blob: ebc2e76ca8c85d8492ea9f581813625e98e1e8e3 [file] [log] [blame]
/*
* *****************************************************************************
*
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2018-2021 Gavin D. Howard and contributors.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* *****************************************************************************
*
* Code to manipulate vectors (resizable arrays).
*
*/
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <vector.h>
#include <lang.h>
#include <vm.h>
void bc_vec_grow(BcVec *restrict v, size_t n) {
size_t cap, len;
sig_atomic_t lock;
cap = v->cap;
len = v->len + n;
// If this is true, we might overflow.
if (len > SIZE_MAX / 2) cap = len;
else {
// Keep doubling until larger.
while (cap < len) cap += cap;
}
BC_SIG_TRYLOCK(lock);
v->v = bc_vm_realloc(v->v, bc_vm_arraySize(cap, v->size));
v->cap = cap;
BC_SIG_TRYUNLOCK(lock);
}
void bc_vec_init(BcVec *restrict v, size_t esize, BcDtorType dtor) {
BC_SIG_ASSERT_LOCKED;
assert(v != NULL && esize);
v->v = bc_vm_malloc(bc_vm_arraySize(BC_VEC_START_CAP, esize));
v->size = (BcSize) esize;
v->cap = BC_VEC_START_CAP;
v->len = 0;
v->dtor = (BcSize) dtor;
}
void bc_vec_expand(BcVec *restrict v, size_t req) {
assert(v != NULL);
// Only expand if necessary.
if (v->cap < req) {
sig_atomic_t lock;
BC_SIG_TRYLOCK(lock);
v->v = bc_vm_realloc(v->v, bc_vm_arraySize(req, v->size));
v->cap = req;
BC_SIG_TRYUNLOCK(lock);
}
}
void bc_vec_npop(BcVec *restrict v, size_t n) {
sig_atomic_t lock;
assert(v != NULL && n <= v->len);
BC_SIG_TRYLOCK(lock);
if (!v->dtor) v->len -= n;
else {
const BcVecFree d = bc_vec_dtors[v->dtor];
size_t esize = v->size;
size_t len = v->len - n;
// Loop through and manually destruct every element.
while (v->len > len) d(v->v + (esize * --v->len));
}
BC_SIG_TRYUNLOCK(lock);
}
void bc_vec_npopAt(BcVec *restrict v, size_t n, size_t idx) {
char* ptr, *data;
sig_atomic_t lock;
assert(v != NULL);
assert(idx + n < v->len);
// Grab start and end pointers.
ptr = bc_vec_item(v, idx);
data = bc_vec_item(v, idx + n);
BC_SIG_TRYLOCK(lock);
if (v->dtor) {
size_t i;
const BcVecFree d = bc_vec_dtors[v->dtor];
// Destroy every popped item.
for (i = 0; i < n; ++i) d(bc_vec_item(v, idx + i));
}
v->len -= n;
memmove(ptr, data, (v->len - idx) * v->size);
BC_SIG_TRYUNLOCK(lock);
}
void bc_vec_npush(BcVec *restrict v, size_t n, const void *data) {
sig_atomic_t lock;
size_t esize;
assert(v != NULL && data != NULL);
BC_SIG_TRYLOCK(lock);
// Grow if necessary.
if (v->len + n > v->cap) bc_vec_grow(v, n);
esize = v->size;
// Copy the elements in.
memcpy(v->v + (esize * v->len), data, esize * n);
v->len += n;
BC_SIG_TRYUNLOCK(lock);
}
inline void bc_vec_push(BcVec *restrict v, const void *data) {
bc_vec_npush(v, 1, data);
}
void* bc_vec_pushEmpty(BcVec *restrict v) {
sig_atomic_t lock;
void *ptr;
assert(v != NULL);
BC_SIG_TRYLOCK(lock);
// Grow if necessary.
if (v->len + 1 > v->cap) bc_vec_grow(v, 1);
ptr = v->v + v->size * v->len;
v->len += 1;
BC_SIG_TRYUNLOCK(lock);
return ptr;
}
inline void bc_vec_pushByte(BcVec *restrict v, uchar data) {
assert(v != NULL && v->size == sizeof(uchar));
bc_vec_npush(v, 1, &data);
}
void bc_vec_pushIndex(BcVec *restrict v, size_t idx) {
uchar amt, nums[sizeof(size_t) + 1];
assert(v != NULL);
assert(v->size == sizeof(uchar));
// Encode the index.
for (amt = 0; idx; ++amt) {
nums[amt + 1] = (uchar) idx;
idx &= ((size_t) ~(UCHAR_MAX));
idx >>= sizeof(uchar) * CHAR_BIT;
}
nums[0] = amt;
// Push the index onto the vector.
