blob: 604328dca80d6dce12196c23875c0a28495e79bf [file] [log] [blame]
/*
* *****************************************************************************
*
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2018-2021 Gavin D. Howard and contributors.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* *****************************************************************************
*
* Code for the number type.
*
*/
#include <assert.h>
#include <ctype.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <setjmp.h>
#include <limits.h>
#include <num.h>
#include <rand.h>
#include <vm.h>
// Before you try to understand this code, see the development manual
// (manuals/development.md#numbers).
static void bc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
/**
* Multiply two numbers and throw a math error if they overflow.
* @param a The first operand.
* @param b The second operand.
* @return The product of the two operands.
*/
static inline size_t bc_num_mulOverflow(size_t a, size_t b) {
size_t res = a * b;
if (BC_ERR(BC_VM_MUL_OVERFLOW(a, b, res))) bc_err(BC_ERR_MATH_OVERFLOW);
return res;
}
/**
* Conditionally negate @a n based on @a neg. Algorithm taken from
* https://graphics.stanford.edu/~seander/bithacks.html#ConditionalNegate .
* @param n The value to turn into a signed value and negate.
* @param neg The condition to negate or not.
*/
static inline ssize_t bc_num_neg(size_t n, bool neg) {
return (((ssize_t) n) ^ -((ssize_t) neg)) + neg;
}
/**
* Compare a BcNum against zero.
* @param n The number to compare.
* @return -1 if the number is less than 0, 1 if greater, and 0 if equal.
*/
ssize_t bc_num_cmpZero(const BcNum *n) {
return bc_num_neg((n)->len != 0, BC_NUM_NEG(n));
}
/**
* Return the number of integer limbs in a BcNum. This is the opposite of rdx.
* @param n The number to return the amount of integer limbs for.
* @return The amount of integer limbs in @a n.
*/
static inline size_t bc_num_int(const BcNum *n) {
return n->len ? n->len - BC_NUM_RDX_VAL(n) : 0;
}
/**
* Expand a number's allocation capacity to at least req limbs.
* @param n The number to expand.
* @param req The number limbs to expand the allocation capacity to.
*/
static void bc_num_expand(BcNum *restrict n, size_t req) {
assert(n != NULL);
req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE;
if (req > n->cap) {
BC_SIG_LOCK;
n->num = bc_vm_realloc(n->num, BC_NUM_SIZE(req));
n->cap = req;
BC_SIG_UNLOCK;
}
}
/**
* Set a number to 0 with the specified scale.
* @param n The number to set to zero.
* @param scale The scale to set the number to.
*/
static void bc_num_setToZero(BcNum *restrict n, size_t scale) {
assert(n != NULL);
n->scale = scale;
n->len = n->rdx = 0;
}
void bc_num_zero(BcNum *restrict n) {
bc_num_setToZero(n, 0);
}
void bc_num_one(BcNum *restrict n) {
bc_num_zero(n);
n->len = 1;
n->num[0] = 1;
}
/**
* "Cleans" a number, which means reducing the length if the most significant
* limbs are zero.
* @param n The number to clean.
*/
static void bc_num_clean(BcNum *restrict n) {
// Reduce the length.
while (BC_NUM_NONZERO(n) && !n->num[n->len - 1]) n->len -= 1;
// Special cases.
if (BC_NUM_ZERO(n)) n->rdx = 0;
else {
// len must be at least as much as rdx.
size_t rdx = BC_NUM_RDX_VAL(n);
if (n->len < rdx) n->len = rdx;
}
}
/**
* Returns the log base 10 of @a i. I could have done this with floating-point
* math, and in fact, I originally did. However, that was the only
* floating-point code in the entire codebase, and I decided I didn't want any.
* This is fast enough. Also, it might handle larger numbers better.
* @param i The number to return the log base 10 of.
* @return The log base 10 of @a i.
*/
static size_t bc_num_log10(size_t i) {
size_t len;
for (len = 1; i; i /= BC_BASE, ++len);
assert(len - 1 <= BC_BASE_DIGS + 1);
return len - 1;
}
/**
* Returns the number of decimal digits in a limb that are zero starting at the
* most significant digits. This basically returns how much of the limb is used.
* @param n The number.
* @return The number of decimal digits that are 0 starting at the most
* significant digits.
*/
static inline size_t bc_num_zeroDigits(const BcDig *n) {
assert(*n >= 0);
assert(((size_t) *n) < BC_BASE_POW);
return BC_BASE_DIGS - bc_num_log10((size_t) *n);
}
/**
* Return the total number of integer digits in a number. This is the opposite
* of scale, like bc_num_int() is the opposite of rdx.
* @param n The number.
* @return The number of integer digits in @a n.
*/
static size_t bc_num_intDigits(const BcNum *n) {
size_t digits = bc_num_int(n) * BC_BASE_DIGS;
if (digits > 0) digits -= bc_num_zeroDigits(n->num + n->len - 1);
return digits;
}
/**
* Returns the number of limbs of a number that are non-zero starting at the
* most significant limbs. This expects that there are *no* integer limbs in the
* number because it is specifically to figure out how many zero limbs after the
* decimal place to ignore. If there are zero limbs after non-zero limbs, they
* are counted as non-zero limbs.
* @param n The number.
* @return The number of non-zero limbs after the decimal point.
*/
static size_t bc_num_nonZeroLen(const BcNum *restrict n) {
size_t i, len = n->len;
assert(len == BC_NUM_RDX_VAL(n));
for (i = len - 1; i < len && !n->num[i]; --i);
assert(i + 1 > 0);
return i + 1;
}
/**
* Performs a one-limb add with a carry.
* @param a The first limb.
* @param b The second limb.
* @param carry An in/out parameter; the carry in from the previous add and the
* carry out from this add.
* @return The resulting limb sum.
*/
static BcDig bc_num_addDigits(BcDig a, BcDig b, bool *carry) {
assert(((BcBigDig) BC_BASE_POW) * 2 == ((BcDig) BC_BASE_POW) * 2);
assert(a < BC_BASE_POW);
assert(b < BC_BASE_POW);
a += b + *carry;
*carry = (a >= BC_BASE_POW);
if (*carry) a -= BC_BASE_POW;
assert(a >= 0);
assert(a < BC_BASE_POW);
return a;
}
/**
* Performs a one-limb subtract with a carry.
* @param a The first limb.
* @param b The second limb.
* @param carry An in/out parameter; the carry in from the previous subtract
* and the carry out from this subtract.
* @return The resulting limb difference.
*/
static BcDig bc_num_subDigits(BcDig a, BcDig b, bool *carry) {
assert(a < BC_BASE_POW);
assert(b < BC_BASE_POW);
b += *carry;
*carry = (a < b);
if (*carry) a += BC_BASE_POW;
assert(a - b >= 0);
assert(a - b < BC_BASE_POW);
return a - b;
}
/**
* Add two BcDig arrays and store the result in the first array.
* @param a The first operand and out array.
* @param b The second operand.
* @param len The length of @a b.
*/
static void bc_num_addArrays(BcDig *restrict a, const BcDig *restrict b,
size_t len)
{
size_t i;
bool carry = false;
for (i = 0; i < len; ++i) a[i] = bc_num_addDigits(a[i], b[i], &carry);
// Take care of the extra limbs in the bigger array.
for (; carry; ++i) a[i] = bc_num_addDigits(a[i], 0, &carry);
}
/**
* Subtract two BcDig arrays and store the result in the first array.
* @param a The first operand and out array.
* @param b The second operand.
* @param len The length of @a b.
*/
static void bc_num_subArrays(BcDig *restrict a, const BcDig *restrict b,
size_t len)
{
size_t i;
bool carry = false;
for (i = 0; i < len; ++i) a[i] = bc_num_subDigits(a[i], b[i], &carry);
// Take care of the extra limbs in the bigger array.
for (; carry; ++i) a[i] = bc_num_subDigits(a[i], 0, &carry);
}
/**
* Multiply a BcNum array by a one-limb number. This is a faster version of
* multiplication for when we can use it.
* @param a The BcNum to multiply by the one-limb number.
* @param b The one limb of the one-limb number.
* @param c The return parameter.
*/
static void bc_num_mulArray(const BcNum *restrict a, BcBigDig b,
BcNum *restrict c)
{
size_t i;
BcBigDig carry = 0;
assert(b <= BC_BASE_POW);
// Make sure the return parameter is big enough.
if (a->len + 1 > c->cap) bc_num_expand(c, a->len + 1);
// We want the entire return parameter to be zero for cleaning later.
memset(c->num, 0, BC_NUM_SIZE(c->cap));
// Actual multiplication loop.
for (i = 0; i < a->len; ++i) {
BcBigDig in = ((BcBigDig) a->num[i]) * b + carry;
c->num[i] = in % BC_BASE_POW;
carry = in / BC_BASE_POW;
}
assert(carry < BC_BASE_POW);
// Finishing touches.
c->num[i] = (BcDig) carry;
c->len = a->len;
c->len += (carry != 0);
bc_num_clean(c);
// Postconditions.
assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c));
assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len);
assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len);
}
/**
* Divide a BcNum array by a one-limb number. This is a faster version of divide
* for when we can use it.
* @param a The BcNum to multiply by the one-limb number.
* @param b The one limb of the one-limb number.
* @param c The return parameter for the quotient.
* @param rem The return parameter for the remainder.
*/
static void bc_num_divArray(const BcNum *restrict a, BcBigDig b,
BcNum *restrict c, BcBigDig *rem)
{
size_t i;
BcBigDig carry = 0;
assert(c->cap >= a->len);
// Actual division loop.
for (i = a->len - 1; i < a->len; --i) {
BcBigDig in = ((BcBigDig) a->num[i]) + carry * BC_BASE_POW;
assert(in / b < BC_BASE_POW);
c->num[i] = (BcDig) (in / b);
carry = in % b;
}
// Finishing touches.
c->len = a->len;
bc_num_clean(c);
*rem = carry;
// Postconditions.
assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c));
assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len);
assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len);
}
/**
* Compare two BcDig arrays and return >0 if @a b is greater, <0 if @a b is
* less, and 0 if equal. Both @a a and @a b must have the same length.
* @param a The first array.
* @param b The second array.
* @param len The minimum length of the arrays.
*/
static ssize_t bc_num_compare(const BcDig *restrict a, const BcDig *restrict b,
size_t len)
{
size_t i;
BcDig c = 0;
for (i = len - 1; i < len && !(c = a[i] - b[i]); --i);
return bc_num_neg(i + 1, c < 0);
}
ssize_t bc_num_cmp(const BcNum *a, const BcNum *b) {
size_t i, min, a_int, b_int, diff, ardx, brdx;
BcDig *max_num, *min_num;
bool a_max, neg = false;
ssize_t cmp;
assert(a != NULL && b != NULL);
// Same num? Equal.
if (a == b) return 0;
// Easy cases.
if (BC_NUM_ZERO(a)) return bc_num_neg(b->len != 0, !BC_NUM_NEG(b));
if (BC_NUM_ZERO(b)) return bc_num_cmpZero(a);
if (BC_NUM_NEG(a)) {
if (BC_NUM_NEG(b)) neg = true;
else return -1;
}
else if (BC_NUM_NEG(b)) return 1;
// Get the number of int limbs in each number and get the difference.
a_int = bc_num_int(a);
b_int = bc_num_int(b);
a_int -= b_int;
// If there's a difference, then just return the comparison.
if (a_int) return neg ? -((ssize_t) a_int) : (ssize_t) a_int;
// Get the rdx's and figure out the max.
ardx = BC_NUM_RDX_VAL(a);
brdx = BC_NUM_RDX_VAL(b);
a_max = (ardx > brdx);
// Set variables based on the above.
if (a_max) {
min = brdx;
diff = ardx - brdx;
max_num = a->num + diff;
min_num = b->num;
}
else {
min = ardx;
diff = brdx - ardx;
max_num = b->num + diff;
min_num = a->num;
}
// Do a full limb-by-limb comparison.
cmp = bc_num_compare(max_num, min_num, b_int + min);
// If we found a difference, return it based on state.
if (cmp) return bc_num_neg((size_t) cmp, !a_max == !neg);
// If there was no difference, then the final step is to check which number
// has greater or lesser limbs beyond the other's.
for (max_num -= diff, i = diff - 1; i < diff; --i) {
if (max_num[i]) return bc_num_neg(1, !a_max == !neg);
}
return 0;
}
void bc_num_truncate(BcNum *restrict n, size_t places) {
size_t nrdx, places_rdx;
if (!places) return;
// Grab these needed values; places_rdx is the rdx equivalent to places like
// rdx is to scale.
nrdx = BC_NUM_RDX_VAL(n);
places_rdx = nrdx ? nrdx - BC_NUM_RDX(n->scale - places) : 0;
// We cannot truncate more places than we have.
assert(places <= n->scale && (BC_NUM_ZERO(n) || places_rdx <= n->len));
n->scale -= places;
BC_NUM_RDX_SET(n, nrdx - places_rdx);
// Only when the number is nonzero do we need to do the hard stuff.
if (BC_NUM_NONZERO(n)) {
size_t pow;
// This calculates how many decimal digits are in the least significant
// limb.
pow = n->scale % BC_BASE_DIGS;
pow = pow ? BC_BASE_DIGS - pow : 0;
pow = bc_num_pow10[pow];
n->len -= places_rdx;
// We have to move limbs to maintain invariants. The limbs must begin at
// the beginning of the BcNum array.
memmove(n->num, n->num + places_rdx, BC_NUM_SIZE(n->len));
// Clear the lower part of the last digit.
if (BC_NUM_NONZERO(n)) n->num[0] -= n->num[0] % (BcDig) pow;
bc_num_clean(n);
}
}
void bc_num_extend(BcNum *restrict n, size_t places) {
size_t nrdx, places_rdx;
if (!places) return;
// Easy case with zero; set the scale.
if (BC_NUM_ZERO(n)) {
n->scale += places;
return;
}
// Grab these needed values; places_rdx is the rdx equivalent to places like
// rdx is to scale.
nrdx = BC_NUM_RDX_VAL(n);
places_rdx = BC_NUM_RDX(places + n->scale) - nrdx;
// This is the hard case. We need to expand the number, move the limbs, and
// set the limbs that were just cleared.
if (places_rdx) {
bc_num_expand(n, bc_vm_growSize(n->len, places_rdx));
memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len));
memset(n->num, 0, BC_NUM_SIZE(places_rdx));
}
// Finally, set scale and rdx.
