blob: 4d15b73202e2f0cc70821588a13e137b6477218b [file] [log] [blame]
# Simple calculator. -*- Autotest -*-
# Copyright (C) 2000-2015, 2018-2019 Free Software Foundation, Inc.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
## ---------------------------------------------------- ##
## Compile the grammar described in the documentation. ##
## ---------------------------------------------------- ##
# -------------- #
# AT_CALC_MAIN. #
# -------------- #
m4_pushdef([AT_CALC_MAIN], [AT_LANG_DISPATCH([$0], $@)])
m4_define([AT_CALC_MAIN(c)],
[[#include <assert.h>
#include <unistd.h>
]AT_CXX_IF([[
namespace
{
/* A C++ ]AT_NAME_PREFIX[parse that simulates the C signature. */
int
]AT_NAME_PREFIX[parse (]AT_PARAM_IF([semantic_value *result, int *count]))[
{
]AT_NAME_PREFIX[::parser parser]AT_PARAM_IF([ (result, count)])[;
#if ]AT_API_PREFIX[DEBUG
parser.set_debug_level (1);
#endif
return parser.parse ();
}
}
]])[
semantic_value global_result = 0;
int global_count = 0;
/* A C main function. */
int
main (int argc, const char **argv)
{
semantic_value result = 0;
int count = 0;
int status;
/* This used to be alarm (10), but that isn't enough time for a July
1995 vintage DEC Alphastation 200 4/100 system, according to
Nelson H. F. Beebe. 100 seconds was enough for regular users,
but the Hydra build farm, which is heavily loaded needs more. */
alarm (200);
if (argc == 2)
input = fopen (argv[1], "r");
else
input = stdin;
if (!input)
{
perror (argv[1]);
return 3;
}
]AT_CXX_IF([], [AT_DEBUG_IF([ ]AT_NAME_PREFIX[debug = 1;])])[
status = ]AT_NAME_PREFIX[parse (]AT_PARAM_IF([[&result, &count]])[);
if (fclose (input))
perror ("fclose");
assert (global_result == result); (void) result;
assert (global_count == count); (void) count;
return status;
}
]])
m4_copy([AT_CALC_MAIN(c)], [AT_CALC_MAIN(c++)])
m4_define([AT_CALC_MAIN(d)],
[[int main (string[] args)
{
semantic_value result = 0;
int count = 0;
File input = args.length == 2 ? File (args[1], "r") : stdin;
auto l = calcLexer (input);
auto p = new YYParser (l);
return !p.parse ();
}
]])
# --------------- #
# AT_CALC_YYLEX. #
# --------------- #
m4_pushdef([AT_CALC_YYLEX], [AT_LANG_DISPATCH([$0], $@)])
m4_define([AT_CALC_YYLEX(c)],
[[#include <ctype.h>
]AT_YYLEX_DECLARE_EXTERN[
]AT_LOCATION_IF([
static AT_YYLTYPE last_yylloc;
])[
static int
get_char (]AT_YYLEX_FORMALS[)
{
int res = getc (input);
]AT_USE_LEX_ARGS[;
]AT_LOCATION_IF([
last_yylloc = AT_LOC;
if (res == '\n')
{
AT_LOC_LAST_LINE++;
AT_LOC_LAST_COLUMN = 1;
}
else
AT_LOC_LAST_COLUMN++;
])[
return res;
}
static void
unget_char (]AT_YYLEX_PRE_FORMALS[ int c)
{
]AT_USE_LEX_ARGS[;
]AT_LOCATION_IF([
/* Wrong when C == '\n'. */
AT_LOC = last_yylloc;
])[
ungetc (c, input);
}
static int
read_integer (]AT_YYLEX_FORMALS[)
{
int c = get_char (]AT_YYLEX_ARGS[);
int res = 0;
]AT_USE_LEX_ARGS[;
while (isdigit (c))
{
res = 10 * res + (c - '0');
c = get_char (]AT_YYLEX_ARGS[);
}
unget_char (]AT_YYLEX_PRE_ARGS[ c);
return res;
}
/*---------------------------------------------------------------.
