blob: 27a0e47835de6679dbaeba3d22313198b18a8577 [file] [log] [blame]
#!/usr/bin/env python
#
# USAGE: test_usdt.py
#
# Copyright 2017 Facebook, Inc
# Licensed under the Apache License, Version 2.0 (the "License")
from __future__ import print_function
from bcc import BPF, USDT
from unittest import main, TestCase
from subprocess import Popen, PIPE
from tempfile import NamedTemporaryFile
import ctypes as ct
import inspect
import os
import signal
class TestUDST(TestCase):
def setUp(self):
# Application, minimum, to define three trace points
app_text = b"""
#include <unistd.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "folly/tracing/StaticTracepoint.h"
int main() {
char s[100];
int i, a = 200, b = 40;
for (i = 0; i < 100; i++) s[i] = (i & 7) + (i & 6);
uint64_t j = 0;
char s1[64];
const char* str = "str";
size_t len = strlen(str);
while (1) {
FOLLY_SDT(test, probe_point_1, s[7], b);
FOLLY_SDT(test, probe_point_3, a, b);
FOLLY_SDT(test, probe_point_1, s[4], a);
FOLLY_SDT(test, probe_point_2, 5, s[10]);
FOLLY_SDT(test, probe_point_3, s[4], s[7]);
memset(&s1, '\0', sizeof(s1));
strncpy(s1, str, len);
snprintf(s1 + len, sizeof(s1) - len, "%d", j);
FOLLY_SDT(test, probe_point_4, j++, &s1);
memset(&s1, '\0', sizeof(s1));
strncpy(s1, str, len);
snprintf(s1 + len, sizeof(s1) - len, "%d", j);
FOLLY_SDT(test, probe_point_5, &s1, j++);
sleep(1);
}
return 1;
}
"""
# BPF program
self.bpf_text = """
#include <linux/blkdev.h>
#include <uapi/linux/ptrace.h>
struct probe_result_t1 {
char v1;
int v2;
};
struct probe_result_t2 {
int v1;
char v2;
};
struct probe_result_t3 {
int v1;
int v2;
};
struct probe_result_t4 {
u64 v1;
char v2[8];
};
struct probe_result_t5 {
char v1[8];
u64 v2;
};
BPF_PERF_OUTPUT(event1);
BPF_PERF_OUTPUT(event2);
BPF_PERF_OUTPUT(event3);
BPF_PERF_OUTPUT(event4);
BPF_PERF_OUTPUT(event5);
int do_trace1(struct pt_regs *ctx) {
struct probe_result_t1 result = {};
bpf_usdt_readarg(1, ctx, &result.v1);
bpf_usdt_readarg(2, ctx, &result.v2);
event1.perf_submit(ctx, &result, sizeof(result));
return 0;
};
int do_trace2(struct pt_regs *ctx) {
struct probe_result_t2 result = {};
bpf_usdt_readarg(1, ctx, &result.v1);
bpf_usdt_readarg(2, ctx, &result.v2);
event2.perf_submit(ctx, &result, sizeof(result));
return 0;
}
int do_trace3(struct pt_regs *ctx) {
struct probe_result_t3 result = {};
bpf_usdt_readarg(1, ctx, &result.v1);
bpf_usdt_readarg(2, ctx, &result.v2);
event3.perf_submit(ctx, &result, sizeof(result));
return 0;
}
int do_trace4(struct pt_regs *ctx) {
struct probe_result_t4 result = {};
bpf_usdt_readarg(1, ctx, &result.v1);
bpf_usdt_readarg_p(2, ctx, &result.v2, sizeof(result.v2));
event4.perf_submit(ctx, &result, sizeof(result));
return 0;
}
int do_trace5(struct pt_regs *ctx) {
struct probe_result_t5 result = {};
bpf_usdt_readarg_p(1, ctx, &result.v1, sizeof(result.v1));
bpf_usdt_readarg(2, ctx, &result.v2);
event5.perf_submit(ctx, &result, sizeof(result));
return 0;
}
"""
# Compile and run the application
self.ftemp = NamedTemporaryFile(delete=False)