BC_NUM_RDX_SET(n, nrdx + places_rdx);
n->scale += places;
n->len += places_rdx;
assert(BC_NUM_RDX_VAL(n) == BC_NUM_RDX(n->scale));
}
/**
* Retires (finishes) a multiplication or division operation.
*/
static void bc_num_retireMul(BcNum *restrict n, size_t scale,
bool neg1, bool neg2)
{
// Make sure scale is correct.
if (n->scale < scale) bc_num_extend(n, scale - n->scale);
else bc_num_truncate(n, n->scale - scale);
bc_num_clean(n);
// We need to ensure rdx is correct.
if (BC_NUM_NONZERO(n)) n->rdx = BC_NUM_NEG_VAL(n, !neg1 != !neg2);
}
/**
* Splits a number into two BcNum's. This is used in Karatsuba.
* @param n The number to split.
* @param idx The index to split at.
* @param a An out parameter; the low part of @a n.
* @param b An out parameter; the high part of @a n.
*/
static void bc_num_split(const BcNum *restrict n, size_t idx,
BcNum *restrict a, BcNum *restrict b)
{
// We want a and b to be clear.
assert(BC_NUM_ZERO(a));
assert(BC_NUM_ZERO(b));
// The usual case.
if (idx < n->len) {
// Set the fields first.
b->len = n->len - idx;
a->len = idx;
a->scale = b->scale = 0;
BC_NUM_RDX_SET(a, 0);
BC_NUM_RDX_SET(b, 0);
assert(a->cap >= a->len);
assert(b->cap >= b->len);
// Copy the arrays. This is not necessary for safety, but it is faster,
// for some reason.
memcpy(b->num, n->num + idx, BC_NUM_SIZE(b->len));
memcpy(a->num, n->num, BC_NUM_SIZE(idx));
bc_num_clean(b);
}
// If the index is weird, just skip the split.
else bc_num_copy(a, n);
bc_num_clean(a);
}
/**
* Copies a number into another, but shifts the rdx so that the result number
* only sees the integer part of the source number.
* @param n The number to copy.
* @param r The result number with a shifted rdx, len, and num.
*/
static void bc_num_shiftRdx(const BcNum *restrict n, BcNum *restrict r) {
size_t rdx = BC_NUM_RDX_VAL(n);
r->len = n->len - rdx;
r->cap = n->cap - rdx;
r->num = n->num + rdx;
BC_NUM_RDX_SET_NEG(r, 0, BC_NUM_NEG(n));
r->scale = 0;
}
/**
* Shifts a number so that all of the least significant limbs of the number are
* skipped. This must be undone by bc_num_unshiftZero().
* @param n The number to shift.
*/
static size_t bc_num_shiftZero(BcNum *restrict n) {
size_t i;
// If we don't have an integer, that is a problem, but it's also a bug
// because the caller should have set everything up right.
assert(!BC_NUM_RDX_VAL(n) || BC_NUM_ZERO(n));
for (i = 0; i < n->len && !n->num[i]; ++i);
n->len -= i;
n->num += i;
return i;
}
/**
* Undo the damage done by bc_num_unshiftZero(). This must be called like all
* cleanup functions: after a label used by setjmp() and longjmp().
* @param n The number to unshift.
* @param places_rdx The amount the number was originally shift.
*/
static void bc_num_unshiftZero(BcNum *restrict n, size_t places_rdx) {
n->len += places_rdx;
n->num -= places_rdx;
}
/**
* Shifts the digits right within a number by no more than BC_BASE_DIGS - 1.
* This is the final step on shifting numbers with the shift operators. It
* depends on the caller to shift the limbs properly because all it does is
* ensure that the rdx point is realigned to be between limbs.
* @param n The number to shift digits in.
* @param dig The number of places to shift right.
*/
static void bc_num_shift(BcNum *restrict n, BcBigDig dig) {
size_t i, len = n->len;
BcBigDig carry = 0, pow;
BcDig *ptr = n->num;
assert(dig < BC_BASE_DIGS);
// Figure out the parameters for division.
pow = bc_num_pow10[dig];
dig = bc_num_pow10[BC_BASE_DIGS - dig];
// Run a series of divisions and mods with carries across the entire number
// array. This effectively shifts everything over.
for (i = len - 1; i < len; --i) {
BcBigDig in, temp;
in = ((BcBigDig) ptr[i]);
temp = carry * dig;
carry = in % pow;
ptr[i] = ((BcDig) (in / pow)) + (BcDig) temp;
}
assert(!carry);
}
/**
* Shift a number left by a certain number of places. This is the workhorse of
* the left shift operator.
* @param n The number to shift left.
* @param places The amount of places to shift @a n left by.
*/
static void bc_num_shiftLeft(BcNum *restrict n, size_t places) {
BcBigDig dig;
size_t places_rdx;
bool shift;
if (!places) return;
// Make sure to grow the number if necessary.
if (places > n->scale) {
size_t size = bc_vm_growSize(BC_NUM_RDX(places - n->scale), n->len);
if (size > SIZE_MAX - 1) bc_err(BC_ERR_MATH_OVERFLOW);
}
// If zero, we can just set the scale and bail.
if (BC_NUM_ZERO(n)) {
if (n->scale >= places) n->scale -= places;
else n->scale = 0;
return;
}
// When I changed bc to have multiple digits per limb, this was the hardest
// code to change. This and shift right. Make sure you understand this
// before attempting anything.
// This is how many limbs we will shift.
dig = (BcBigDig) (places % BC_BASE_DIGS);
shift = (dig != 0);
// Convert places to a rdx value.
places_rdx = BC_NUM_RDX(places);
// If the number is not an integer, we need special care. The reason an
// integer doesn't is because left shift would only extend the integer,
// whereas a non-integer might have its fractional part eliminated or only
// partially eliminated.
if (n->scale) {
size_t nrdx = BC_NUM_RDX_VAL(n);
// If the number's rdx is bigger, that's the hard case.
if (nrdx >= places_rdx) {
size_t mod = n->scale % BC_BASE_DIGS, revdig;
// We want mod to be in the range [1, BC_BASE_DIGS], not
// [0, BC_BASE_DIGS).
mod = mod ? mod : BC_BASE_DIGS;
// We need to reverse dig to get the actual number of digits.
revdig = dig ? BC_BASE_DIGS - dig : 0;
// If the two overflow BC_BASE_DIGS, we need to move an extra place.
if (mod + revdig > BC_BASE_DIGS) places_rdx = 1;
else places_rdx = 0;
}
else places_rdx -= nrdx;
}
// If this is non-zero, we need an extra place, so expand, move, and set.
if (places_rdx) {
bc_num_expand(n, bc_vm_growSize(n->len, places_rdx));
memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len));
memset(n->num, 0, BC_NUM_SIZE(places_rdx));
n->len += places_rdx;
}
// Set the scale appropriately.
if (places > n->scale) {
n->scale = 0;
BC_NUM_RDX_SET(n, 0);
}
else {
n->scale -= places;
BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale));
}
// Finally, shift within limbs.
if (shift) bc_num_shift(n, BC_BASE_DIGS - dig);
bc_num_clean(n);
}
void bc_num_shiftRight(BcNum *restrict n, size_t places) {
BcBigDig dig;
size_t places_rdx, scale, scale_mod, int_len, expand;
bool shift;
if (!places) return;
// If zero, we can just set the scale and bail.
if (BC_NUM_ZERO(n)) {
n->scale += places;
bc_num_expand(n, BC_NUM_RDX(n->scale));
return;
}
// Amount within a limb we have to shift by.
dig = (BcBigDig) (places % BC_BASE_DIGS);
shift = (dig != 0);
scale = n->scale;
// Figure out how the scale is affected.
scale_mod = scale % BC_BASE_DIGS;
scale_mod = scale_mod ? scale_mod : BC_BASE_DIGS;
// We need to know the int length and rdx for places.
int_len = bc_num_int(n);
places_rdx = BC_NUM_RDX(places);
// If we are going to shift past a limb boundary or not, set accordingly.
if (scale_mod + dig > BC_BASE_DIGS) {
expand = places_rdx - 1;
places_rdx = 1;
}
else {
expand = places_rdx;
places_rdx = 0;
}
// Clamp expanding.
if (expand > int_len) expand -= int_len;
else expand = 0;
// Extend, expand, and zero.
bc_num_extend(n, places_rdx * BC_BASE_DIGS);
bc_num_expand(n, bc_vm_growSize(expand, n->len));
memset(n->num + n->len, 0, BC_NUM_SIZE(expand));
// Set the fields.
n->len += expand;
n->scale = 0;
BC_NUM_RDX_SET(n, 0);
// Finally, shift within limbs.
if (shift) bc_num_shift(n, dig);
n->scale = scale + places;
BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale));
bc_num_clean(n);
assert(BC_NUM_RDX_VAL(n) <= n->len && n->len <= n->cap);
assert(BC_NUM_RDX_VAL(n) == BC_NUM_RDX(n->scale));
}
/**
* Invert @a into @a b at the current scale.
* @param a The number to invert.
* @param b The return parameter. This must be preallocated.
* @param scale The current scale.
*/
static inline void bc_num_inv(BcNum *a, BcNum *b, size_t scale) {
assert(BC_NUM_NONZERO(a));
bc_num_div(&vm.one, a, b, scale);
}
/**
* Tests if a number is a integer with scale or not. Returns true if the number
* is not an integer. If it is, its integer shifted form is copied into the
* result parameter for use where only integers are allowed.
* @param n The integer to test and shift.
* @param r The number to store the shifted result into. This number should
* *not* be allocated.
* @return True if the number is a non-integer, false otherwise.
*/
static bool bc_num_nonInt(const BcNum *restrict n, BcNum *restrict r) {
bool zero;
size_t i, rdx = BC_NUM_RDX_VAL(n);
if (!rdx) {
memcpy(r, n, sizeof(BcNum));
return false;
}
zero = true;
for (i = 0; zero && i < rdx; ++i) zero = (n->num[i] == 0);
if (BC_ERR(!zero)) return true;
bc_num_shiftRdx(n, r);
return false;
}
#if BC_ENABLE_EXTRA_MATH
/**
* Execute common code for an operater that needs an integer for the second
* operand and return the integer operand as a BcBigDig.
* @param a The first operand.
* @param b The second operand.
* @param c The result operand.
* @return The second operand as a hardware integer.
*/
static BcBigDig bc_num_intop(const BcNum *a, const BcNum *b, BcNum *restrict c)
{
BcNum temp;
if (BC_ERR(bc_num_nonInt(b, &temp))) bc_err(BC_ERR_MATH_NON_INTEGER);
bc_num_copy(c, a);
return bc_num_bigdig(&temp);
}
#endif // BC_ENABLE_EXTRA_MATH
/**
* This is the actual implementation of add *and* subtract. Since this function
* doesn't need to use scale (per the bc spec), I am hijacking it to say whether
* it's doing an add or a subtract. And then I convert substraction to addition
* of negative second operand. This is a BcNumBinOp function.
* @param a The first operand.
* @param b The second operand.
* @param c The return parameter.
* @param sub Non-zero for a subtract, zero for an add.
*/
static void bc_num_as(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub) {
BcDig *ptr_c, *ptr_l, *ptr_r;
size_t i, min_rdx, max_rdx, diff, a_int, b_int, min_len, max_len, max_int;
size_t len_l, len_r, ardx, brdx;
bool b_neg, do_sub, do_rev_sub, carry, c_neg;
if (BC_NUM_ZERO(b)) {
bc_num_copy(c, a);
return;
}
if (BC_NUM_ZERO(a)) {
bc_num_copy(c, b);
c->rdx = BC_NUM_NEG_VAL(c, BC_NUM_NEG(b) != sub);
return;
}
// Invert sign of b if it is to be subtracted. This operation must
// precede the tests for any of the operands being zero.
b_neg = (BC_NUM_NEG(b) != sub);
// Figure out if we will actually add the numbers if their signs are equal
// or subtract.
do_sub = (BC_NUM_NEG(a) != b_neg);
a_int = bc_num_int(a);
b_int = bc_num_int(b);
max_int = BC_MAX(a_int, b_int);
// Figure out which number will have its last limbs copied (for addition) or
// subtracted (for subtraction).
ardx = BC_NUM_RDX_VAL(a);
brdx = BC_NUM_RDX_VAL(b);
min_rdx = BC_MIN(ardx, brdx);
max_rdx = BC_MAX(ardx, brdx);
diff = max_rdx - min_rdx;
max_len = max_int + max_rdx;
if (do_sub) {
// Check whether b has to be subtracted from a or a from b.
if (a_int != b_int) do_rev_sub = (a_int < b_int);
else if (ardx > brdx)
do_rev_sub = (bc_num_compare(a->num + diff, b->num, b->len) < 0);
else
do_rev_sub = (bc_num_compare(a->num, b->num + diff, a->len) <= 0);
}
else {
// The result array of the addition might come out one element
// longer than the bigger of the operand arrays.
max_len += 1;
do_rev_sub = (a_int < b_int);
}
assert(max_len <= c->cap);
// Cache values for simple code later.
if (do_rev_sub) {
ptr_l = b->num;
ptr_r = a->num;
len_l = b->len;
len_r = a->len;
}
else {
ptr_l = a->num;
ptr_r = b->num;
len_l = a->len;
len_r = b->len;
}
ptr_c = c->num;
carry = false;
// This is true if the numbers have a different number of limbs after the
// decimal point.
if (diff) {
// If the rdx values of the operands do not match, the result will
// have low end elements that are the positive or negative trailing
// elements of the operand with higher rdx value.
if ((ardx > brdx) != do_rev_sub) {
// !do_rev_sub && ardx > brdx || do_rev_sub && brdx > ardx
// The left operand has BcDig values that need to be copied,
// either from a or from b (in case of a reversed subtraction).
memcpy(ptr_c, ptr_l, BC_NUM_SIZE(diff));
ptr_l += diff;
len_l -= diff;
}
else {
// The right operand has BcDig values that need to be copied
// or subtracted from zero (in case of a subtraction).
if (do_sub) {
// do_sub (do_rev_sub && ardx > brdx ||
// !do_rev_sub && brdx > ardx)
for (i = 0; i < diff; i++)
ptr_c[i] = bc_num_subDigits(0, ptr_r[i], &carry);
}
else {
// !do_sub && brdx > ardx
memcpy(ptr_c, ptr_r, BC_NUM_SIZE(diff));
}
// Future code needs to ignore the limbs we just did.
ptr_r += diff;
len_r -= diff;
}
// The return value pointer needs to ignore what we just did.
ptr_c += diff;
}
// This is the length that can be directly added/subtracted.
min_len = BC_MIN(len_l, len_r);
// After dealing with possible low array elements that depend on only one
// operand above, the actual add or subtract can be performed as if the rdx
// of both operands was the same.