| Lexical analyzer returns an integer on the stack and the token |
| NUM, or the ASCII character read if not a number. Skips all |
| blanks and tabs, returns 0 for EOF. |
`---------------------------------------------------------------*/
]AT_YYLEX_PROTOTYPE[
{
int c;
/* Skip white spaces. */
do
{
]AT_LOCATION_IF(
[ AT_LOC_FIRST_COLUMN = AT_LOC_LAST_COLUMN;
AT_LOC_FIRST_LINE = AT_LOC_LAST_LINE;
])[
}
while ((c = get_char (]AT_YYLEX_ARGS[)) == ' ' || c == '\t');
/* Process numbers. */
if (isdigit (c))
{
unget_char (]AT_YYLEX_PRE_ARGS[ c);
]AT_VAL[.ival = read_integer (]AT_YYLEX_ARGS[);
return ]AT_TOKEN_PREFIX[NUM;
}
/* Return end-of-file. */
if (c == EOF)
return ]AT_TOKEN_PREFIX[CALC_EOF;
/* Return single chars. */
return c;
}
]])
m4_copy([AT_CALC_YYLEX(c)], [AT_CALC_YYLEX(c++)])
m4_define([AT_CALC_YYLEX(d)],
[[import std.range.primitives;
import std.stdio;
auto calcLexer(R)(R range)
if (isInputRange!R && is (ElementType!R : dchar))
{
return new CalcLexer!R(range);
}
auto calcLexer (File f)
{
import std.algorithm : map, joiner;
import std.utf : byDchar;
return f.byChunk(1024) // avoid making a syscall roundtrip per char
.map!(chunk => cast(char[]) chunk) // because byChunk returns ubyte[]
.joiner // combine chunks into a single virtual range of char
.calcLexer; // forward to other overload
}
class CalcLexer(R) : Lexer
if (isInputRange!R && is (ElementType!R : dchar))
{
R input;
this(R r) {
input = r;
}
]AT_YYERROR_DEFINE[
YYSemanticType semanticVal_;]AT_LOCATION_IF([[
YYLocation location = new YYLocation;
public final @property YYPosition startPos()
{
return location.begin;
}
public final @property YYPosition endPos()
{
return location.end;
}
]])[
public final @property YYSemanticType semanticVal()
{
return semanticVal_;
}
int parseInt ()
{
auto res = 0;
import std.uni : isNumber;
while (input.front.isNumber)
{
res = res * 10 + (input.front - '0');]AT_LOCATION_IF([[
location.end.column += 1;]])[
input.popFront;
}
return res;
}
int yylex ()
{]AT_LOCATION_IF([[
location.begin = location.end;]])[
import std.uni : isWhite, isNumber;
// Skip initial spaces
while (!input.empty && input.front != '\n' && isWhite (input.front))
{
input.popFront;]AT_LOCATION_IF([[
location.begin.column += 1;
location.end.column += 1;]])[
}
// Handle EOF.
if (input.empty)
return YYTokenType.EOF;
// Numbers.
if (input.front.isNumber)
{
semanticVal_.ival = parseInt;
return YYTokenType.NUM;
}
// Individual characters
auto c = input.front;]AT_LOCATION_IF([[
if (c == '\n')
{
location.end.line += 1;
location.end.column = 1;
}
else
location.end.column += 1;]])[
input.popFront;
return c;
}
}
]])
