blob: b1495bb5f46ac763ab18334e271a2040f957a7f7 [file] [log] [blame]
/*
* Copyright (c) Facebook, Inc.
* Licensed under the Apache License, Version 2.0 (the "License")
*/
#include <algorithm>
#include <cerrno>
#include <chrono>
#include <cstdio>
#include <cstring>
#include <exception>
#include <dirent.h>
#include <linux/elf.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "PyPerfLoggingHelper.h"
#include "PyPerfUtil.h"
#include "bcc_elf.h"
#include "bcc_proc.h"
#include "bcc_syms.h"
namespace ebpf {
namespace pyperf {
extern OffsetConfig kPy36OffsetConfig;
extern std::string PYPERF_BPF_PROGRAM;
const static int kPerfBufSizePages = 32;
const static std::string kPidCfgTableName("pid_config");
const static std::string kProgsTableName("progs");
const static std::string kSamplePerfBufName("events");
const static std::string kOnEventFuncName("on_event");
const static std::string kPythonStackFuncName("read_python_stack");
const static std::string kPythonStackProgIdxFlag("-DPYTHON_STACK_PROG_IDX=");
const static int kPythonStackProgIdx = 0;
const static std::string kNumCpusFlag("-DNUM_CPUS=");
const static std::string kSymbolsHashSizeFlag("-D__SYMBOLS_SIZE__=");
const static int kSymbolsHashSize = 16384;
namespace {
bool getRunningPids(std::vector<int>& output) {
auto dir = ::opendir("/proc/");
if (!dir) {
std::fprintf(stderr, "Open /proc failed: %d\n", errno);
return false;
}
dirent* result = nullptr;
do {
if ((result = readdir(dir))) {
std::string basename = result->d_name;
if (basename == "." || basename == "..") {
continue;
}
std::string fullpath = "/proc/" + basename;
struct stat st;
if (::stat(fullpath.c_str(), &st) != 0 || !S_ISDIR(st.st_mode)) {
continue;
}
try {
auto pid = std::stoi(basename);
output.push_back(pid);
} catch (const std::exception& e) {
continue;
}
}
} while (result);
if (::closedir(dir) == -1) {
std::fprintf(stderr, "Close /proc failed: %d\n", errno);
return false;
}
return true;
}
typedef struct {
int pid;
bool found;
uint64_t st;
uint64_t en;
} FindPythonPathHelper;
const static std::string kPy36LibName = "libpython3.6";
int findPythonPathCallback(mod_info *mod, int, void* payload) {
auto helper = static_cast<FindPythonPathHelper*>(payload);
std::string file = mod->name;
auto pos = file.rfind("/");
if (pos != std::string::npos) {
file = file.substr(pos + 1);
}
if (file.find(kPy36LibName) == 0) {
logInfo(1, "Found Python library %s loaded at %lx-%lx for PID %d\n", mod->name,
mod->start_addr, mod->end_addr, helper->pid);
helper->found = true;
helper->st = mod->start_addr;
helper->en = mod->end_addr;
return -1;
}
return 0;
}
bool allAddrFound(const PidData& data) {
return (data.current_state_addr > 0) && (data.tls_key_addr > 0) &&
(data.gil_locked_addr > 0) && (data.gil_last_holder_addr > 0);
}
int getAddrOfPythonBinaryCallback(const char* name, uint64_t addr, uint64_t,
void* payload) {
PidData& data = *static_cast<PidData*>(payload);
auto checkAndGetAddr = [&](uintptr_t& targetAddr, const char* targetName) {
if (targetAddr == 0 && std::strcmp(name, targetName) == 0) {
targetAddr = addr;
}
};
checkAndGetAddr(data.tls_key_addr, "autoTLSkey");
checkAndGetAddr(data.current_state_addr, "_PyThreadState_Current");
checkAndGetAddr(data.gil_locked_addr, "gil_locked");
checkAndGetAddr(data.gil_last_holder_addr, "gil_last_holder");
if (allAddrFound(data)) {
return -1;
}
return 0;
}