//
// Inlining takes care of eliminating constant zero arguments to
// addDigit/subDigit (checked in disassembly of resulting bc binary
// compiled with gcc and clang).
if (do_sub) {
// Actual subtraction.
for (i = 0; i < min_len; ++i)
ptr_c[i] = bc_num_subDigits(ptr_l[i], ptr_r[i], &carry);
// Finishing the limbs beyond the direct subtraction.
for (; i < len_l; ++i) ptr_c[i] = bc_num_subDigits(ptr_l[i], 0, &carry);
}
else {
// Actual addition.
for (i = 0; i < min_len; ++i)
ptr_c[i] = bc_num_addDigits(ptr_l[i], ptr_r[i], &carry);
// Finishing the limbs beyond the direct addition.
for (; i < len_l; ++i) ptr_c[i] = bc_num_addDigits(ptr_l[i], 0, &carry);
// Addition can create an extra limb. We take care of that here.
ptr_c[i] = bc_num_addDigits(0, 0, &carry);
}
assert(carry == false);
// The result has the same sign as a, unless the operation was a
// reverse subtraction (b - a).
c_neg = BC_NUM_NEG(a) != (do_sub && do_rev_sub);
BC_NUM_RDX_SET_NEG(c, max_rdx, c_neg);
c->len = max_len;
c->scale = BC_MAX(a->scale, b->scale);
bc_num_clean(c);
}
/**
* The simple multiplication that karatsuba dishes out to when the length of the
* numbers gets low enough. This doesn't use scale because it treats the
* operands as though they are integers.
* @param a The first operand.
* @param b The second operand.
* @param c The return parameter.
*/
static void bc_num_m_simp(const BcNum *a, const BcNum *b, BcNum *restrict c) {
size_t i, alen = a->len, blen = b->len, clen;
BcDig *ptr_a = a->num, *ptr_b = b->num, *ptr_c;
BcBigDig sum = 0, carry = 0;
assert(sizeof(sum) >= sizeof(BcDig) * 2);
assert(!BC_NUM_RDX_VAL(a) && !BC_NUM_RDX_VAL(b));
// Make sure c is big enough.
clen = bc_vm_growSize(alen, blen);
bc_num_expand(c, bc_vm_growSize(clen, 1));
// If we don't memset, then we might have uninitialized data use later.
ptr_c = c->num;
memset(ptr_c, 0, BC_NUM_SIZE(c->cap));
// This is the actual multiplication loop. It uses the lattice form of long
// multiplication (see the explanation on the web page at
// https://knilt.arcc.albany.edu/What_is_Lattice_Multiplication or the
// explanation at Wikipedia).
for (i = 0; i < clen; ++i) {
ssize_t sidx = (ssize_t) (i - blen + 1);
size_t j, k;
// These are the start indices.
j = (size_t) BC_MAX(0, sidx);
k = BC_MIN(i, blen - 1);
// On every iteration of this loop, a multiplication happens, then the
// sum is automatically calculated.
for (; j < alen && k < blen; ++j, --k) {
sum += ((BcBigDig) ptr_a[j]) * ((BcBigDig) ptr_b[k]);
if (sum >= ((BcBigDig) BC_BASE_POW) * BC_BASE_POW) {
carry += sum / BC_BASE_POW;
sum %= BC_BASE_POW;
}
}
// Calculate the carry.
if (sum >= BC_BASE_POW) {
carry += sum / BC_BASE_POW;
sum %= BC_BASE_POW;
}
// Store and set up for next iteration.
ptr_c[i] = (BcDig) sum;
assert(ptr_c[i] < BC_BASE_POW);
sum = carry;
carry = 0;
}
// This should always be true because there should be no carry on the last
// digit; multiplication never goes above the sum of both lengths.
assert(!sum);
c->len = clen;
}
/**
* Does a shifted add or subtract for Karatsuba below. This calls either
* bc_num_addArrays() or bc_num_subArrays().
* @param n An in/out parameter; the first operand and return parameter.
* @param a The second operand.
* @param shift The amount to shift @a n by when adding/subtracting.
* @param op The function to call, either bc_num_addArrays() or
* bc_num_subArrays().
*/
static void bc_num_shiftAddSub(BcNum *restrict n, const BcNum *restrict a,
size_t shift, BcNumShiftAddOp op)
{
assert(n->len >= shift + a->len);
assert(!BC_NUM_RDX_VAL(n) && !BC_NUM_RDX_VAL(a));
op(n->num + shift, a->num, a->len);
}
/**
* Implements the Karatsuba algorithm.
*/
static void bc_num_k(const BcNum *a, const BcNum *b, BcNum *restrict c) {
size_t max, max2, total;
BcNum l1, h1, l2, h2, m2, m1, z0, z1, z2, temp;
BcDig *digs, *dig_ptr;
BcNumShiftAddOp op;
bool aone = BC_NUM_ONE(a);
assert(BC_NUM_ZERO(c));
if (BC_NUM_ZERO(a) || BC_NUM_ZERO(b)) return;
if (aone || BC_NUM_ONE(b)) {
bc_num_copy(c, aone ? b : a);
if ((aone && BC_NUM_NEG(a)) || BC_NUM_NEG(b)) BC_NUM_NEG_TGL(c);
return;
}
// Shell out to the simple algorithm with certain conditions.
if (a->len < BC_NUM_KARATSUBA_LEN || b->len < BC_NUM_KARATSUBA_LEN) {
bc_num_m_simp(a, b, c);
return;
}
// We need to calculate the max size of the numbers that can result from the
// operations.
max = BC_MAX(a->len, b->len);
max = BC_MAX(max, BC_NUM_DEF_SIZE);
max2 = (max + 1) / 2;
// Calculate the space needed for all of the temporary allocations. We do
// this to just allocate once.
total = bc_vm_arraySize(BC_NUM_KARATSUBA_ALLOCS, max);
BC_SIG_LOCK;
// Allocate space for all of the temporaries.
digs = dig_ptr = bc_vm_malloc(BC_NUM_SIZE(total));
// Set up the temporaries.
bc_num_setup(&l1, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&h1, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&l2, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&h2, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&m1, dig_ptr, max);
dig_ptr += max;
bc_num_setup(&m2, dig_ptr, max);
// Some temporaries need the ability to grow, so we allocate them
// separately.
max = bc_vm_growSize(max, 1);
bc_num_init(&z0, max);
bc_num_init(&z1, max);
bc_num_init(&z2, max);
max = bc_vm_growSize(max, max) + 1;
bc_num_init(&temp, max);
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
// First, set up c.
bc_num_expand(c, max);
c->len = max;
memset(c->num, 0, BC_NUM_SIZE(c->len));
// Split the parameters.
bc_num_split(a, max2, &l1, &h1);
bc_num_split(b, max2, &l2, &h2);
// Do the subtraction.
bc_num_sub(&h1, &l1, &m1, 0);
bc_num_sub(&l2, &h2, &m2, 0);
// The if statements below are there for efficiency reasons. The best way to
// understand them is to understand the Karatsuba algorithm because now that
// the ollocations and splits are done, the algorithm is pretty
// straightforward.
if (BC_NUM_NONZERO(&h1) && BC_NUM_NONZERO(&h2)) {
assert(BC_NUM_RDX_VALID_NP(h1));
assert(BC_NUM_RDX_VALID_NP(h2));
bc_num_m(&h1, &h2, &z2, 0);
bc_num_clean(&z2);
bc_num_shiftAddSub(c, &z2, max2 * 2, bc_num_addArrays);
bc_num_shiftAddSub(c, &z2, max2, bc_num_addArrays);
}
if (BC_NUM_NONZERO(&l1) && BC_NUM_NONZERO(&l2)) {
assert(BC_NUM_RDX_VALID_NP(l1));
assert(BC_NUM_RDX_VALID_NP(l2));
bc_num_m(&l1, &l2, &z0, 0);
bc_num_clean(&z0);
bc_num_shiftAddSub(c, &z0, max2, bc_num_addArrays);
bc_num_shiftAddSub(c, &z0, 0, bc_num_addArrays);
}
if (BC_NUM_NONZERO(&m1) && BC_NUM_NONZERO(&m2)) {
assert(BC_NUM_RDX_VALID_NP(m1));
assert(BC_NUM_RDX_VALID_NP(m1));
bc_num_m(&m1, &m2, &z1, 0);
bc_num_clean(&z1);
op = (BC_NUM_NEG_NP(m1) != BC_NUM_NEG_NP(m2)) ?
bc_num_subArrays : bc_num_addArrays;
bc_num_shiftAddSub(c, &z1, max2, op);
}
err:
BC_SIG_MAYLOCK;
free(digs);
bc_num_free(&temp);
bc_num_free(&z2);
bc_num_free(&z1);
bc_num_free(&z0);
BC_LONGJMP_CONT;
}
/**
* Does checks for Karatsuba. It also changes things to ensure that the
* Karatsuba and simple multiplication can treat the numbers as integers. This
* is a BcNumBinOp function.
* @param a The first operand.
* @param b The second operand.
* @param c The return parameter.
* @param scale The current scale.
*/
static void bc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
BcNum cpa, cpb;
size_t ascale, bscale, ardx, brdx, azero = 0, bzero = 0, zero, len, rscale;
assert(BC_NUM_RDX_VALID(a));
assert(BC_NUM_RDX_VALID(b));
bc_num_zero(c);
ascale = a->scale;
bscale = b->scale;
// This sets the final scale according to the bc spec.
scale = BC_MAX(scale, ascale);
scale = BC_MAX(scale, bscale);
rscale = ascale + bscale;
scale = BC_MIN(rscale, scale);
// If this condition is true, we can use bc_num_mulArray(), which would be
// much faster.
if ((a->len == 1 || b->len == 1) && !a->rdx && !b->rdx) {
BcNum *operand;
BcBigDig dig;
// Set the correct operands.
if (a->len == 1) {
dig = (BcBigDig) a->num[0];
operand = b;
}
else {
dig = (BcBigDig) b->num[0];
operand = a;
}
bc_num_mulArray(operand, dig, c);
// Need to make sure the sign is correct.
if (BC_NUM_NONZERO(c))
c->rdx = BC_NUM_NEG_VAL(c, BC_NUM_NEG(a) != BC_NUM_NEG(b));
return;
}
assert(BC_NUM_RDX_VALID(a));
assert(BC_NUM_RDX_VALID(b));
BC_SIG_LOCK;
// We need copies because of all of the mutation needed to make Karatsuba
// think the numbers are integers.
bc_num_init(&cpa, a->len + BC_NUM_RDX_VAL(a));
bc_num_init(&cpb, b->len + BC_NUM_RDX_VAL(b));
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
bc_num_copy(&cpa, a);
bc_num_copy(&cpb, b);
assert(BC_NUM_RDX_VALID_NP(cpa));
assert(BC_NUM_RDX_VALID_NP(cpb));
BC_NUM_NEG_CLR_NP(cpa);
BC_NUM_NEG_CLR_NP(cpb);
assert(BC_NUM_RDX_VALID_NP(cpa));
assert(BC_NUM_RDX_VALID_NP(cpb));
// These are what makes them appear like integers.
ardx = BC_NUM_RDX_VAL_NP(cpa) * BC_BASE_DIGS;
bc_num_shiftLeft(&cpa, ardx);
brdx = BC_NUM_RDX_VAL_NP(cpb) * BC_BASE_DIGS;
bc_num_shiftLeft(&cpb, brdx);
// We need to reset the jump here because azero and bzero are used in the
// cleanup, and local variables are not guaranteed to be the same after a
// jump.
BC_SIG_LOCK;
BC_UNSETJMP;
// We want to ignore zero limbs.
azero = bc_num_shiftZero(&cpa);
bzero = bc_num_shiftZero(&cpb);
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
bc_num_clean(&cpa);
bc_num_clean(&cpb);
bc_num_k(&cpa, &cpb, c);
// The return parameter needs to have its scale set. This is the start. It
// also needs to be shifted by the same amount as a and b have limbs after
// the decimal point.
zero = bc_vm_growSize(azero, bzero);
len = bc_vm_growSize(c->len, zero);
bc_num_expand(c, len);
// Shift c based on the limbs after the decimal point in a and b.
bc_num_shiftLeft(c, (len - c->len) * BC_BASE_DIGS);
bc_num_shiftRight(c, ardx + brdx);
bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b));
err:
BC_SIG_MAYLOCK;
bc_num_unshiftZero(&cpb, bzero);
bc_num_free(&cpb);
bc_num_unshiftZero(&cpa, azero);
bc_num_free(&cpa);
BC_LONGJMP_CONT;
}
/**
* Returns true if the BcDig array has non-zero limbs, false otherwise.
* @param a The array to test.
* @param len The length of the array.
* @return True if @a has any non-zero limbs, false otherwise.