# -------------- #
# AT_DATA_CALC. #
# -------------- #
# _AT_DATA_CALC_Y($1, $2, $3, [BISON-DIRECTIVES])
# -----------------------------------------------
# Produce 'calc.y' and, if %defines was specified, 'calc-lex.c' or
# 'calc-lex.cc'.
#
# Don't call this macro directly, because it contains some occurrences
# of '$1' etc. which will be interpreted by m4. So you should call it
# with $1, $2, and $3 as arguments, which is what AT_DATA_CALC_Y does.
#
# When %defines is not passed, generate a single self-contained file.
# Otherwise, generate three: calc.y with the parser, calc-lex.c with
# the scanner, and calc-main.c with "main()". This is in order to
# stress the use of the generated parser header. To avoid code
# duplication, AT_CALC_YYLEX and AT_CALC_MAIN contain the body of these
# two later files.
m4_define([_AT_DATA_CALC_Y],
[m4_if([$1$2$3], $[1]$[2]$[3], [],
[m4_fatal([$0: Invalid arguments: $@])])dnl
AT_DATA_GRAMMAR([calc.y],
[[/* Infix notation calculator--calc */
]$4[
]AT_CXX_IF([%define global_tokens_and_yystype])[
]AT_D_IF([[
%code imports {
alias semantic_value = int;
}
]], [[
%code requires
{
]AT_LOCATION_TYPE_SPAN_IF([[
typedef struct
{
int l;
int c;
} Point;
typedef struct
{
Point first;
Point last;
} Span;
# define YYLLOC_DEFAULT(Current, Rhs, N) \
do \
if (N) \
{ \
(Current).first = YYRHSLOC (Rhs, 1).first; \
(Current).last = YYRHSLOC (Rhs, N).last; \
} \
else \
{ \
(Current).first = (Current).last = YYRHSLOC (Rhs, 0).last; \
} \
while (0)
]AT_C_IF(
[[#include <stdio.h>
void location_print (FILE *o, Span s);
#define LOCATION_PRINT location_print
]])[
]])[
/* Exercise pre-prologue dependency to %union. */
typedef int semantic_value;
}
]])[
/* Exercise %union. */
%union
{
semantic_value ival;
};
%printer { ]AT_CXX_IF([[yyo << $$]],
[[fprintf (yyo, "%d", $$)]])[; } <ival>;
]AT_D_IF([], [[
%code provides
{
#include <stdio.h>
/* The input. */
extern FILE *input;
extern semantic_value global_result;
extern int global_count;
}
%code
{
#include <assert.h>
#include <string.h>
#define USE(Var)
FILE *input;
static int power (int base, int exponent);
]AT_YYERROR_DECLARE[
]AT_YYLEX_DECLARE_EXTERN[
}
]])[
]AT_LOCATION_TYPE_SPAN_IF([[
%initial-action
{
@$.first.l = @$.first.c = 1;
@$.last = @$.first;
}]])[
/* Bison Declarations */
%token CALC_EOF 0 "end of input"
%token <ival> NUM "number"
%type <ival> exp
%nonassoc '=' /* comparison */
%left '-' '+'
%left '*' '/'
%precedence NEG /* negation--unary minus */
%right '^' /* exponentiation */
/* Grammar follows */
%%
input:
line
| input line { ]AT_PARAM_IF([++*count; ++global_count;])[ }
;
line:
'\n'
| exp '\n' { ]AT_PARAM_IF([*result = global_result = $1;], [AT_D_IF([], [USE ($1);])])[ }
;
exp:
NUM
| exp '=' exp
{
if ($1 != $3)]AT_D_IF([
stderr.writefln ("calc: error: %d != %d", $1, $3);], [
fprintf (stderr, "calc: error: %d != %d\n", $1, $3);], [
])[
$$ = $1;
}
| exp '+' exp { $$ = $1 + $3; }
| exp '-' exp { $$ = $1 - $3; }
| exp '*' exp { $$ = $1 * $3; }
| exp '/' exp { $$ = $1 / $3; }
| '-' exp %prec NEG { $$ = -$2; }
| exp '^' exp { $$ = power ($1, $3); }
| '(' exp ')' { $$ = $2; }
| '(' error ')' { $$ = 1111; ]AT_D_IF([], [yyerrok;])[ }
| '!' { $$ = 0; ]AT_D_IF([return YYERROR], [YYERROR])[; }
| '-' error { $$ = 0; ]AT_D_IF([return YYERROR], [YYERROR])[; }
;
%%
int
power (int base, int exponent)
{
int res = 1;
assert (0 <= exponent);
for (/* Niente */; exponent; --exponent)
res *= base;
return res;
}
]AT_LOCATION_TYPE_SPAN_IF([AT_CXX_IF([[
#include <iostream>
namespace
{
std::ostream&
operator<< (std::ostream& o, const Span& s)
{
o << s.first.l << '.' << s.first.c;
if (s.first.l != s.last.l)
o << '-' << s.last.l << '.' << s.last.c - 1;
else if (s.first.c != s.last.c - 1)
o << '-' << s.last.c - 1;
return o;
}
}
]], [[
void
location_print (FILE *o, Span s)
{
fprintf (o, "%d.%d", s.first.l, s.first.c);
if (s.first.l != s.last.l)
fprintf (o, "-%d.%d", s.last.l, s.last.c - 1);
else if (s.first.c != s.last.c - 1)
fprintf (o, "-%d", s.last.c - 1);
}
]])])[
]AT_YYERROR_DEFINE[
]AT_DEFINES_IF([],
[AT_CALC_YYLEX
AT_CALC_MAIN])])
AT_DEFINES_IF([AT_DATA_SOURCE([[calc-lex.]AT_LANG_EXT],
[[#include "calc.]AT_LANG_HDR["
]AT_CALC_YYLEX])
AT_DATA_SOURCE([[calc-main.]AT_LANG_EXT],
[[#include "calc.]AT_LANG_HDR["
]AT_CALC_MAIN])
])