self.ftemp.close()
comp = Popen(["gcc", "-I", "%s/include" % os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))),
"-x", "c", "-o", self.ftemp.name, "-"],
stdin=PIPE)
comp.stdin.write(app_text)
comp.stdin.close()
self.assertEqual(comp.wait(), 0)
self.app = Popen([self.ftemp.name])
def test_attach1(self):
# enable USDT probe from given PID and verifier generated BPF programs
u = USDT(pid=int(self.app.pid))
u.enable_probe(probe="probe_point_1", fn_name="do_trace1")
u.enable_probe(probe="probe_point_2", fn_name="do_trace2")
u.enable_probe(probe="probe_point_3", fn_name="do_trace3")
u.enable_probe(probe="probe_point_4", fn_name="do_trace4")
u.enable_probe(probe="probe_point_5", fn_name="do_trace5")
b = BPF(text=self.bpf_text, usdt_contexts=[u], debug=4)
# Event states for each event:
# 0 - probe not caught, 1 - probe caught with correct value,
# 2 - probe caught with incorrect value
self.evt_st_1 = 0
self.evt_st_2 = 0
self.evt_st_3 = 0
# define output data structure in Python
class Data1(ct.Structure):
_fields_ = [("v1", ct.c_char),
("v2", ct.c_int)]
class Data2(ct.Structure):
_fields_ = [("v1", ct.c_int),
("v2", ct.c_char)]
class Data3(ct.Structure):
_fields_ = [("v1", ct.c_int),
("v2", ct.c_int)]
class Data4(ct.Structure):
_fields_ = [("v1", ct.c_ulonglong),
("v2", ct.c_char * 64)]
class Data5(ct.Structure):
_fields_ = [("v1", ct.c_char * 64),
("v2", ct.c_ulonglong)]
def check_event_val(event, event_state, v1, v2, v3, v4):
if ((event.v1 == v1 and event.v2 == v2) or (event.v1 == v3 and event.v2 == v4)):
if (event_state == 0 or event_state == 1):
return 1
return 2
def print_event1(cpu, data, size):
event = ct.cast(data, ct.POINTER(Data1)).contents
self.evt_st_1 = check_event_val(event, self.evt_st_1, b'\x0d', 40, b'\x08', 200)
def print_event2(cpu, data, size):
event = ct.cast(data, ct.POINTER(Data2)).contents
# pretend we have two identical probe points to simplify the code
self.evt_st_2 = check_event_val(event, self.evt_st_2, 5, b'\x04', 5, b'\x04')
def print_event3(cpu, data, size):
event = ct.cast(data, ct.POINTER(Data3)).contents
self.evt_st_3 = check_event_val(event, self.evt_st_3, 200, 40, 8, 13)
def print_event4(cpu, data, size):
event = ct.cast(data, ct.POINTER(Data4)).contents
print("%s" % event.v2)
def print_event5(cpu, data, size):
event = ct.cast(data, ct.POINTER(Data5)).contents
print("%s" % event.v1)
# loop with callback to print_event
b["event1"].open_perf_buffer(print_event1)
b["event2"].open_perf_buffer(print_event2)
b["event3"].open_perf_buffer(print_event3)
b["event4"].open_perf_buffer(print_event4)
b["event5"].open_perf_buffer(print_event5)
# three iterations to make sure we get some probes and have time to process them
for i in range(3):
b.perf_buffer_poll()
self.assertTrue(self.evt_st_1 == 1 and self.evt_st_2 == 1 and self.evt_st_3 == 1)
def tearDown(self):
# kill the subprocess, clean the environment
self.app.kill()
self.app.wait()
os.unlink(self.ftemp.name)
if __name__ == "__main__":
main()