*/
static bool bc_num_nonZeroDig(BcDig *restrict a, size_t len) {
size_t i;
bool nonzero = false;
for (i = len - 1; !nonzero && i < len; --i) nonzero = (a[i] != 0);
return nonzero;
}
/**
* Compares a BcDig array against a BcNum. This is especially suited for
* division. Returns >0 if @a a is greater than @a b, <0 if it is less, and =0
* if they are equal.
* @param a The array.
* @param b The number.
* @param len The length to assume the arrays are. This is always less than the
* actual length because of how this is implemented.
*/
static ssize_t bc_num_divCmp(const BcDig *a, const BcNum *b, size_t len) {
ssize_t cmp;
if (b->len > len && a[len]) cmp = bc_num_compare(a, b->num, len + 1);
else if (b->len <= len) {
if (a[len]) cmp = 1;
else cmp = bc_num_compare(a, b->num, len);
}
else cmp = -1;
return cmp;
}
/**
* Extends the two operands of a division by BC_BASE_DIGS minus the number of
* digits in the divisor estimate. In other words, it is shifting the numbers in
* order to force the divisor estimate to fill the limb.
* @param a The first operand.
* @param b The second operand.
* @param divisor The divisor estimate.
*/
static void bc_num_divExtend(BcNum *restrict a, BcNum *restrict b,
BcBigDig divisor)
{
size_t pow;
assert(divisor < BC_BASE_POW);
pow = BC_BASE_DIGS - bc_num_log10((size_t) divisor);
bc_num_shiftLeft(a, pow);
bc_num_shiftLeft(b, pow);
}
/**
* Actually does division. This is a rewrite of my original code by Stefan Esser
* from FreeBSD.
* @param a The first operand.
* @param b The second operand.
* @param c The return parameter.
* @param scale The current scale.
*/
static void bc_num_d_long(BcNum *restrict a, BcNum *restrict b,
BcNum *restrict c, size_t scale)
{
BcBigDig divisor;
size_t len, end, i, rdx;
BcNum cpb;
bool nonzero = false;
assert(b->len < a->len);
len = b->len;
end = a->len - len;
assert(len >= 1);
// This is a final time to make sure c is big enough and that its array is
// properly zeroed.
bc_num_expand(c, a->len);
memset(c->num, 0, c->cap * sizeof(BcDig));
// Setup.
BC_NUM_RDX_SET(c, BC_NUM_RDX_VAL(a));
c->scale = a->scale;
c->len = a->len;
// This is pulling the most significant limb of b in order to establish a
// good "estimate" for the actual divisor.
divisor = (BcBigDig) b->num[len - 1];
// The entire bit of code in this if statement is to tighten the estimate of
// the divisor. The condition asks if b has any other non-zero limbs.
if (len > 1 && bc_num_nonZeroDig(b->num, len - 1)) {
// This takes a little bit of understanding. The "10*BC_BASE_DIGS/6+1"
// results in either 16 for 64-bit 9-digit limbs or 7 for 32-bit 4-digit
// limbs. Then it shifts a 1 by that many, which in both cases, puts the
// result above *half* of the max value a limb can store. Basically,
// this quickly calculates if the divisor is greater than half the max
// of a limb.
nonzero = (divisor > 1 << ((10 * BC_BASE_DIGS) / 6 + 1));
// If the divisor is *not* greater than half the limb...
if (!nonzero) {
// Extend the parameters by the number of missing digits in the
// divisor.
bc_num_divExtend(a, b, divisor);
// Check bc_num_d(). In there, we grow a again and again. We do it
// again here; we *always* want to be sure it is big enough.
len = BC_MAX(a->len, b->len);
bc_num_expand(a, len + 1);
// Make a have a zero most significant limb to match the len.
if (len + 1 > a->len) a->len = len + 1;
// Grab the new divisor estimate, new because the shift has made it
// different.
len = b->len;
end = a->len - len;
divisor = (BcBigDig) b->num[len - 1];
nonzero = bc_num_nonZeroDig(b->num, len - 1);
}
}
// If b has other nonzero limbs, we want the divisor to be one higher, so
// that it is an upper bound.
divisor += nonzero;
// Make sure c can fit the new length.
bc_num_expand(c, a->len);
memset(c->num, 0, BC_NUM_SIZE(c->cap));
assert(c->scale >= scale);
rdx = BC_NUM_RDX_VAL(c) - BC_NUM_RDX(scale);
BC_SIG_LOCK;
bc_num_init(&cpb, len + 1);
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
// This is the actual division loop.
for (i = end - 1; i < end && i >= rdx && BC_NUM_NONZERO(a); --i) {
ssize_t cmp;
BcDig *n;
BcBigDig result;
n = a->num + i;
assert(n >= a->num);
result = 0;
cmp = bc_num_divCmp(n, b, len);
// This is true if n is greater than b, which means that division can
// proceed, so this inner loop is the part that implements one instance
// of the division.
while (cmp >= 0) {
BcBigDig n1, dividend, quotient;
// These should be named obviously enough. Just imagine that it's a
// division of one limb. Because that's what it is.
n1 = (BcBigDig) n[len];
dividend = n1 * BC_BASE_POW + (BcBigDig) n[len - 1];
quotient = (dividend / divisor);
// If this is true, then we can just subtract. Remember: setting
// quotient to 1 is not bad because we already know that n is
// greater than b.
if (quotient <= 1) {
quotient = 1;
bc_num_subArrays(n, b->num, len);
}
else {
assert(quotient <= BC_BASE_POW);
// We need to multiply and subtract for a quotient above 1.
bc_num_mulArray(b, (BcBigDig) quotient, &cpb);
bc_num_subArrays(n, cpb.num, cpb.len);
}
// The result is the *real* quotient, by the way, but it might take
// multiple trips around this loop to get it.
result += quotient;
assert(result <= BC_BASE_POW);
// And here's why it might take multiple trips: n might *still* be
// greater than b. So we have to loop again. That's what this is
// setting up for: the condition of the while loop.
if (nonzero) cmp = bc_num_divCmp(n, b, len);
else cmp = -1;
}
assert(result < BC_BASE_POW);
// Store the actual limb quotient.
c->num[i] = (BcDig) result;
}
err:
BC_SIG_MAYLOCK;
bc_num_free(&cpb);
BC_LONGJMP_CONT;
}
/**
* Implements division. This is a BcNumBinOp function.
* @param a The first operand.
* @param b The second operand.
* @param c The return parameter.
* @param scale The current scale.
*/
static void bc_num_d(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
size_t len, cpardx;
BcNum cpa, cpb;
if (BC_NUM_ZERO(b)) bc_err(BC_ERR_MATH_DIVIDE_BY_ZERO);
if (BC_NUM_ZERO(a)) {
bc_num_setToZero(c, scale);
return;
}
if (BC_NUM_ONE(b)) {
bc_num_copy(c, a);
bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b));
return;
}
// If this is true, we can use bc_num_divArray(), which would be faster.
if (!BC_NUM_RDX_VAL(a) && !BC_NUM_RDX_VAL(b) && b->len == 1 && !scale) {
BcBigDig rem;
bc_num_divArray(a, (BcBigDig) b->num[0], c, &rem);
bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b));
return;
}
len = bc_num_divReq(a, b, scale);
BC_SIG_LOCK;
// Initialize copies of the parameters. We want the length of the first
// operand copy to be as big as the result because of the way the division
// is implemented.
bc_num_init(&cpa, len);
bc_num_copy(&cpa, a);
bc_num_createCopy(&cpb, b);
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
len = b->len;
// Like the above comment, we want the copy of the first parameter to be
// larger than the second parameter.
if (len > cpa.len) {
bc_num_expand(&cpa, bc_vm_growSize(len, 2));
bc_num_extend(&cpa, (len - cpa.len) * BC_BASE_DIGS);
}
cpardx = BC_NUM_RDX_VAL_NP(cpa);
cpa.scale = cpardx * BC_BASE_DIGS;
// This is just setting up the scale in preparation for the division.
bc_num_extend(&cpa, b->scale);
cpardx = BC_NUM_RDX_VAL_NP(cpa) - BC_NUM_RDX(b->scale);
BC_NUM_RDX_SET_NP(cpa, cpardx);
cpa.scale = cpardx * BC_BASE_DIGS;
// Once again, just setting things up, this time to match scale.
if (scale > cpa.scale) {
bc_num_extend(&cpa, scale);
cpardx = BC_NUM_RDX_VAL_NP(cpa);
cpa.scale = cpardx * BC_BASE_DIGS;
}
// Grow if necessary.
if (cpa.cap == cpa.len) bc_num_expand(&cpa, bc_vm_growSize(cpa.len, 1));
// We want an extra zero in front to make things simpler.
cpa.num[cpa.len++] = 0;
// Still setting things up. Why all of these things are needed is not
// something that can be easily explained, but it has to do with making the
// actual algorithm easier to understand because it can assume a lot of
// things. Thus, you should view all of this setup code as establishing
// assumptions for bc_num_d_long(), where the actual division happens.
if (cpardx == cpa.len) cpa.len = bc_num_nonZeroLen(&cpa);
if (BC_NUM_RDX_VAL_NP(cpb) == cpb.len) cpb.len = bc_num_nonZeroLen(&cpb);
cpb.scale = 0;
BC_NUM_RDX_SET_NP(cpb, 0);
bc_num_d_long(&cpa, &cpb, c, scale);
bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b));
err:
BC_SIG_MAYLOCK;
bc_num_free(&cpb);
bc_num_free(&cpa);
BC_LONGJMP_CONT;
}
/**
* Implements divmod. This is the actual modulus function; since modulus
* requires a division anyway, this returns the quotient and modulus. Either can
* be thrown out as desired.
* @param a The first operand.
* @param b The second operand.
* @param c The return parameter for the quotient.
* @param d The return parameter for the modulus.
* @param scale The current scale.
* @param ts The scale that the operation should be done to. Yes, it's not
* necessarily the same as scale, per the bc spec.
*/
static void bc_num_r(BcNum *a, BcNum *b, BcNum *restrict c,
BcNum *restrict d, size_t scale, size_t ts)
{
BcNum temp;
bool neg;
if (BC_NUM_ZERO(b)) bc_err(BC_ERR_MATH_DIVIDE_BY_ZERO);
if (BC_NUM_ZERO(a)) {
bc_num_setToZero(c, ts);
bc_num_setToZero(d, ts);
return;
}
BC_SIG_LOCK;
bc_num_init(&temp, d->cap);
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
// Division.
bc_num_d(a, b, c, scale);
// We want an extra digit so we can safely truncate.
if (scale) scale = ts + 1;
assert(BC_NUM_RDX_VALID(c));
assert(BC_NUM_RDX_VALID(b));
// Implement the rest of the (a - (a / b) * b) formula.
bc_num_m(c, b, &temp, scale);
bc_num_sub(a, &temp, d, scale);
// Extend if necessary.
if (ts > d->scale && BC_NUM_NONZERO(d)) bc_num_extend(d, ts - d->scale);
neg = BC_NUM_NEG(d);
bc_num_retireMul(d, ts, BC_NUM_NEG(a), BC_NUM_NEG(b));
d->rdx = BC_NUM_NEG_VAL(d, BC_NUM_NONZERO(d) ? neg : false);
err:
BC_SIG_MAYLOCK;
bc_num_free(&temp);
BC_LONGJMP_CONT;
}
/**
* Implements modulus/remainder. (Yes, I know they are different, but not in the
* context of bc.) This is a BcNumBinOp function.
* @param a The first operand.
* @param b The second operand.
* @param c The return parameter.
* @param scale The current scale.
*/
static void bc_num_rem(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
BcNum c1;
size_t ts;
ts = bc_vm_growSize(scale, b->scale);
ts = BC_MAX(ts, a->scale);
BC_SIG_LOCK;
// Need a temp for the quotient.
bc_num_init(&c1, bc_num_mulReq(a, b, ts));
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
bc_num_r(a, b, &c1, c, scale, ts);
err:
BC_SIG_MAYLOCK;
bc_num_free(&c1);
BC_LONGJMP_CONT;
}
/**
* Implements power (exponentiation). This is a BcNumBinOp function.
* @param a The first operand.
* @param b The second operand.
* @param c The return parameter.
* @param scale The current scale.
*/
static void bc_num_p(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
BcNum copy, btemp;
BcBigDig exp;
size_t powrdx, resrdx;
bool neg;
if (BC_ERR(bc_num_nonInt(b, &btemp))) bc_err(BC_ERR_MATH_NON_INTEGER);
if (BC_NUM_ZERO(&btemp)) {
bc_num_one(c);
return;
}
if (BC_NUM_ZERO(a)) {
if (BC_NUM_NEG_NP(btemp)) bc_err(BC_ERR_MATH_DIVIDE_BY_ZERO);
bc_num_setToZero(c, scale);
return;
}
if (BC_NUM_ONE(&btemp)) {
if (!BC_NUM_NEG_NP(btemp)) bc_num_copy(c, a);
else bc_num_inv(a, c, scale);
return;
}
neg = BC_NUM_NEG_NP(btemp);
BC_NUM_NEG_CLR_NP(btemp);
exp = bc_num_bigdig(&btemp);
BC_SIG_LOCK;
bc_num_createCopy(&copy, a);
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
// If this is true, then we do not have to do a division, and we need to
// set scale accordingly.
if (!neg) {
size_t max = BC_MAX(scale, a->scale), scalepow;
scalepow = bc_num_mulOverflow(a->scale, exp);
scale = BC_MIN(scalepow, max);
}
// This is only implementing the first exponentiation by squaring, until it
// reaches the first time where the square is actually used.
for (powrdx = a->scale; !(exp & 1); exp >>= 1) {
powrdx <<= 1;
assert(BC_NUM_RDX_VALID_NP(copy));
bc_num_mul(&copy, &copy, &copy, powrdx);
}
// Make c a copy of copy for the purpose of saving the squares that should
// be saved.
bc_num_copy(c, &copy);
resrdx = powrdx;
// Now finish the exponentiation by squaring, this time saving the squares
// as necessary.
while (exp >>= 1) {
powrdx <<= 1;
assert(BC_NUM_RDX_VALID_NP(copy));
bc_num_mul(&copy, &copy, &copy, powrdx);
// If this is true, we want to save that particular square. This does
// that by multiplying c with copy.
if (exp & 1) {
resrdx += powrdx;
assert(BC_NUM_RDX_VALID(c));
assert(BC_NUM_RDX_VALID_NP(copy));
bc_num_mul(c, &copy, c, resrdx);
}
}
// Invert if necessary.
if (neg) bc_num_inv(c, c, scale);
// Truncate if necessary.
if (c->scale > scale) bc_num_truncate(c, c->scale - scale);
bc_num_clean(c);
err:
BC_SIG_MAYLOCK;
bc_num_free(&copy);
BC_LONGJMP_CONT;
}
#if BC_ENABLE_EXTRA_MATH
/**
* Implements the places operator. This is a BcNumBinOp function.