])# _AT_DATA_CALC_Y
# AT_DATA_CALC_Y([BISON-OPTIONS])
# -------------------------------
# Produce 'calc.y' and, if %defines was specified, 'calc-lex.c' or
# 'calc-lex.cc'.
m4_define([AT_DATA_CALC_Y],
[_AT_DATA_CALC_Y($[1], $[2], $[3], [$1])
])
# _AT_CHECK_CALC(BISON-OPTIONS, INPUT, [NUM-STDERR-LINES])
# --------------------------------------------------------
# Run 'calc' on INPUT and expect no STDOUT nor STDERR.
#
# If BISON-OPTIONS contains '%debug' but not '%glr-parser', then
# NUM-STDERR-LINES is the number of expected lines on stderr.
# Currently this is ignored, though, since the output format is fluctuating.
#
# We don't count GLR's traces yet, since its traces are somewhat
# different from LALR's.
m4_define([_AT_CHECK_CALC],
[AT_DATA([[input]],
[[$2
]])
AT_PARSER_CHECK([calc input], 0, [], [stderr])
])
# _AT_CHECK_CALC_ERROR(BISON-OPTIONS, EXIT-STATUS, INPUT,
# [NUM-STDERR-LINES],
# [VERBOSE-AND-LOCATED-ERROR-MESSAGE])
# ---------------------------------------------------------
# Run 'calc' on INPUT, and expect a 'syntax error' message.
#
# If INPUT starts with a slash, it is used as absolute input file name,
# otherwise as contents.
#
# NUM-STDERR-LINES is the number of expected lines on stderr.
# Currently this is ignored, though, since the output format is fluctuating.
#
# If BISON-OPTIONS contains '%location', then make sure the ERROR-LOCATION
# is correctly output on stderr.
#
# If BISON-OPTIONS contains '%define parse.error verbose', then make sure the
# IF-YYERROR-VERBOSE message is properly output after 'syntax error, '
# on STDERR.
#
# If BISON-OPTIONS contains '%debug' but not '%glr', then NUM-STDERR-LINES
# is the number of expected lines on stderr.
m4_define([_AT_CHECK_CALC_ERROR],
[m4_bmatch([$3], [^/],
[AT_PARSER_CHECK([calc $3], $2, [], [stderr])],
[AT_DATA([[input]],
[[$3
]])
AT_PARSER_CHECK([calc input], $2, [], [stderr])])
# Normalize the observed and expected error messages, depending upon the
# options.
# 1. Remove the traces from observed.
sed '/^Starting/d
/^Entering/d
/^Stack/d
/^Reading/d
/^Reducing/d
/^Return/d
/^Shifting/d
/^state/d
/^Cleanup:/d
/^Error:/d
/^Next/d
/^Now/d
/^Discarding/d
/ \$[[0-9$]]* = /d
/^yydestructor:/d' stderr >at-stderr
mv at-stderr stderr
# 2. Create the reference error message.
AT_DATA([[expout]],
[$5
])