bool getAddrOfPythonBinary(const std::string& path, PidData& data) {
std::memset(&data, 0, sizeof(data));
struct bcc_symbol_option option = {.use_debug_file = 0,
.check_debug_file_crc = 0,
.use_symbol_type = (1 << STT_OBJECT)};
bcc_elf_foreach_sym(path.c_str(), &getAddrOfPythonBinaryCallback, &option,
&data);
return allAddrFound(data);
}
} // namespace
void handleSampleCallback(void* cb_cookie, void* raw_data, int data_size) {
auto profiler = static_cast<PyPerfUtil*>(cb_cookie);
profiler->handleSample(raw_data, data_size);
}
void handleLostSamplesCallback(void* cb_cookie, uint64_t lost_cnt) {
auto profiler = static_cast<PyPerfUtil*>(cb_cookie);
profiler->handleLostSamples(lost_cnt);
}
PyPerfUtil::PyPerfResult PyPerfUtil::init() {
std::vector<std::string> cflags;
cflags.emplace_back(kNumCpusFlag +
std::to_string(::sysconf(_SC_NPROCESSORS_ONLN)));
cflags.emplace_back(kSymbolsHashSizeFlag + std::to_string(kSymbolsHashSize));
cflags.emplace_back(kPythonStackProgIdxFlag +
std::to_string(kPythonStackProgIdx));
auto initRes = bpf_.init(PYPERF_BPF_PROGRAM, cflags);
if (initRes.code() != 0) {
std::fprintf(stderr, "Failed to compiled PyPerf BPF programs: %s\n",
initRes.msg().c_str());
return PyPerfResult::INIT_FAIL;
}
int progFd = -1;
auto loadRes =
bpf_.load_func(kPythonStackFuncName, BPF_PROG_TYPE_PERF_EVENT, progFd);
if (loadRes.code() != 0) {
std::fprintf(stderr, "Failed to load BPF program %s: %s\n",
kPythonStackFuncName.c_str(), loadRes.msg().c_str());
return PyPerfResult::INIT_FAIL;
}
auto progTable = bpf_.get_prog_table(kProgsTableName);
auto updateRes = progTable.update_value(kPythonStackProgIdx, progFd);
if (updateRes.code() != 0) {
std::fprintf(stderr,
"Failed to set BPF program %s FD %d to program table: %s\n",
kPythonStackFuncName.c_str(), progFd, updateRes.msg().c_str());
return PyPerfResult::INIT_FAIL;
}
std::vector<int> pids;
if (!getRunningPids(pids)) {
std::fprintf(stderr, "Failed getting running Processes\n");
return PyPerfResult::INIT_FAIL;
}
// Populate config for each Python Process
auto pid_hash = bpf_.get_hash_table<int, PidData>(kPidCfgTableName);
PidData pidData;
for (const auto pid : pids) {
if (!tryTargetPid(pid, pidData)) {
// Not a Python Process
continue;
}
pid_hash.update_value(pid, pidData);
}
// Open perf buffer
auto openRes = bpf_.open_perf_buffer(
kSamplePerfBufName, &handleSampleCallback, &handleLostSamplesCallback,
this, kPerfBufSizePages);
if (openRes.code() != 0) {
std::fprintf(stderr, "Unable to open Perf Buffer: %s\n",
openRes.msg().c_str());
return PyPerfResult::PERF_BUF_OPEN_FAIL;
}
initCompleted_ = true;
return PyPerfResult::SUCCESS;
}
void PyPerfUtil::handleSample(const void* data, int dataSize) {
const Event* raw = static_cast<const Event*>(data);
samples_.emplace_back(raw, dataSize);
totalSamples_++;
}
void PyPerfUtil::handleLostSamples(int lostCnt) { lostSamples_ += lostCnt; }
PyPerfUtil::PyPerfResult PyPerfUtil::profile(int64_t sampleRate,
int64_t durationMs,
PyPerfSampleProcessor* processor) {
if (!initCompleted_) {
std::fprintf(stderr, "PyPerfUtil::init not invoked or failed\n");
return PyPerfResult::NO_INIT;
}
// Attach to CPU cycles
auto attachRes =
bpf_.attach_perf_event(0, 0, kOnEventFuncName, sampleRate, 0);
if (attachRes.code() != 0) {
std::fprintf(stderr, "Attach to CPU cycles event failed: %s\n",
attachRes.msg().c_str());
return PyPerfResult::EVENT_ATTACH_FAIL;
}