* @param a The first operand.
* @param b The second operand.
* @param c The return parameter.
* @param scale The current scale.
*/
static void bc_num_place(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
BcBigDig val;
BC_UNUSED(scale);
val = bc_num_intop(a, b, c);
// Just truncate or extend as appropriate.
if (val < c->scale) bc_num_truncate(c, c->scale - val);
else if (val > c->scale) bc_num_extend(c, val - c->scale);
}
/**
* Implements the left shift operator. This is a BcNumBinOp function.
*/
static void bc_num_left(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
BcBigDig val;
BC_UNUSED(scale);
val = bc_num_intop(a, b, c);
bc_num_shiftLeft(c, (size_t) val);
}
/**
* Implements the right shift operator. This is a BcNumBinOp function.
*/
static void bc_num_right(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
BcBigDig val;
BC_UNUSED(scale);
val = bc_num_intop(a, b, c);
if (BC_NUM_ZERO(c)) return;
bc_num_shiftRight(c, (size_t) val);
}
#endif // BC_ENABLE_EXTRA_MATH
/**
* Prepares for, and calls, a binary operator function. This is probably the
* most important function in the entire file because it establishes assumptions
* that make the rest of the code so easy. Those assumptions include:
*
* - a is not the same pointer as c.
* - b is not the same pointer as c.
* - there is enough room in c for the result.
*
* Without these, this whole function would basically have to be duplicated for
* *all* binary operators.
*
* @param a The first operand.
* @param b The second operand.
* @param c The return parameter.
* @param scale The current scale.
* @param req The number of limbs needed to fit the result.
*/
static void bc_num_binary(BcNum *a, BcNum *b, BcNum *c, size_t scale,
BcNumBinOp op, size_t req)
{
BcNum *ptr_a, *ptr_b, num2;
bool init = false;
assert(a != NULL && b != NULL && c != NULL && op != NULL);
assert(BC_NUM_RDX_VALID(a));
assert(BC_NUM_RDX_VALID(b));
BC_SIG_LOCK;
// Reallocate if c == a.
if (c == a) {
ptr_a = &num2;
memcpy(ptr_a, c, sizeof(BcNum));
init = true;
}
else {
ptr_a = a;
}
// Also reallocate if c == b.
if (c == b) {
ptr_b = &num2;
if (c != a) {
memcpy(ptr_b, c, sizeof(BcNum));
init = true;
}
}
else {
ptr_b = b;
}
// Actually reallocate. If we don't reallocate, we want to expand at the
// very least.
if (init) {
bc_num_init(c, req);
// Must prepare for cleanup. We want this here so that locals that got
// set stay set since a longjmp() is not guaranteed to preserve locals.
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
}
else {
BC_SIG_UNLOCK;
bc_num_expand(c, req);
}
// It is okay for a and b to be the same. If a binary operator function does
// need them to be different, the binary operator function is responsible
// for that.
// Call the actual binary operator function.
op(ptr_a, ptr_b, c, scale);
assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c));
assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len);
assert(BC_NUM_RDX_VALID(c));
assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len);
err:
// Cleanup only needed if we initialized c to a new number.
if (init) {
BC_SIG_MAYLOCK;
bc_num_free(&num2);
BC_LONGJMP_CONT;
}
}
#if !defined(NDEBUG) || BC_ENABLE_LIBRARY
/**
* Tests a number string for validity. This function has a history; I originally
* wrote it because I did not trust my parser. Over time, however, I came to
* trust it, so I was able to relegate this function to debug builds only, and I
* used it in assert()'s. But then I created the library, and well, I can't
* trust users, so I reused this for yelling at users.
* @param val The string to check to see if it's a valid number string.
* @return True if the string is a valid number string, false otherwise.
*/
bool bc_num_strValid(const char *restrict val) {
bool radix = false;
size_t i, len = strlen(val);
// Notice that I don't check if there is a negative sign. That is not part
// of a valid number, except in the library. The library-specific code takes
// care of that part.
// Nothing in the string is okay.
if (!len) return true;
// Loop through the characters.
for (i = 0; i < len; ++i) {
BcDig c = val[i];
// If we have found a radix point...
if (c == '.') {
// We don't allow two radices.
if (radix) return false;
radix = true;
continue;
}
// We only allow digits and uppercase letters.
if (!(isdigit(c) || isupper(c))) return false;
}
return true;
}
#endif // !defined(NDEBUG) || BC_ENABLE_LIBRARY
/**
* Parses one character and returns the digit that corresponds to that
* character according to the base.
* @param c The character to parse.
* @param base The base.
* @return The character as a digit.
*/
static BcBigDig bc_num_parseChar(char c, size_t base) {
assert(isupper(c) || isdigit(c));
// If a letter...
if (isupper(c)) {
// This returns the digit that directly corresponds with the letter.
c = BC_NUM_NUM_LETTER(c);
// If the digit is greater than the base, we clamp.
c = ((size_t) c) >= base ? (char) base - 1 : c;
}
// Straight convert the digit to a number.
else c -= '0';
return (BcBigDig) (uchar) c;
}
/**
* Parses a string as a decimal number. This is separate because it's going to
* be the most used, and it can be heavily optimized for decimal only.
* @param n The number to parse into and return. Must be preallocated.
* @param val The string to parse.
*/
static void bc_num_parseDecimal(BcNum *restrict n, const char *restrict val) {
size_t len, i, temp, mod;
const char *ptr;
bool zero = true, rdx;
// Eat leading zeroes.
for (i = 0; val[i] == '0'; ++i);
val += i;
assert(!val[0] || isalnum(val[0]) || val[0] == '.');
// All 0's. We can just return, since this procedure expects a virgin
// (already 0) BcNum.
if (!val[0]) return;
// The length of the string is the length of the number, except it might be
// one bigger because of a decimal point.
len = strlen(val);
// Find the location of the decimal point.
ptr = strchr(val, '.');
rdx = (ptr != NULL);
// We eat leading zeroes again. These leading zeroes are different because
// they will come after the decimal point if they exist, and since that's
// the case, they must be preserved.
for (i = 0; i < len && (zero = (val[i] == '0' || val[i] == '.')); ++i);
// Set the scale of the number based on the location of the decimal point.
// The casts to uintptr_t is to ensure that bc does not hit undefined
// behavior when doing math on the values.
n->scale = (size_t) (rdx * (((uintptr_t) (val + len)) -
(((uintptr_t) ptr) + 1)));
// Set rdx.
BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale));
// Calculate length. First, the length of the integer, then the number of
// digits in the last limb, then the length.
i = len - (ptr == val ? 0 : i) - rdx;
temp = BC_NUM_ROUND_POW(i);
mod = n->scale % BC_BASE_DIGS;
i = mod ? BC_BASE_DIGS - mod : 0;
n->len = ((temp + i) / BC_BASE_DIGS);
// Expand and zero.
bc_num_expand(n, n->len);
memset(n->num, 0, BC_NUM_SIZE(n->len));
if (zero) {
// I think I can set rdx directly to zero here because n should be a
// new number with sign set to false.
n->len = n->rdx = 0;
}
else {
// There is actually stuff to parse if we make it here. Yay...
BcBigDig exp, pow;
assert(i <= BC_NUM_BIGDIG_MAX);
// The exponent and power.
exp = (BcBigDig) i;
pow = bc_num_pow10[exp];
// Parse loop. We parse backwards because numbers are stored little
// endian.
for (i = len - 1; i < len; --i, ++exp) {
char c = val[i];
// Skip the decimal point.
if (c == '.') exp -= 1;
else {
// The index of the limb.
size_t idx = exp / BC_BASE_DIGS;
// Clamp for the base.
if (isupper(c)) c = '9';
// Add the digit to the limb.
n->num[idx] += (((BcBigDig) c) - '0') * pow;
// Adjust the power and exponent.
if ((exp + 1) % BC_BASE_DIGS == 0) pow = 1;
else pow *= BC_BASE;
}
}
}
}
/**
* Parse a number in any base (besides decimal).
* @param n The number to parse into and return. Must be preallocated.
* @param val The string to parse.
* @param base The base to parse as.
*/
static void bc_num_parseBase(BcNum *restrict n, const char *restrict val,
BcBigDig base)
{
BcNum temp, mult1, mult2, result1, result2, *m1, *m2, *ptr;
char c = 0;
bool zero = true;
BcBigDig v;
size_t i, digs, len = strlen(val);
// If zero, just return because the number should be virgin (already 0).
for (i = 0; zero && i < len; ++i) zero = (val[i] == '.' || val[i] == '0');
if (zero) return;
BC_SIG_LOCK;
bc_num_init(&temp, BC_NUM_BIGDIG_LOG10);
bc_num_init(&mult1, BC_NUM_BIGDIG_LOG10);
BC_SETJMP_LOCKED(int_err);
BC_SIG_UNLOCK;
// We split parsing into parsing the integer and parsing the fractional
// part.
// Parse the integer part. This is the easy part because we just multiply
// the number by the base, then add the digit.
for (i = 0; i < len && (c = val[i]) && c != '.'; ++i) {
// Convert the character to a digit.
v = bc_num_parseChar(c, base);
// Multiply the number.
bc_num_mulArray(n, base, &mult1);
// Convert the digit to a number and add.
bc_num_bigdig2num(&temp, v);
bc_num_add(&mult1, &temp, n, 0);
}
// If this condition is true, then we are done. We still need to do cleanup
// though.
if (i == len && !val[i]) goto int_err;
// If we get here, we *must* be at the radix point.
assert(val[i] == '.');
BC_SIG_LOCK;
// Unset the jump to reset in for these new initializations.
BC_UNSETJMP;
bc_num_init(&mult2, BC_NUM_BIGDIG_LOG10);
bc_num_init(&result1, BC_NUM_DEF_SIZE);
bc_num_init(&result2, BC_NUM_DEF_SIZE);
bc_num_one(&mult1);
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
// Pointers for easy switching.
m1 = &mult1;
m2 = &mult2;
// Parse the fractional part. This is the hard part.
for (i += 1, digs = 0; i < len && (c = val[i]); ++i, ++digs) {
size_t rdx;
// Convert the character to a digit.
v = bc_num_parseChar(c, base);
// We keep growing result2 according to the base because the more digits
// after the radix, the more significant the digits close to the radix
// should be.
bc_num_mulArray(&result1, base, &result2);
// Convert the digit to a number.
bc_num_bigdig2num(&temp, v);
// Add the digit into the fraction part.
bc_num_add(&result2, &temp, &result1, 0);
// Keep growing m1 and m2 for use after the loop.
bc_num_mulArray(m1, base, m2);
rdx = BC_NUM_RDX_VAL(m2);
if (m2->len < rdx) m2->len = rdx;
// Switch.
ptr = m1;
m1 = m2;
m2 = ptr;
}
// This one cannot be a divide by 0 because mult starts out at 1, then is
// multiplied by base, and base cannot be 0, so mult cannot be 0. And this
// is the reason we keep growing m1 and m2; this division is what converts
// the parsed fractional part from an integer to a fractional part.
bc_num_div(&result1, m1, &result2, digs * 2);
// Pretruncate.
bc_num_truncate(&result2, digs);
// The final add of the integer part to the fractional part.
bc_num_add(n, &result2, n, digs);
// Basic cleanup.
if (BC_NUM_NONZERO(n)) {
if (n->scale < digs) bc_num_extend(n, digs - n->scale);
}
else bc_num_zero(n);
err:
BC_SIG_MAYLOCK;
bc_num_free(&result2);
bc_num_free(&result1);
bc_num_free(&mult2);
int_err:
BC_SIG_MAYLOCK;
bc_num_free(&mult1);
bc_num_free(&temp);
BC_LONGJMP_CONT;
}
/**
* Prints a backslash+newline combo if the number of characters needs it. This
* is really a convenience function.
*/
static inline void bc_num_printNewline(void) {
#if !BC_ENABLE_LIBRARY
if (vm.nchars >= vm.line_len - 1) {
bc_vm_putchar('\\', bc_flush_none);
bc_vm_putchar('\n', bc_flush_err);
}
#endif // !BC_ENABLE_LIBRARY
}
/**
* Prints a character after a backslash+newline, if needed.
* @param c The character to print.
* @param bslash Whether to print a backslash+newline.
*/
static void bc_num_putchar(int c, bool bslash) {
if (c != '\n' && bslash) bc_num_printNewline();
bc_vm_putchar(c, bc_flush_save);
}
#if !BC_ENABLE_LIBRARY
/**
* Prints a character for a number's digit. This is for printing for dc's P
* command. This function does not need to worry about radix points. This is a
* BcNumDigitOp.
* @param n The "digit" to print.
* @param len The "length" of the digit, or number of characters that will
* need to be printed for the digit.
* @param rdx True if a decimal (radix) point should be printed.
* @param bslash True if a backslash+newline should be printed if the character
* limit for the line is reached, false otherwise.
*/
static void bc_num_printChar(size_t n, size_t len, bool rdx, bool bslash) {
BC_UNUSED(rdx);
BC_UNUSED(len);
BC_UNUSED(bslash);
assert(len == 1);
bc_vm_putchar((uchar) n, bc_flush_save);
}
#endif // !BC_ENABLE_LIBRARY
/**
* Prints a series of characters for large bases. This is for printing in bases
* above hexadecimal. This is a BcNumDigitOp.
* @param n The "digit" to print.