# 3. If locations are not used, remove them.
AT_YYERROR_SEES_LOC_IF([],
[[sed 's/^[-0-9.]*: //' expout >at-expout
mv at-expout expout]])
# 4. If error-verbose is not used, strip the', unexpected....' part.
m4_bmatch([$1], [%define parse.error verbose], [],
[[sed 's/syntax error, .*$/syntax error/' expout >at-expout
mv at-expout expout]])
# 5. Check
AT_CHECK([cat stderr], 0, [expout])
])
# AT_CHECK_SPACES([FILES])
# ------------------------
# Make sure we did not introduce bad spaces. Checked here because all
# the skeletons are (or should be) exercized here.
m4_define([AT_CHECK_SPACES],
[AT_PERL_CHECK([-ne '
chomp;
print "$ARGV:$.: {$_}\n"
if (# No starting/ending empty lines.
(eof || $. == 1) && /^\s*$/
# No trailing space.
|| /\s$/
# No tabs.
|| /\t/
)' $1
])
])
# AT_CHECK_CALC([BISON-OPTIONS], [COMPILER-OPTIONS])
# --------------------------------------------------
# Start a testing chunk which compiles 'calc' grammar with
# BISON-OPTIONS, and performs several tests over the parser.
m4_define([AT_CHECK_CALC],
[m4_ifval([$3], [m4_fatal([$0: expected at most two arguments])])
# We use integers to avoid dependencies upon the precision of doubles.
AT_SETUP([Calculator $1 $2])
AT_BISON_OPTION_PUSHDEFS([$1])
AT_DATA_CALC_Y([$1])
AT_FULL_COMPILE([calc], AT_DEFINES_IF([[lex], [main]], [[], []]), [$2], [-Wno-deprecated])
AT_CHECK_SPACES([calc.AT_LANG_EXT AT_DEFINES_IF([calc.AT_LANG_HDR])])
# Test the precedences.
_AT_CHECK_CALC([$1],
[1 + 2 * 3 = 7
1 + 2 * -3 = -5
-1^2 = -1
(-1)^2 = 1
---1 = -1
1 - 2 - 3 = -4
1 - (2 - 3) = 2
2^2^3 = 256
(2^2)^3 = 64],
[842])
# Some syntax errors.
_AT_CHECK_CALC_ERROR([$1], [1], [1 2], [15],
[1.3: syntax error, unexpected number])
_AT_CHECK_CALC_ERROR([$1], [1], [1//2], [20],
[1.3: syntax error, unexpected '/', expecting number or '-' or '(' or '!'])
_AT_CHECK_CALC_ERROR([$1], [1], [error], [5],
[1.1: syntax error, unexpected $undefined])
_AT_CHECK_CALC_ERROR([$1], [1], [1 = 2 = 3], [30],
[1.7: syntax error, unexpected '='])
_AT_CHECK_CALC_ERROR([$1], [1],
[
+1],
[20],
[2.1: syntax error, unexpected '+'])
# Exercise error messages with EOF: work on an empty file.
_AT_CHECK_CALC_ERROR([$1], [1], [/dev/null], [4],
[1.1: syntax error, unexpected end of input])
# Exercise the error token: without it, we die at the first error,
# hence be sure to
#
# - have several errors which exercise different shift/discardings
# - (): nothing to pop, nothing to discard
# - (1 + 1 + 1 +): a lot to pop, nothing to discard
# - (* * *): nothing to pop, a lot to discard
# - (1 + 2 * *): some to pop and discard
#
# - test the action associated to 'error'
#
# - check the lookahead that triggers an error is not discarded
# when we enter error recovery. Below, the lookahead causing the
# first error is ")", which is needed to recover from the error and
# produce the "0" that triggers the "0 != 1" error.
#
_AT_CHECK_CALC_ERROR([$1], [0],
[() + (1 + 1 + 1 +) + (* * *) + (1 * 2 * *) = 1],
[250],
[1.2: syntax error, unexpected ')', expecting number or '-' or '(' or '!'
1.18: syntax error, unexpected ')', expecting number or '-' or '(' or '!'
1.23: syntax error, unexpected '*', expecting number or '-' or '(' or '!'
