peer_mtu < length)
length = p_port->peer_mtu;
if (max_len < length)
length = max_len;
p_buf->len = length;
p_buf->event = BT_EVT_TO_BTU_SP_DATA;
memcpy ((UINT8 *)(p_buf + 1) + p_buf->offset, p_data, length);
RFCOMM_TRACE_EVENT ("PORT_WriteData %d bytes", length);
rc = port_write (p_port, p_buf);
/* If queue went below the threashold need to send flow control */
event |= port_flow_control_user (p_port);
if (rc == PORT_SUCCESS)
event |= PORT_EV_TXCHAR;
if ((rc != PORT_SUCCESS) && (rc != PORT_CMD_PENDING))
break;
*p_len += length;
max_len -= length;
p_data += length;
}
if (!max_len && (rc != PORT_CMD_PENDING) && (rc != PORT_TX_QUEUE_DISABLED))
event |= PORT_EV_TXEMPTY;
/* Mask out all events that are not of interest to user */
event &= p_port->ev_mask;
/* Send event to the application */
if (p_port->p_callback && event)
(p_port->p_callback)(event, p_port->inx);
return (PORT_SUCCESS);
}
/*******************************************************************************
**
** Function PORT_Test
**
** Description Application can call this function to send RFCOMM Test frame
**
** Parameters: handle - Handle returned in the RFCOMM_CreateConnection
** p_data - Data area
** max_len - Byte count requested
**
*******************************************************************************/
int PORT_Test (UINT16 handle, UINT8 *p_data, UINT16 len)
{
BT_HDR *p_buf;
tPORT *p_port;
RFCOMM_TRACE_API ("PORT_Test() len:%d", len);
if ((handle == 0) || (handle > MAX_RFC_PORTS))
{
return (PORT_BAD_HANDLE);
}
p_port = &rfc_cb.port.port[handle - 1];
if (!p_port->in_use || (p_port->state == PORT_STATE_CLOSED))
{
return (PORT_NOT_OPENED);
}
if (len > ((p_port->mtu == 0) ? RFCOMM_DEFAULT_MTU : p_port->mtu))
{
return (PORT_UNKNOWN_ERROR);
}
if ((p_buf = (BT_HDR *)GKI_getpoolbuf (RFCOMM_CMD_POOL_ID)) != NULL)
{
p_buf->offset = L2CAP_MIN_OFFSET + RFCOMM_MIN_OFFSET + 2;
p_buf->len = len;
memcpy ((UINT8 *)(p_buf + 1) + p_buf->offset, p_data, p_buf->len);
rfc_send_test (p_port->rfc.p_mcb, TRUE, p_buf);
return (PORT_SUCCESS);
}
else
{
return (PORT_NO_MEM);
}
}
/*******************************************************************************
**
** Function RFCOMM_Init
**
** Description This function is called to initialize RFCOMM layer
**
*******************************************************************************/
void RFCOMM_Init (void)
{
memset (&rfc_cb, 0, sizeof (tRFC_CB)); /* Init RFCOMM control block */
rfc_cb.rfc.last_mux = MAX_BD_CONNECTIONS;
#if defined(RFCOMM_INITIAL_TRACE_LEVEL)
rfc_cb.trace_level = RFCOMM_INITIAL_TRACE_LEVEL;
#else
rfc_cb.trace_level = BT_TRACE_LEVEL_NONE; /* No traces */
#endif
rfcomm_l2cap_if_init ();
}
/*******************************************************************************
**
** Function PORT_SetTraceLevel
**
** Description This function sets the trace level for RFCOMM. If called with
** a value of 0xFF, it simply reads the current trace level.
**
** Returns the new (current) trace level
**
*******************************************************************************/
UINT8 PORT_SetTraceLevel (UINT8 new_level)
{
if (new_level != 0xFF)
rfc_cb.trace_level = new_level;
return (rfc_cb.trace_level);
}