logInfo(2, "Attached to profiling event\n");
// Get Perf Buffer and poll in a loop for a given duration
auto perfBuffer = bpf_.get_perf_buffer(kSamplePerfBufName);
if (!perfBuffer) {
std::fprintf(stderr, "Failed to get Perf Buffer: %s\n",
kSamplePerfBufName.c_str());
return PyPerfResult::PERF_BUF_OPEN_FAIL;
}
logInfo(2, "Started polling Perf Buffer\n");
auto start = std::chrono::steady_clock::now();
while (std::chrono::steady_clock::now() <
start + std::chrono::milliseconds(durationMs)) {
perfBuffer->poll(50 /* 50ms timeout */);
}
logInfo(2, "Profiling duration finished\n");
// Detach the event
auto detachRes = bpf_.detach_perf_event(0, 0);
if (detachRes.code() != 0) {
std::fprintf(stderr, "Detach CPU cycles event failed: %s\n",
detachRes.msg().c_str());
return PyPerfResult::EVENT_DETACH_FAIL;
}
logInfo(2, "Detached from profiling event\n");
// Drain remaining samples
logInfo(2, "Draining remaining samples\n");
while (perfBuffer->poll(0) > 0) {
}
logInfo(2, "Finished draining remaining samples\n");
processor->processSamples(samples_, this);
return PyPerfResult::SUCCESS;
}
std::unordered_map<int32_t, std::string> PyPerfUtil::getSymbolMapping() {
auto symbolTable = bpf_.get_hash_table<Symbol, int32_t>("symbols");
std::unordered_map<int32_t, std::string> symbols;
for (auto& x : symbolTable.get_table_offline()) {
auto symbolName = getSymbolName(x.first);
logInfo(2, "Symbol ID %d is %s\n", x.second, symbolName.c_str());
symbols.emplace(x.second, std::move(symbolName));
}
logInfo(1, "Total %d unique Python symbols\n", symbols.size());
return symbols;
}
std::string PyPerfUtil::getSymbolName(Symbol& sym) const {
std::string nameStr = std::string(sym.name).substr(0, FUNCTION_NAME_LEN);
std::string classStr = std::string(sym.classname).substr(0, CLASS_NAME_LEN);
if (classStr.size() > 0) {
nameStr = classStr + "." + nameStr;
}
std::string file = std::string(sym.file).substr(0, FILE_NAME_LEN);
if (file.empty()) {
return nameStr;
}
if (file[0] == '/') {
file = file.substr(1);
}
if (file.find("./") == 0) {
file = file.substr(2);
}
if (file.find(".py", file.size() - 3) == (file.size() - 3)) {
file = file.substr(0, file.size() - 3);
}
std::replace(file.begin(), file.end(), '/', '.');
return file + "." + nameStr;
}
bool PyPerfUtil::tryTargetPid(int pid, PidData& data) {
FindPythonPathHelper helper{pid, false, 0, 0};
bcc_procutils_each_module(pid, &findPythonPathCallback, &helper);
if (!helper.found) {
logInfo(2, "PID %d does not contain Python library\n", pid);
return false;
}
char path[256];
int res = std::snprintf(path, sizeof(path), "/proc/%d/map_files/%lx-%lx", pid,
helper.st, helper.en);
if (res < 0 || size_t(res) >= sizeof(path)) {
return false;
}
if (!getAddrOfPythonBinary(path, data)) {
std::fprintf(
stderr,
"Failed getting addresses in potential Python library in PID %d\n",
pid);
return false;
}
data.offsets = kPy36OffsetConfig;
data.current_state_addr += helper.st;
logInfo(2, "PID %d has _PyThreadState_Current at %lx\n", pid,
data.current_state_addr);
data.tls_key_addr += helper.st;
logInfo(2, "PID %d has autoTLSKey at %lx\n", pid, data.current_state_addr);
data.gil_locked_addr += helper.st;
logInfo(2, "PID %d has gil_locked at %lx\n", pid, data.current_state_addr);
data.gil_last_holder_addr += helper.st;
logInfo(2, "PID %d has gil_last_holder at %lx\n", pid,
data.current_state_addr);
return true;
}
} // namespace pyperf
} // namespace ebpf