1.41: syntax error, unexpected '*', expecting number or '-' or '(' or '!'
calc: error: 4444 != 1])
# The same, but this time exercising explicitly triggered syntax errors.
# POSIX says the lookahead causing the error should not be discarded.
_AT_CHECK_CALC_ERROR([$1], [0], [(!) + (1 2) = 1], [102],
[1.10: syntax error, unexpected number
calc: error: 2222 != 1])
_AT_CHECK_CALC_ERROR([$1], [0], [(- *) + (1 2) = 1], [113],
[1.4: syntax error, unexpected '*', expecting number or '-' or '(' or '!'
1.12: syntax error, unexpected number
calc: error: 2222 != 1])
# Check that yyerrok works properly: second error is not reported,
# third and fourth are. Parse status is succesful.
_AT_CHECK_CALC_ERROR([$1], [0], [(* *) + (*) + (*)], [113],
[1.2: syntax error, unexpected '*', expecting number or '-' or '(' or '!'
1.10: syntax error, unexpected '*', expecting number or '-' or '(' or '!'
1.16: syntax error, unexpected '*', expecting number or '-' or '(' or '!'])
AT_BISON_OPTION_POPDEFS
AT_CLEANUP
])# AT_CHECK_CALC
# ------------------------ #
# Simple LALR Calculator. #
# ------------------------ #
AT_BANNER([[Simple LALR(1) Calculator.]])
# AT_CHECK_CALC_LALR([BISON-OPTIONS])
# -----------------------------------
# Start a testing chunk which compiles 'calc' grammar with
# BISON-OPTIONS, and performs several tests over the parser.
m4_define([AT_CHECK_CALC_LALR],
[AT_CHECK_CALC($@)])
AT_CHECK_CALC_LALR()
AT_CHECK_CALC_LALR([%defines])
AT_CHECK_CALC_LALR([%locations])
AT_CHECK_CALC_LALR([%locations %define api.location.type {Span}])
AT_CHECK_CALC_LALR([%name-prefix "calc"])
AT_CHECK_CALC_LALR([%verbose])
AT_CHECK_CALC_LALR([%yacc])
AT_CHECK_CALC_LALR([%define parse.error verbose])
AT_CHECK_CALC_LALR([%define api.pure full %locations])
AT_CHECK_CALC_LALR([%define api.push-pull both %define api.pure full %locations])
AT_CHECK_CALC_LALR([%define parse.error verbose %locations])
AT_CHECK_CALC_LALR([%define parse.error verbose %locations %defines %define api.prefix {calc} %verbose %yacc])
AT_CHECK_CALC_LALR([%define parse.error verbose %locations %defines %name-prefix "calc" %define api.token.prefix {TOK_} %verbose %yacc])
AT_CHECK_CALC_LALR([%debug])
AT_CHECK_CALC_LALR([%define parse.error verbose %debug %locations %defines %name-prefix "calc" %verbose %yacc])
AT_CHECK_CALC_LALR([%define parse.error verbose %debug %locations %defines %define api.prefix {calc} %verbose %yacc])
AT_CHECK_CALC_LALR([%define api.pure full %define parse.error verbose %debug %locations %defines %name-prefix "calc" %verbose %yacc])
AT_CHECK_CALC_LALR([%define api.push-pull both %define api.pure full %define parse.error verbose %debug %locations %defines %define api.prefix {calc} %verbose %yacc])
AT_CHECK_CALC_LALR([%define api.pure %define parse.error verbose %debug %locations %defines %define api.prefix {calc} %verbose %yacc %parse-param {semantic_value *result} %parse-param {int *count}])
AT_CHECK_CALC_LALR([%no-lines %define api.pure %define parse.error verbose %debug %locations %defines %define api.prefix {calc} %verbose %yacc %parse-param {semantic_value *result} %parse-param {int *count}])
# ----------------------- #
# Simple GLR Calculator. #
# ----------------------- #
AT_BANNER([[Simple GLR Calculator.]])