* @param len The "length" of the digit, or number of characters that will
* need to be printed for the digit.
* @param rdx True if a decimal (radix) point should be printed.
* @param bslash True if a backslash+newline should be printed if the character
* limit for the line is reached, false otherwise.
*/
static void bc_num_printDigits(size_t n, size_t len, bool rdx, bool bslash) {
size_t exp, pow;
// If needed, print the radix; otherwise, print a space to separate digits.
bc_num_putchar(rdx ? '.' : ' ', true);
// Calculate the exponent and power.
for (exp = 0, pow = 1; exp < len - 1; ++exp, pow *= BC_BASE);
// Print each character individually.
for (exp = 0; exp < len; pow /= BC_BASE, ++exp) {
// The individual subdigit.
size_t dig = n / pow;
// Take the subdigit away.
n -= dig * pow;
// Print the subdigit.
bc_num_putchar(((uchar) dig) + '0', bslash || exp != len - 1);
}
}
/**
* Prints a character for a number's digit. This is for printing in bases for
* hexadecimal and below because they always print only one character at a time.
* This is a BcNumDigitOp.
* @param n The "digit" to print.
* @param len The "length" of the digit, or number of characters that will
* need to be printed for the digit.
* @param rdx True if a decimal (radix) point should be printed.
* @param bslash True if a backslash+newline should be printed if the character
* limit for the line is reached, false otherwise.
*/
static void bc_num_printHex(size_t n, size_t len, bool rdx, bool bslash) {
BC_UNUSED(len);
BC_UNUSED(bslash);
assert(len == 1);
if (rdx) bc_num_putchar('.', true);
bc_num_putchar(bc_num_hex_digits[n], bslash);
}
/**
* Prints a decimal number. This is specially written for optimization since
* this will be used the most and because bc's numbers are already in decimal.
* @param n The number to print.
* @param newline Whether to print backslash+newlines on long enough lines.
*/
static void bc_num_printDecimal(const BcNum *restrict n, bool newline) {
size_t i, j, rdx = BC_NUM_RDX_VAL(n);
bool zero = true;
size_t buffer[BC_BASE_DIGS];
// Print the sign.
if (BC_NUM_NEG(n)) bc_num_putchar('-', true);
// Print loop.
for (i = n->len - 1; i < n->len; --i) {
BcDig n9 = n->num[i];
size_t temp;
bool irdx = (i == rdx - 1);
// Calculate the number of digits in the limb.
zero = (zero & !irdx);
temp = n->scale % BC_BASE_DIGS;
temp = i || !temp ? 0 : BC_BASE_DIGS - temp;
memset(buffer, 0, BC_BASE_DIGS * sizeof(size_t));
// Fill the buffer with individual digits.
for (j = 0; n9 && j < BC_BASE_DIGS; ++j) {
buffer[j] = ((size_t) n9) % BC_BASE;
n9 /= BC_BASE;
}
// Print the digits in the buffer.
for (j = BC_BASE_DIGS - 1; j < BC_BASE_DIGS && j >= temp; --j) {
// Figure out whether to print the decimal point.
bool print_rdx = (irdx & (j == BC_BASE_DIGS - 1));
// The zero variable helps us skip leading zero digits in the limb.
zero = (zero && buffer[j] == 0);
if (!zero) {
// While the first three arguments should be self-explanatory,
// the last needs explaining. I don't want to print a newline
// when the last digit to be printed could take the place of the
// backslash rather than being pushed, as a single character, to
// the next line. That's what that last argument does for bc.
bc_num_printHex(buffer[j], 1, print_rdx,
!newline || (j > temp || i != 0));
}
}
}
}
#if BC_ENABLE_EXTRA_MATH
/**
* Prints a number in scientific or engineering format. When doing this, we are
* always printing in decimal.
* @param n The number to print.
* @param eng True if we are in engineering mode.
* @param newline Whether to print backslash+newlines on long enough lines.
*/
static void bc_num_printExponent(const BcNum *restrict n,
bool eng, bool newline)
{
size_t places, mod, nrdx = BC_NUM_RDX_VAL(n);
bool neg = (n->len <= nrdx);
BcNum temp, exp;
BcDig digs[BC_NUM_BIGDIG_LOG10];
BC_SIG_LOCK;
bc_num_createCopy(&temp, n);
BC_SETJMP_LOCKED(exit);
BC_SIG_UNLOCK;
// We need to calculate the exponents, and they change based on whether the
// number is all fractional or not, obviously.
if (neg) {
// Figure out how many limbs after the decimal point is zero.
size_t i, idx = bc_num_nonZeroLen(n) - 1;
places = 1;
// Figure out how much in the last limb is zero.
for (i = BC_BASE_DIGS - 1; i < BC_BASE_DIGS; --i) {
if (bc_num_pow10[i] > (BcBigDig) n->num[idx]) places += 1;
else break;
}
// Calculate the combination of zero limbs and zero digits in the last
// limb.
places += (nrdx - (idx + 1)) * BC_BASE_DIGS;
mod = places % 3;
// Calculate places if we are in engineering mode.
if (eng && mod != 0) places += 3 - mod;
// Shift the temp to the right place.
bc_num_shiftLeft(&temp, places);
}
else {
// This is the number of digits that we are supposed to put behind the
// decimal point.
places = bc_num_intDigits(n) - 1;
// Calculate the true number based on whether engineering mode is
// activated.
mod = places % 3;
if (eng && mod != 0) places -= 3 - (3 - mod);
// Shift the temp to the right place.
bc_num_shiftRight(&temp, places);
}
// Print the shifted number.
bc_num_printDecimal(&temp, newline);
// Print the e.
bc_num_putchar('e', !newline);
// Need to explicitly print a zero exponent.
if (!places) {
bc_num_printHex(0, 1, false, !newline);
goto exit;
}
// Need to print sign for the exponent.
if (neg) bc_num_putchar('-', true);
// Create a temporary for the exponent...
bc_num_setup(&exp, digs, BC_NUM_BIGDIG_LOG10);
bc_num_bigdig2num(&exp, (BcBigDig) places);
/// ..and print it.
bc_num_printDecimal(&exp, newline);
exit:
BC_SIG_MAYLOCK;
bc_num_free(&temp);
BC_LONGJMP_CONT;
}
#endif // BC_ENABLE_EXTRA_MATH
/**
* Converts a number from limbs with base BC_BASE_POW to base @a pow, where
* @a pow is obase^N.
* @param n The number to convert.
* @param rem BC_BASE_POW - @a pow.
* @param pow The power of obase we will convert the number to.
* @param idx The index of the number to start converting at. Doing the
* conversion is O(n^2); we have to sweep through starting at the
* least significant limb
*/
static void bc_num_printFixup(BcNum *restrict n, BcBigDig rem,
BcBigDig pow, size_t idx)
{
size_t i, len = n->len - idx;
BcBigDig acc;
BcDig *a = n->num + idx;
// Ignore if there's just one limb left. This is the part that requires the
// extra loop after the one calling this function in bc_num_printPrepare().
if (len < 2) return;
// Loop through the remaining limbs and convert. We start at the second limb
// because we pull the value from the previous one as well.
for (i = len - 1; i > 0; --i) {
// Get the limb and add it to the previous, along with multiplying by
// the remainder because that's the proper overflow. "acc" means
// "accumulator," by the way.
acc = ((BcBigDig) a[i]) * rem + ((BcBigDig) a[i - 1]);
// Store a value in base pow in the previous limb.
a[i - 1] = (BcDig) (acc % pow);
// Divide by the base and accumulate the remaining value in the limb.
acc /= pow;
acc += (BcBigDig) a[i];
// If the accumulator is greater than the base...
if (acc >= BC_BASE_POW) {
// Do we need to grow?
if (i == len - 1) {
// Grow.
len = bc_vm_growSize(len, 1);
bc_num_expand(n, bc_vm_growSize(len, idx));
// Update the pointer because it may have moved.
a = n->num + idx;
// Zero out the last limb.
a[len - 1] = 0;
}
// Overflow into the next limb since we are over the base.
a[i + 1] += acc / BC_BASE_POW;
acc %= BC_BASE_POW;
}
assert(acc < BC_BASE_POW);
// Set the limb.
a[i] = (BcDig) acc;
}
// We may have grown the number, so adjust the length.
n->len = len + idx;
}
/**
* Prepares a number for printing in a base that is not a divisor of
* BC_BASE_POW. This basically converts the number from having limbs of base
* BC_BASE_POW to limbs of pow, where pow is obase^N.
* @param n The number to prepare for printing.
* @param rem The remainder of BC_BASE_POW when divided by a power of the base.
* @param pow The power of the base.
*/
static void bc_num_printPrepare(BcNum *restrict n, BcBigDig rem, BcBigDig pow) {
size_t i;
// Loop from the least significant limb to the most significant limb and
// convert limbs in each pass.
for (i = 0; i < n->len; ++i) bc_num_printFixup(n, rem, pow, i);
// bc_num_printFixup() does not do everything it is supposed to, so we do
// the last bit of cleanup here. That cleanup is to ensure that each limb
// is less than pow and to expand the number to fit new limbs as necessary.
for (i = 0; i < n->len; ++i) {
assert(pow == ((BcBigDig) ((BcDig) pow)));
// If the limb needs fixing...
if (n->num[i] >= (BcDig) pow) {
// Do we need to grow?
if (i + 1 == n->len) {
// Grow the number.
n->len = bc_vm_growSize(n->len, 1);
bc_num_expand(n, n->len);
// Without this, we might use uninitialized data.
n->num[i + 1] = 0;
}
assert(pow < BC_BASE_POW);
// Overflow into the next limb.
n->num[i + 1] += n->num[i] / ((BcDig) pow);
n->num[i] %= (BcDig) pow;
}
}
}
static void bc_num_printNum(BcNum *restrict n, BcBigDig base, size_t len,
BcNumDigitOp print, bool newline)
{
BcVec stack;
BcNum intp, fracp1, fracp2, digit, flen1, flen2, *n1, *n2, *temp;
BcBigDig dig = 0, *ptr, acc, exp;
size_t i, j, nrdx, idigits;
bool radix;
BcDig digit_digs[BC_NUM_BIGDIG_LOG10 + 1];
assert(base > 1);
// Easy case. Even with scale, we just print this.
if (BC_NUM_ZERO(n)) {
print(0, len, false, !newline);
return;
}
// This function uses an algorithm that Stefan Esser <se@freebsd.org> came
// up with to print the integer part of a number. What it does is convert
// intp into a number of the specified base, but it does it directly,
// instead of just doing a series of divisions and printing the remainders
// in reverse order.
//
// Let me explain in a bit more detail:
//
// The algorithm takes the current least significant limb (after intp has
// been converted to an integer) and the next to least significant limb, and
// it converts the least significant limb into one of the specified base,
// putting any overflow into the next to least significant limb. It iterates
// through the whole number, from least significant to most significant,
// doing this conversion. At the end of that iteration, the least
// significant limb is converted, but the others are not, so it iterates
// again, starting at the next to least significant limb. It keeps doing
// that conversion, skipping one more limb than the last time, until all
// limbs have been converted. Then it prints them in reverse order.
//
// That is the gist of the algorithm. It leaves out several things, such as
// the fact that limbs are not always converted into the specified base, but
// into something close, basically a power of the specified base. In
// Stefan's words, "You could consider BcDigs to be of base 10^BC_BASE_DIGS
// in the normal case and obase^N for the largest value of N that satisfies
// obase^N <= 10^BC_BASE_DIGS. [This means that] the result is not in base
// "obase", but in base "obase^N", which happens to be printable as a number
// of base "obase" without consideration for neighbouring BcDigs." This fact
// is what necessitates the existence of the loop later in this function.
//
// The conversion happens in bc_num_printPrepare() where the outer loop
// happens and bc_num_printFixup() where the inner loop, or actual
// conversion, happens. In other words, bc_num_printPrepare() is where the
// loop that starts at the least significant limb and goes to the most
// significant limb. Then, on every iteration of its loop, it calls
// bc_num_printFixup(), which has the inner loop of actually converting
// the limbs it passes into limbs of base obase^N rather than base
// BC_BASE_POW.
nrdx = BC_NUM_RDX_VAL(n);
BC_SIG_LOCK;
// The stack is what allows us to reverse the digits for printing.
bc_vec_init(&stack, sizeof(BcBigDig), BC_DTOR_NONE);
bc_num_init(&fracp1, nrdx);
// intp will be the "integer part" of the number, so copy it.
bc_num_createCopy(&intp, n);
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
// Make intp an integer.
bc_num_truncate(&intp, intp.scale);
// Get the fractional part out.
bc_num_sub(n, &intp, &fracp1, 0);
// If the base is not the same as the last base used for printing, we need
// to update the cached exponent and power. Yes, we cache the values of the
// exponent and power. That is to prevent us from calculating them every
// time because printing will probably happen multiple times on the same
// base.
if (base != vm.last_base) {
vm.last_pow = 1;
vm.last_exp = 0;
// Calculate the exponent and power.
while (vm.last_pow * base <= BC_BASE_POW) {
vm.last_pow *= base;
vm.last_exp += 1;
}
// Also, the remainder and base itself.
vm.last_rem = BC_BASE_POW - vm.last_pow;
vm.last_base = base;
}
exp = vm.last_exp;
// If vm.last_rem is 0, then the base we are printing in is a divisor of
// BC_BASE_POW, which is the easy case because it means that BC_BASE_POW is
// a power of obase, and no conversion is needed. If it *is* 0, then we have
// the hard case, and we have to prepare the number for the base.
if (vm.last_rem != 0) bc_num_printPrepare(&intp, vm.last_rem, vm.last_pow);
// After the conversion comes the surprisingly easy part. From here on out,
// this is basically naive code that I wrote, adjusted for the larger bases.