bc_vec_npush(v, amt + 1, nums);
}
void bc_vec_pushAt(BcVec *restrict v, const void *data, size_t idx) {
assert(v != NULL && data != NULL && idx <= v->len);
BC_SIG_ASSERT_LOCKED;
// Do the easy case.
if (idx == v->len) bc_vec_push(v, data);
else {
char *ptr;
size_t esize;
// Grow if necessary.
if (v->len == v->cap) bc_vec_grow(v, 1);
esize = v->size;
ptr = v->v + esize * idx;
memmove(ptr + esize, ptr, esize * (v->len++ - idx));
memcpy(ptr, data, esize);
}
}
void bc_vec_string(BcVec *restrict v, size_t len, const char *restrict str) {
sig_atomic_t lock;
assert(v != NULL && v->size == sizeof(char));
assert(!v->dtor);
assert(!v->len || !v->v[v->len - 1]);
assert(v->v != str);
BC_SIG_TRYLOCK(lock);
bc_vec_popAll(v);
bc_vec_expand(v, bc_vm_growSize(len, 1));
memcpy(v->v, str, len);
v->len = len;
bc_vec_pushByte(v, '\0');
BC_SIG_TRYUNLOCK(lock);
}
void bc_vec_concat(BcVec *restrict v, const char *restrict str) {
sig_atomic_t lock;
assert(v != NULL && v->size == sizeof(char));
assert(!v->dtor);
assert(!v->len || !v->v[v->len - 1]);
assert(v->v != str);
BC_SIG_TRYLOCK(lock);
// If there is already a string, erase its nul byte.
if (v->len) v->len -= 1;
bc_vec_npush(v, strlen(str) + 1, str);
BC_SIG_TRYUNLOCK(lock);
}
void bc_vec_empty(BcVec *restrict v) {
sig_atomic_t lock;
assert(v != NULL && v->size == sizeof(char));
assert(!v->dtor);
BC_SIG_TRYLOCK(lock);
bc_vec_popAll(v);
bc_vec_pushByte(v, '\0');
BC_SIG_TRYUNLOCK(lock);
}
#if BC_ENABLE_HISTORY
void bc_vec_replaceAt(BcVec *restrict v, size_t idx, const void *data) {
char *ptr;
BC_SIG_ASSERT_LOCKED;
assert(v != NULL);
ptr = bc_vec_item(v, idx);
if (v->dtor) bc_vec_dtors[v->dtor](ptr);
memcpy(ptr, data, v->size);
}
#endif // BC_ENABLE_HISTORY
inline void* bc_vec_item(const BcVec *restrict v, size_t idx) {
assert(v != NULL && v->len && idx < v->len);
return v->v + v->size * idx;
}
inline void* bc_vec_item_rev(const BcVec *restrict v, size_t idx) {
assert(v != NULL && v->len && idx < v->len);
return v->v + v->size * (v->len - idx - 1);
}
inline void bc_vec_clear(BcVec *restrict v) {
BC_SIG_ASSERT_LOCKED;
v->v = NULL;
v->len = 0;
v->dtor = BC_DTOR_NONE;
}
void bc_vec_free(void *vec) {
BcVec *v = (BcVec*) vec;
BC_SIG_ASSERT_LOCKED;
bc_vec_popAll(v);
free(v->v);
}
#if !BC_ENABLE_LIBRARY
/**
* Finds a name in a map by binary search. Returns the index where the item
* *would* be if it doesn't exist. Callers are responsible for checking that the
* item exists at the index.
* @param v The map.
* @param name The name to find.
* @return The index of the item with @a name, or where the item would be
* if it does not exist.
*/
static size_t bc_map_find(const BcVec *restrict v, const char *name) {
size_t low = 0, high = v->len;
while (low < high) {
size_t mid = (low + high) / 2;
const BcId *id = bc_vec_item(v, mid);
int result = strcmp(name, id->name);
if (!result) return mid;
else if (result < 0) high = mid;
else low = mid + 1;
}
return low;
}
bool bc_map_insert(BcVec *restrict v, const char *name,
size_t idx, size_t *restrict i)
{
BcId id;
BcVec *slabs;
BC_SIG_ASSERT_LOCKED;
assert(v != NULL && name != NULL && i != NULL);
*i = bc_map_find(v, name);
assert(*i <= v->len);
if (*i != v->len && !strcmp(name, ((BcId*) bc_vec_item(v, *i))->name))
return false;
#if BC_ENABLED
slabs = BC_IS_DC ? &vm.main_slabs : &vm.other_slabs;
#else // BC_ENABLED
slabs = &vm.main_slabs;
#endif // BC_ENABLED
id.name = bc_slabvec_strdup(slabs, name);
id.idx = idx;
bc_vec_pushAt(v, &id, *i);
return true;
}
size_t bc_map_index(const BcVec *restrict v, const char *name) {
size_t i;
assert(v != NULL && name != NULL);
i = bc_map_find(v, name);
// If out of range, return invalid.
if (i >= v->len) return BC_VEC_INVALID_IDX;
// Make sure the item exists.
return strcmp(name, ((BcId*) bc_vec_item(v, i))->name) ?