# AT_CHECK_CALC_GLR([BISON-OPTIONS])
# ----------------------------------
# Start a testing chunk which compiles 'calc' grammar with
# BISON-OPTIONS and %glr-parser, and performs several tests over the parser.
m4_define([AT_CHECK_CALC_GLR],
[AT_CHECK_CALC([%glr-parser] $@)])
AT_CHECK_CALC_GLR()
AT_CHECK_CALC_GLR([%defines])
AT_CHECK_CALC_GLR([%locations])
AT_CHECK_CALC_GLR([%locations %define api.location.type {Span}])
AT_CHECK_CALC_GLR([%name-prefix "calc"])
AT_CHECK_CALC_GLR([%define api.prefix {calc}])
AT_CHECK_CALC_GLR([%verbose])
AT_CHECK_CALC_GLR([%yacc])
AT_CHECK_CALC_GLR([%define parse.error verbose])
AT_CHECK_CALC_GLR([%define api.pure %locations])
AT_CHECK_CALC_GLR([%define parse.error verbose %locations])
AT_CHECK_CALC_GLR([%define parse.error verbose %locations %defines %name-prefix "calc" %verbose %yacc])
AT_CHECK_CALC_GLR([%debug])
AT_CHECK_CALC_GLR([%define parse.error verbose %debug %locations %defines %name-prefix "calc" %verbose %yacc])
AT_CHECK_CALC_GLR([%define parse.error verbose %debug %locations %defines %define api.prefix {calc} %define api.token.prefix {TOK_} %verbose %yacc])
AT_CHECK_CALC_GLR([%define api.pure %define parse.error verbose %debug %locations %defines %name-prefix "calc" %verbose %yacc])
AT_CHECK_CALC_GLR([%define api.pure %define parse.error verbose %debug %locations %defines %name-prefix "calc" %verbose %yacc %parse-param {semantic_value *result} %parse-param {int *count}])
AT_CHECK_CALC_GLR([%define api.pure %define parse.error verbose %debug %locations %defines %define api.prefix {calc} %verbose %yacc %parse-param {semantic_value *result} %parse-param {int *count}])
AT_CHECK_CALC_GLR([%no-lines %define api.pure %define parse.error verbose %debug %locations %defines %define api.prefix {calc} %verbose %yacc %parse-param {semantic_value *result} %parse-param {int *count}])
# ----------------------------- #
# Simple LALR1 C++ Calculator. #
# ----------------------------- #
AT_BANNER([[Simple LALR(1) C++ Calculator.]])
# First let's try using %skeleton
AT_CHECK_CALC([%skeleton "lalr1.cc" %defines])
# AT_CHECK_CALC_LALR1_CC([BISON-OPTIONS])
# ---------------------------------------
# Start a testing chunk which compiles 'calc' grammar with
# the C++ skeleton, and performs several tests over the parser.
m4_define([AT_CHECK_CALC_LALR1_CC],
[AT_CHECK_CALC([%language "C++" $1], [$2])])
AT_CHECK_CALC_LALR1_CC([])
AT_CHECK_CALC_LALR1_CC([%locations])
AT_CHECK_CALC_LALR1_CC([%locations], [$NO_EXCEPTIONS_CXXFLAGS])
AT_CHECK_CALC_LALR1_CC([%locations %define api.location.type {Span}])
AT_CHECK_CALC_LALR1_CC([%defines %locations %define parse.error verbose %name-prefix "calc" %verbose %yacc])
AT_CHECK_CALC_LALR1_CC([%locations %define parse.error verbose %define api.prefix {calc} %verbose %yacc])
AT_CHECK_CALC_LALR1_CC([%locations %define parse.error verbose %debug %name-prefix "calc" %verbose %yacc])
AT_CHECK_CALC_LALR1_CC([%locations %define parse.error verbose %debug %define api.prefix {calc} %verbose %yacc])
AT_CHECK_CALC_LALR1_CC([%locations %define parse.error verbose %debug %define api.prefix {calc} %define api.token.prefix {TOK_} %verbose %yacc])
AT_CHECK_CALC_LALR1_CC([%defines %locations %define parse.error verbose %debug %name-prefix "calc" %verbose %yacc %parse-param {semantic_value *result} %parse-param {int *count}])
AT_CHECK_CALC_LALR1_CC([%define parse.error verbose %debug %define api.prefix {calc} %verbose %yacc %parse-param {semantic_value *result} %parse-param {int *count}])
AT_CHECK_CALC_LALR1_CC([%defines %locations %define parse.error verbose %debug %define api.prefix {calc} %verbose %yacc %parse-param {semantic_value *result} %parse-param {int *count}])
AT_CHECK_CALC_LALR1_CC([%defines %locations %define api.location.file none])
AT_CHECK_CALC_LALR1_CC([%defines %locations %define api.location.file "my-location.hh"])
AT_CHECK_CALC_LALR1_CC([%no-lines %defines %locations %define api.location.file "my-location.hh"])
# --------------------------- #
# Simple GLR C++ Calculator. #
# --------------------------- #
AT_BANNER([[Simple GLR C++ Calculator.]])