// Fill the stack of digits for the integer part.
for (i = 0; i < intp.len; ++i) {
// Get the limb.
acc = (BcBigDig) intp.num[i];
// Turn the limb into digits of base obase.
for (j = 0; j < exp && (i < intp.len - 1 || acc != 0); ++j)
{
// This condition is true if we are not at the last digit.
if (j != exp - 1) {
dig = acc % base;
acc /= base;
}
else {
dig = acc;
acc = 0;
}
assert(dig < base);
// Push the digit onto the stack.
bc_vec_push(&stack, &dig);
}
assert(acc == 0);
}
// Go through the stack backwards and print each digit.
for (i = 0; i < stack.len; ++i) {
ptr = bc_vec_item_rev(&stack, i);
assert(ptr != NULL);
// While the first three arguments should be self-explanatory, the last
// needs explaining. I don't want to print a newline when the last digit
// to be printed could take the place of the backslash rather than being
// pushed, as a single character, to the next line. That's what that
// last argument does for bc.
print(*ptr, len, false, !newline ||
(n->scale != 0 || i == stack.len - 1));
}
// We are done if there is no fractional part.
if (!n->scale) goto err;
BC_SIG_LOCK;
// Reset the jump because some locals are changing.
BC_UNSETJMP;
bc_num_init(&fracp2, nrdx);
bc_num_setup(&digit, digit_digs, sizeof(digit_digs) / sizeof(BcDig));
bc_num_init(&flen1, BC_NUM_BIGDIG_LOG10);
bc_num_init(&flen2, BC_NUM_BIGDIG_LOG10);
BC_SETJMP_LOCKED(frac_err);
BC_SIG_UNLOCK;
bc_num_one(&flen1);
radix = true;
// Pointers for easy switching.
n1 = &flen1;
n2 = &flen2;
fracp2.scale = n->scale;
BC_NUM_RDX_SET_NP(fracp2, BC_NUM_RDX(fracp2.scale));
// As long as we have not reached the scale of the number, keep printing.
while ((idigits = bc_num_intDigits(n1)) <= n->scale) {
// These numbers will keep growing.
bc_num_expand(&fracp2, fracp1.len + 1);
bc_num_mulArray(&fracp1, base, &fracp2);
nrdx = BC_NUM_RDX_VAL_NP(fracp2);
// Ensure an invariant.
if (fracp2.len < nrdx) fracp2.len = nrdx;
// fracp is guaranteed to be non-negative and small enough.
dig = bc_num_bigdig2(&fracp2);
// Convert the digit to a number and subtract it from the number.
bc_num_bigdig2num(&digit, dig);
bc_num_sub(&fracp2, &digit, &fracp1, 0);
// While the first three arguments should be self-explanatory, the last
// needs explaining. I don't want to print a newline when the last digit
// to be printed could take the place of the backslash rather than being
// pushed, as a single character, to the next line. That's what that
// last argument does for bc.
print(dig, len, radix, !newline || idigits != n->scale);
// Update the multipliers.
bc_num_mulArray(n1, base, n2);
radix = false;
// Switch.
temp = n1;
n1 = n2;
n2 = temp;
}
frac_err:
BC_SIG_MAYLOCK;
bc_num_free(&flen2);
bc_num_free(&flen1);
bc_num_free(&fracp2);
err:
BC_SIG_MAYLOCK;
bc_num_free(&fracp1);
bc_num_free(&intp);
bc_vec_free(&stack);
BC_LONGJMP_CONT;
}
/**
* Prints a number in the specified base, or rather, figures out which function
* to call to print the number in the specified base and calls it.
* @param n The number to print.
* @param base The base to print in.
* @param newline Whether to print backslash+newlines on long enough lines.
*/
static void bc_num_printBase(BcNum *restrict n, BcBigDig base, bool newline) {
size_t width;
BcNumDigitOp print;
bool neg = BC_NUM_NEG(n);
// Just take care of the sign right here.
if (neg) bc_num_putchar('-', true);
// Clear the sign because it makes the actual printing easier when we have
// to do math.
BC_NUM_NEG_CLR(n);
// Bases at hexadecimal and below are printed as one character, larger bases
// are printed as a series of digits separated by spaces.
if (base <= BC_NUM_MAX_POSIX_IBASE) {
width = 1;
print = bc_num_printHex;
}
else {
assert(base <= BC_BASE_POW);
width = bc_num_log10(base - 1);
print = bc_num_printDigits;
}
// Print.
bc_num_printNum(n, base, width, print, newline);
// Reset the sign.
n->rdx = BC_NUM_NEG_VAL(n, neg);
}
#if !BC_ENABLE_LIBRARY
void bc_num_stream(BcNum *restrict n) {
bc_num_printNum(n, BC_NUM_STREAM_BASE, 1, bc_num_printChar, false);
}
#endif // !BC_ENABLE_LIBRARY
void bc_num_setup(BcNum *restrict n, BcDig *restrict num, size_t cap) {
assert(n != NULL);
n->num = num;
n->cap = cap;
bc_num_zero(n);
}
void bc_num_init(BcNum *restrict n, size_t req) {
BcDig *num;
BC_SIG_ASSERT_LOCKED;
assert(n != NULL);
// BC_NUM_DEF_SIZE is set to be about the smallest allocation size that
// malloc() returns in practice, so just use it.
req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE;
// If we can't use a temp, allocate.
if (req != BC_NUM_DEF_SIZE || (num = bc_vm_takeTemp()) == NULL)
num = bc_vm_malloc(BC_NUM_SIZE(req));
bc_num_setup(n, num, req);
}
void bc_num_clear(BcNum *restrict n) {
n->num = NULL;
n->cap = 0;
}
void bc_num_free(void *num) {
BcNum *n = (BcNum*) num;
BC_SIG_ASSERT_LOCKED;
assert(n != NULL);
if (n->cap == BC_NUM_DEF_SIZE) bc_vm_addTemp(n->num);
else free(n->num);
}
void bc_num_copy(BcNum *d, const BcNum *s) {
assert(d != NULL && s != NULL);
if (d == s) return;
bc_num_expand(d, s->len);
d->len = s->len;
// I can just copy directly here because the sign *and* rdx will be
// properly preserved.
d->rdx = s->rdx;
d->scale = s->scale;
memcpy(d->num, s->num, BC_NUM_SIZE(d->len));
}
void bc_num_createCopy(BcNum *d, const BcNum *s) {
BC_SIG_ASSERT_LOCKED;
bc_num_init(d, s->len);
bc_num_copy(d, s);
}
void bc_num_createFromBigdig(BcNum *restrict n, BcBigDig val) {
BC_SIG_ASSERT_LOCKED;
bc_num_init(n, BC_NUM_BIGDIG_LOG10);
bc_num_bigdig2num(n, val);
}
size_t bc_num_scale(const BcNum *restrict n) {
return n->scale;
}
size_t bc_num_len(const BcNum *restrict n) {
size_t len = n->len;
// Always return at least 1.
if (BC_NUM_ZERO(n)) return n->scale ? n->scale : 1;
// If this is true, there is no integer portion of the number.
if (BC_NUM_RDX_VAL(n) == len) {
// We have to take into account the fact that some of the digits right
// after the decimal could be zero. If that is the case, we need to
// ignore them until we hit the first non-zero digit.
size_t zero, scale;
// The number of limbs with non-zero digits.
len = bc_num_nonZeroLen(n);
// Get the number of digits in the last limb.
scale = n->scale % BC_BASE_DIGS;
scale = scale ? scale : BC_BASE_DIGS;
// Get the number of zero digits.
zero = bc_num_zeroDigits(n->num + len - 1);
// Calculate the true length.
len = len * BC_BASE_DIGS - zero - (BC_BASE_DIGS - scale);
}
// Otherwise, count the number of int digits and return that plus the scale.
else len = bc_num_intDigits(n) + n->scale;
return len;
}
void bc_num_parse(BcNum *restrict n, const char *restrict val, BcBigDig base) {
assert(n != NULL && val != NULL && base);
assert(base >= BC_NUM_MIN_BASE && base <= vm.maxes[BC_PROG_GLOBALS_IBASE]);
assert(bc_num_strValid(val));
// A one character number is *always* parsed as though the base was the
// maximum allowed ibase, per the bc spec.
if (!val[1]) {
BcBigDig dig = bc_num_parseChar(val[0], BC_NUM_MAX_LBASE);
bc_num_bigdig2num(n, dig);
}
else if (base == BC_BASE) bc_num_parseDecimal(n, val);
else bc_num_parseBase(n, val, base);
assert(BC_NUM_RDX_VALID(n));
}
void bc_num_print(BcNum *restrict n, BcBigDig base, bool newline) {
assert(n != NULL);
assert(BC_ENABLE_EXTRA_MATH || base >= BC_NUM_MIN_BASE);
// We may need a newline, just to start.
bc_num_printNewline();
// Short-circuit 0.
if (BC_NUM_ZERO(n)) bc_num_printHex(0, 1, false, !newline);
else if (base == BC_BASE) bc_num_printDecimal(n, newline);
#if BC_ENABLE_EXTRA_MATH
else if (base == 0 || base == 1)
bc_num_printExponent(n, base != 0, newline);
#endif // BC_ENABLE_EXTRA_MATH
else bc_num_printBase(n, base, newline);
if (newline) bc_num_putchar('\n', false);
}
BcBigDig bc_num_bigdig2(const BcNum *restrict n) {
// This function returns no errors because it's guaranteed to succeed if
// its preconditions are met. Those preconditions include both n needs to
// be non-NULL, n being non-negative, and n being less than vm.max. If all
// of that is true, then we can just convert without worrying about negative
// errors or overflow.
BcBigDig r = 0;
size_t nrdx = BC_NUM_RDX_VAL(n);
assert(n != NULL);
assert(!BC_NUM_NEG(n));
assert(bc_num_cmp(n, &vm.max) < 0);
assert(n->len - nrdx <= 3);
// There is a small speed win from unrolling the loop here, and since it
// only adds 53 bytes, I decided that it was worth it.
switch (n->len - nrdx) {
case 3:
{
r = (BcBigDig) n->num[nrdx + 2];
}
// Fallthrough.
BC_FALLTHROUGH
case 2:
{
r = r * BC_BASE_POW + (BcBigDig) n->num[nrdx + 1];
}
// Fallthrough.
BC_FALLTHROUGH
case 1:
{
r = r * BC_BASE_POW + (BcBigDig) n->num[nrdx];
}
}
return r;
}
BcBigDig bc_num_bigdig(const BcNum *restrict n) {
assert(n != NULL);
// This error checking is extremely important, and if you do not have a
// guarantee that converting a number will always succeed in a particular
// case, you *must* call this function to get these error checks. This
// includes all instances of numbers inputted by the user or calculated by
// the user. Otherwise, you can call the faster bc_num_bigdig2().
if (BC_ERR(BC_NUM_NEG(n))) bc_err(BC_ERR_MATH_NEGATIVE);
if (BC_ERR(bc_num_cmp(n, &vm.max) >= 0)) bc_err(BC_ERR_MATH_OVERFLOW);
return bc_num_bigdig2(n);
}
void bc_num_bigdig2num(BcNum *restrict n, BcBigDig val) {
BcDig *ptr;
size_t i;
assert(n != NULL);
bc_num_zero(n);
// Already 0.
if (!val) return;
// Expand first. This is the only way this function can fail, and it's a
// fatal error.
bc_num_expand(n, BC_NUM_BIGDIG_LOG10);
// The conversion is easy because numbers are laid out in little-endian
// order.
for (ptr = n->num, i = 0; val; ++i, val /= BC_BASE_POW)
ptr[i] = val % BC_BASE_POW;
n->len = i;
}
#if BC_ENABLE_EXTRA_MATH
void bc_num_rng(const BcNum *restrict n, BcRNG *rng) {
BcNum temp, temp2, intn, frac;
BcRand state1, state2, inc1, inc2;
size_t nrdx = BC_NUM_RDX_VAL(n);
// This function holds the secret of how I interpret a seed number for the
// PRNG. Well, it's actually in the development manual
// (manuals/development.md#pseudo-random-number-generator), so look there
// before you try to understand this.
BC_SIG_LOCK;
bc_num_init(&temp, n->len);
bc_num_init(&temp2, n->len);
bc_num_init(&frac, nrdx);
bc_num_init(&intn, bc_num_int(n));
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
assert(BC_NUM_RDX_VALID_NP(vm.max));
memcpy(frac.num, n->num, BC_NUM_SIZE(nrdx));
frac.len = nrdx;
BC_NUM_RDX_SET_NP(frac, nrdx);
frac.scale = n->scale;
assert(BC_NUM_RDX_VALID_NP(frac));
assert(BC_NUM_RDX_VALID_NP(vm.max2));
// Multiply the fraction and truncate so that it's an integer. The
// truncation is what clamps it, by the way.
bc_num_mul(&frac, &vm.max2, &temp, 0);
bc_num_truncate(&temp, temp.scale);
bc_num_copy(&frac, &temp);
// Get the integer.
memcpy(intn.num, n->num + nrdx, BC_NUM_SIZE(bc_num_int(n)));
intn.len = bc_num_int(n);
// This assert is here because it has to be true. It is also here to justify
// some optimizations.
assert(BC_NUM_NONZERO(&vm.max));
// If there *was* a fractional part...
if (BC_NUM_NONZERO(&frac)) {
// This divmod splits frac into the two state parts.
bc_num_divmod(&frac, &vm.max, &temp, &temp2, 0);
// frac is guaranteed to be smaller than vm.max * vm.max (pow).