BC_VEC_INVALID_IDX : i;
}
#if DC_ENABLED
const char* bc_map_name(const BcVec *restrict v, size_t idx) {
size_t i, len = v->len;
for (i = 0; i < len; ++i) {
BcId* id = (BcId*) bc_vec_item(v, i);
if (id->idx == idx) return id->name;
}
BC_UNREACHABLE
return "";
}
#endif // DC_ENABLED
/**
* Initializes a single slab.
* @param s The slab to initialize.
*/
static void bc_slab_init(BcSlab *s) {
s->s = bc_vm_malloc(BC_SLAB_SIZE);
s->len = 0;
}
/**
* Adds a string to a slab and returns a pointer to it, or NULL if it could not
* be added.
* @param s The slab to add to.
* @param str The string to add.
* @param len The length of the string, including its nul byte.
* @return A pointer to the new string in the slab, or NULL if it could not
* be added.
*/
static char* bc_slab_add(BcSlab *s, const char *str, size_t len) {
char *ptr;
assert(s != NULL);
assert(str != NULL);
assert(len == strlen(str) + 1);
if (s->len + len > BC_SLAB_SIZE) return NULL;
ptr = (char*) (s->s + s->len);
bc_strcpy(ptr, len, str);
s->len += len;
return ptr;
}
void bc_slab_free(void *slab) {
free(((BcSlab*) slab)->s);
}
void bc_slabvec_init(BcVec* v) {
BcSlab *slab;
assert(v != NULL);
bc_vec_init(v, sizeof(BcSlab), BC_DTOR_SLAB);
// We always want to have at least one slab.
slab = bc_vec_pushEmpty(v);
bc_slab_init(slab);
}
char* bc_slabvec_strdup(BcVec *v, const char *str) {
char *s;
size_t len;
BcSlab slab;
BcSlab *slab_ptr;
BC_SIG_ASSERT_LOCKED;
assert(v != NULL && v->len);
assert(str != NULL);
len = strlen(str) + 1;
// If the len is greater than 128, then just allocate it with malloc.
if (BC_UNLIKELY(len >= BC_SLAB_SIZE)) {
// SIZE_MAX is a marker for these standalone allocations.
slab.len = SIZE_MAX;
slab.s = bc_vm_strdup(str);
// Push the standalone slab.
bc_vec_pushAt(v, &slab, v->len - 1);
return slab.s;
}
// Add to a slab.
slab_ptr = bc_vec_top(v);
s = bc_slab_add(slab_ptr, str, len);
// If it couldn't be added, add a slab and try again.
if (BC_UNLIKELY(s == NULL)) {
slab_ptr = bc_vec_pushEmpty(v);
bc_slab_init(slab_ptr);
s = bc_slab_add(slab_ptr, str, len);
assert(s != NULL);
}
return s;
}
void bc_slabvec_clear(BcVec *v) {
BcSlab *s;
bool again;
// This complicated loop exists because of standalone allocations over 128
// bytes.
do {
// Get the first slab.
s = bc_vec_item(v, 0);
// Either the slab must be valid (not standalone), or there must be
// another slab.
assert(s->len != SIZE_MAX || v->len > 1);
// Do we have to loop again? We do if it's a standalone allocation.
again = (s->len == SIZE_MAX);
// Pop the standalone allocation, not the one after it.
if (again) bc_vec_npopAt(v, 1, 0);
} while(again);
// If we get here, we know that the first slab is a valid slab. We want to
// pop all of the other slabs.
if (v->len > 1) bc_vec_npop(v, v->len - 1);
// Empty the first slab.
s->len = 0;
}
#endif // !BC_ENABLE_LIBRARY
#if BC_DEBUG_CODE
void bc_slabvec_print(BcVec *v, const char *func) {
size_t i;
BcSlab *s;
bc_file_printf(&vm.ferr, "%s\n", func);
for (i = 0; i < v->len; ++i) {
s = bc_vec_item(v, i);
bc_file_printf(&vm.ferr, "%zu { s = %zu, len = %zu }\n",
i, (uintptr_t) s->s, s->len);
}
bc_file_puts(&vm.ferr, bc_flush_none, "\n");
bc_file_flush(&vm.ferr, bc_flush_none);
}
#endif // BC_DEBUG_CODE