# Again, we try also using %skeleton.
AT_CHECK_CALC([%skeleton "glr.cc"])
# AT_CHECK_CALC_GLR_CC([BISON-OPTIONS])
# -------------------------------------
# Start a testing chunk which compiles 'calc' grammar with
# the GLR C++ skeleton, and performs several tests over the parser.
m4_define([AT_CHECK_CALC_GLR_CC],
[AT_CHECK_CALC([%language "C++" %glr-parser] $@)])
AT_CHECK_CALC_GLR_CC([])
AT_CHECK_CALC_GLR_CC([%locations])
AT_CHECK_CALC_GLR_CC([%locations %define api.location.type {Span}])
AT_CHECK_CALC_GLR_CC([%defines %define parse.error verbose %name-prefix "calc" %verbose %yacc])
AT_CHECK_CALC_GLR_CC([%define parse.error verbose %define api.prefix {calc} %verbose %yacc])
AT_CHECK_CALC_GLR_CC([%debug])
AT_CHECK_CALC_GLR_CC([%define parse.error verbose %debug %name-prefix "calc" %verbose %yacc])
AT_CHECK_CALC_GLR_CC([%define parse.error verbose %debug %name-prefix "calc" %define api.token.prefix {TOK_} %verbose %yacc])
AT_CHECK_CALC_GLR_CC([%locations %defines %define parse.error verbose %debug %name-prefix "calc" %verbose %yacc %parse-param {semantic_value *result} %parse-param {int *count}])
AT_CHECK_CALC_GLR_CC([%locations %defines %define parse.error verbose %debug %define api.prefix {calc} %verbose %yacc %parse-param {semantic_value *result} %parse-param {int *count}])
AT_CHECK_CALC_GLR_CC([%no-lines %locations %defines %define parse.error verbose %debug %define api.prefix {calc} %verbose %yacc %parse-param {semantic_value *result} %parse-param {int *count}])
# --------------------------- #
# Simple LALR1 D Calculator. #
# --------------------------- #
AT_BANNER([[Simple LALR(1) D Calculator.]])
# First let's try using %skeleton
AT_CHECK_CALC([%skeleton "lalr1.d"])
# AT_CHECK_CALC_LALR1_D([BISON-OPTIONS])
# ---------------------------------------
# Start a testing chunk which compiles 'calc' grammar with
# the C++ skeleton, and performs several tests over the parser.
m4_define([AT_CHECK_CALC_LALR1_D],
[AT_CHECK_CALC([%language "D" $1], [$2])])
AT_CHECK_CALC_LALR1_D([])
AT_CHECK_CALC_LALR1_D([%locations])
#AT_CHECK_CALC_LALR1_D([%locations %define api.location.type {Span}])
AT_CHECK_CALC_LALR1_D([%define parse.error verbose %define api.prefix {calc} %verbose])
AT_CHECK_CALC_LALR1_D([%debug])
AT_CHECK_CALC_LALR1_D([%define parse.error verbose %debug %verbose])
#AT_CHECK_CALC_LALR1_D([%define parse.error verbose %debug %define api.token.prefix {TOK_} %verbose])
#AT_CHECK_CALC_LALR1_D([%locations %define parse.error verbose %debug %verbose %parse-param {semantic_value *result} %parse-param {int *count}])
#AT_CHECK_CALC_LALR1_D([%locations %define parse.error verbose %debug %define api.prefix {calc} %verbose %parse-param {semantic_value *result} %parse-param {int *count}])
m4_popdef([AT_CALC_MAIN])
m4_popdef([AT_CALC_YYLEX])