// This means that when dividing frac by vm.max, as above, the
// quotient and remainder are both guaranteed to be less than vm.max,
// which means we can use bc_num_bigdig2() here and not worry about
// overflow.
state1 = (BcRand) bc_num_bigdig2(&temp2);
state2 = (BcRand) bc_num_bigdig2(&temp);
}
else state1 = state2 = 0;
// If there *was* an integer part...
if (BC_NUM_NONZERO(&intn)) {
// This divmod splits intn into the two inc parts.
bc_num_divmod(&intn, &vm.max, &temp, &temp2, 0);
// Because temp2 is the mod of vm.max, from above, it is guaranteed
// to be small enough to use bc_num_bigdig2().
inc1 = (BcRand) bc_num_bigdig2(&temp2);
// Clamp the second inc part.
if (bc_num_cmp(&temp, &vm.max) >= 0) {
bc_num_copy(&temp2, &temp);
bc_num_mod(&temp2, &vm.max, &temp, 0);
}
// The if statement above ensures that temp is less than vm.max, which
// means that we can use bc_num_bigdig2() here.
inc2 = (BcRand) bc_num_bigdig2(&temp);
}
else inc1 = inc2 = 0;
bc_rand_seed(rng, state1, state2, inc1, inc2);
err:
BC_SIG_MAYLOCK;
bc_num_free(&intn);
bc_num_free(&frac);
bc_num_free(&temp2);
bc_num_free(&temp);
BC_LONGJMP_CONT;
}
void bc_num_createFromRNG(BcNum *restrict n, BcRNG *rng) {
BcRand s1, s2, i1, i2;
BcNum conv, temp1, temp2, temp3;
BcDig temp1_num[BC_RAND_NUM_SIZE], temp2_num[BC_RAND_NUM_SIZE];
BcDig conv_num[BC_NUM_BIGDIG_LOG10];
BC_SIG_LOCK;
bc_num_init(&temp3, 2 * BC_RAND_NUM_SIZE);
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
bc_num_setup(&temp1, temp1_num, sizeof(temp1_num) / sizeof(BcDig));
bc_num_setup(&temp2, temp2_num, sizeof(temp2_num) / sizeof(BcDig));
bc_num_setup(&conv, conv_num, sizeof(conv_num) / sizeof(BcDig));
// This assert is here because it has to be true. It is also here to justify
// the assumption that vm.max is not zero.
assert(BC_NUM_NONZERO(&vm.max));
// Because this is true, we can just ignore math errors that would happen
// otherwise.
assert(BC_NUM_NONZERO(&vm.max2));
bc_rand_getRands(rng, &s1, &s2, &i1, &i2);
// Put the second piece of state into a number.
bc_num_bigdig2num(&conv, (BcBigDig) s2);
assert(BC_NUM_RDX_VALID_NP(conv));
// Multiply by max to make room for the first piece of state.
bc_num_mul(&conv, &vm.max, &temp1, 0);
// Add in the first piece of state.
bc_num_bigdig2num(&conv, (BcBigDig) s1);
bc_num_add(&conv, &temp1, &temp2, 0);
// Divide to make it an entirely fractional part.
bc_num_div(&temp2, &vm.max2, &temp3, BC_RAND_STATE_BITS);
// Now start on the increment parts. It's the same process without the
// divide, so put the second piece of increment into a number.
bc_num_bigdig2num(&conv, (BcBigDig) i2);
assert(BC_NUM_RDX_VALID_NP(conv));
// Multiply by max to make room for the first piece of increment.
bc_num_mul(&conv, &vm.max, &temp1, 0);
// Add in the first piece of increment.
bc_num_bigdig2num(&conv, (BcBigDig) i1);
bc_num_add(&conv, &temp1, &temp2, 0);
// Now add the two together.
bc_num_add(&temp2, &temp3, n, 0);
assert(BC_NUM_RDX_VALID(n));
err:
BC_SIG_MAYLOCK;
bc_num_free(&temp3);
BC_LONGJMP_CONT;
}
void bc_num_irand(BcNum *restrict a, BcNum *restrict b, BcRNG *restrict rng) {
BcNum atemp;
size_t i, len;
assert(a != b);
if (BC_ERR(BC_NUM_NEG(a))) bc_err(BC_ERR_MATH_NEGATIVE);
// If either of these are true, then the numbers are integers.
if (BC_NUM_ZERO(a) || BC_NUM_ONE(a)) return;
if (BC_ERR(bc_num_nonInt(a, &atemp))) bc_err(BC_ERR_MATH_NON_INTEGER);
assert(atemp.len);
len = atemp.len - 1;
// Just generate a random number for each limb.
for (i = 0; i < len; ++i)
b->num[i] = (BcDig) bc_rand_bounded(rng, BC_BASE_POW);
// Do the last digit explicitly because the bound must be right. But only
// do it if the limb does not equal 1. If it does, we have already hit the
// limit.
if (atemp.num[i] != 1) {
b->num[i] = (BcDig) bc_rand_bounded(rng, (BcRand) atemp.num[i]);
b->len = atemp.len;
}
// We want 1 less len in the case where we skip the last limb.
else b->len = len;
bc_num_clean(b);
assert(BC_NUM_RDX_VALID(b));
}
#endif // BC_ENABLE_EXTRA_MATH
size_t bc_num_addReq(const BcNum *a, const BcNum *b, size_t scale) {
size_t aint, bint, ardx, brdx;
// Addition and subtraction require the max of the length of the two numbers
// plus 1.
BC_UNUSED(scale);
ardx = BC_NUM_RDX_VAL(a);
aint = bc_num_int(a);
assert(aint <= a->len && ardx <= a->len);
brdx = BC_NUM_RDX_VAL(b);
bint = bc_num_int(b);
assert(bint <= b->len && brdx <= b->len);
ardx = BC_MAX(ardx, brdx);
aint = BC_MAX(aint, bint);
return bc_vm_growSize(bc_vm_growSize(ardx, aint), 1);
}
size_t bc_num_mulReq(const BcNum *a, const BcNum *b, size_t scale) {
size_t max, rdx;
// Multiplication requires the sum of the lengths of the numbers.
rdx = bc_vm_growSize(BC_NUM_RDX_VAL(a), BC_NUM_RDX_VAL(b));
max = BC_NUM_RDX(scale);
max = bc_vm_growSize(BC_MAX(max, rdx), 1);
rdx = bc_vm_growSize(bc_vm_growSize(bc_num_int(a), bc_num_int(b)), max);
return rdx;
}
size_t bc_num_divReq(const BcNum *a, const BcNum *b, size_t scale) {
size_t max, rdx;
// Division requires the length of the dividend plus the scale.
rdx = bc_vm_growSize(BC_NUM_RDX_VAL(a), BC_NUM_RDX_VAL(b));
max = BC_NUM_RDX(scale);
max = bc_vm_growSize(BC_MAX(max, rdx), 1);
rdx = bc_vm_growSize(bc_num_int(a), max);
return rdx;
}
size_t bc_num_powReq(const BcNum *a, const BcNum *b, size_t scale) {
BC_UNUSED(scale);
return bc_vm_growSize(bc_vm_growSize(a->len, b->len), 1);
}
#if BC_ENABLE_EXTRA_MATH
size_t bc_num_placesReq(const BcNum *a, const BcNum *b, size_t scale) {
BC_UNUSED(scale);
return a->len + b->len - BC_NUM_RDX_VAL(a) - BC_NUM_RDX_VAL(b);
}
#endif // BC_ENABLE_EXTRA_MATH
void bc_num_add(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
assert(BC_NUM_RDX_VALID(a));
assert(BC_NUM_RDX_VALID(b));
bc_num_binary(a, b, c, false, bc_num_as, bc_num_addReq(a, b, scale));
}
void bc_num_sub(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
assert(BC_NUM_RDX_VALID(a));
assert(BC_NUM_RDX_VALID(b));
bc_num_binary(a, b, c, true, bc_num_as, bc_num_addReq(a, b, scale));
}
void bc_num_mul(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
assert(BC_NUM_RDX_VALID(a));
assert(BC_NUM_RDX_VALID(b));
bc_num_binary(a, b, c, scale, bc_num_m, bc_num_mulReq(a, b, scale));
}
void bc_num_div(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
assert(BC_NUM_RDX_VALID(a));
assert(BC_NUM_RDX_VALID(b));
bc_num_binary(a, b, c, scale, bc_num_d, bc_num_divReq(a, b, scale));
}
void bc_num_mod(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
assert(BC_NUM_RDX_VALID(a));
assert(BC_NUM_RDX_VALID(b));
bc_num_binary(a, b, c, scale, bc_num_rem, bc_num_divReq(a, b, scale));
}
void bc_num_pow(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
assert(BC_NUM_RDX_VALID(a));
assert(BC_NUM_RDX_VALID(b));
bc_num_binary(a, b, c, scale, bc_num_p, bc_num_powReq(a, b, scale));
}
#if BC_ENABLE_EXTRA_MATH
void bc_num_places(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
assert(BC_NUM_RDX_VALID(a));
assert(BC_NUM_RDX_VALID(b));
bc_num_binary(a, b, c, scale, bc_num_place, bc_num_placesReq(a, b, scale));
}
void bc_num_lshift(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
assert(BC_NUM_RDX_VALID(a));
assert(BC_NUM_RDX_VALID(b));
bc_num_binary(a, b, c, scale, bc_num_left, bc_num_placesReq(a, b, scale));
}
void bc_num_rshift(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
assert(BC_NUM_RDX_VALID(a));
assert(BC_NUM_RDX_VALID(b));
bc_num_binary(a, b, c, scale, bc_num_right, bc_num_placesReq(a, b, scale));
}
#endif // BC_ENABLE_EXTRA_MATH
void bc_num_sqrt(BcNum *restrict a, BcNum *restrict b, size_t scale) {
BcNum num1, num2, half, f, fprime, *x0, *x1, *temp;
size_t pow, len, rdx, req, resscale;
BcDig half_digs[1];
assert(a != NULL && b != NULL && a != b);
if (BC_ERR(BC_NUM_NEG(a))) bc_err(BC_ERR_MATH_NEGATIVE);
// We want to calculate to a's scale if it is bigger so that the result will
// truncate properly.
if (a->scale > scale) scale = a->scale;
// Set parameters for the result.
len = bc_vm_growSize(bc_num_intDigits(a), 1);
rdx = BC_NUM_RDX(scale);
// Square root needs half of the length of the parameter.
req = bc_vm_growSize(BC_MAX(rdx, BC_NUM_RDX_VAL(a)), len >> 1);
BC_SIG_LOCK;
// Unlike the binary operators, this function is the only single parameter
// function and is expected to initialize the result. This means that it
// expects that b is *NOT* preallocated. We allocate it here.
bc_num_init(b, bc_vm_growSize(req, 1));
BC_SIG_UNLOCK;
assert(a != NULL && b != NULL && a != b);
assert(a->num != NULL && b->num != NULL);
// Easy case.
if (BC_NUM_ZERO(a)) {
bc_num_setToZero(b, scale);
return;
}
// Another easy case.
if (BC_NUM_ONE(a)) {
bc_num_one(b);
bc_num_extend(b, scale);
return;
}
// Set the parameters again.
rdx = BC_NUM_RDX(scale);
rdx = BC_MAX(rdx, BC_NUM_RDX_VAL(a));
len = bc_vm_growSize(a->len, rdx);
BC_SIG_LOCK;
bc_num_init(&num1, len);
bc_num_init(&num2, len);
bc_num_setup(&half, half_digs, sizeof(half_digs) / sizeof(BcDig));
// There is a division by two in the formula. We setup a number that's 1/2
// so that we can use multiplication instead of heavy division.
bc_num_one(&half);
half.num[0] = BC_BASE_POW / 2;
half.len = 1;
BC_NUM_RDX_SET_NP(half, 1);
half.scale = 1;
bc_num_init(&f, len);
bc_num_init(&fprime, len);
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
// Pointers for easy switching.
x0 = &num1;
x1 = &num2;
// Start with 1.
bc_num_one(x0);
// The power of the operand is needed for the estimate.
pow = bc_num_intDigits(a);
// The code in this if statement calculates the initial estimate. First, if
// a is less than 0, then 0 is a good estimate. Otherwise, we want something
// in the same ballpark. That ballpark is pow.
if (pow) {
// An odd number is served by starting with 2^((pow-1)/2), and an even
// number is served by starting with 6^((pow-2)/2). Why? Because math.
if (pow & 1) x0->num[0] = 2;
else x0->num[0] = 6;
pow -= 2 - (pow & 1);
bc_num_shiftLeft(x0, pow / 2);
}
// I can set the rdx here directly because neg should be false.
x0->scale = x0->rdx = 0;
resscale = (scale + BC_BASE_DIGS) + 2;
// This is the calculation loop. This compare goes to 0 eventually as the
// difference between the two numbers gets smaller than resscale.
while (bc_num_cmp(x1, x0)) {
assert(BC_NUM_NONZERO(x0));
// This loop directly corresponds to the iteration in Newton's method.
// If you know the formula, this loop makes sense. Go study the formula.
bc_num_div(a, x0, &f, resscale);
bc_num_add(x0, &f, &fprime, resscale);
assert(BC_NUM_RDX_VALID_NP(fprime));
assert(BC_NUM_RDX_VALID_NP(half));
bc_num_mul(&fprime, &half, x1, resscale);
// Switch.
temp = x0;
x0 = x1;
x1 = temp;
}
// Copy to the result and truncate.
bc_num_copy(b, x0);
if (b->scale > scale) bc_num_truncate(b, b->scale - scale);
assert(!BC_NUM_NEG(b) || BC_NUM_NONZERO(b));
assert(BC_NUM_RDX_VALID(b));
assert(BC_NUM_RDX_VAL(b) <= b->len || !b->len);
assert(!b->len || b->num[b->len - 1] || BC_NUM_RDX_VAL(b) == b->len);
err:
BC_SIG_MAYLOCK;
bc_num_free(&fprime);
bc_num_free(&f);
bc_num_free(&num2);
bc_num_free(&num1);
BC_LONGJMP_CONT;
}
void bc_num_divmod(BcNum *a, BcNum *b, BcNum *c, BcNum *d, size_t scale) {
size_t ts, len;
BcNum *ptr_a, num2;
bool init = false;
// The bulk of this function is just doing what bc_num_binary() does for the
// binary operators. However, it assumes that only c and a can be equal.
// Set up the parameters.
ts = BC_MAX(scale + b->scale, a->scale);
len = bc_num_mulReq(a, b, ts);
assert(a != NULL && b != NULL && c != NULL && d != NULL);
assert(c != d && a != d && b != d && b != c);
// Initialize or expand as necessary.
if (c == a) {
memcpy(&num2, c, sizeof(BcNum));
ptr_a = &num2;
BC_SIG_LOCK;
bc_num_init(c, len);
init = true;
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
}
else {
ptr_a = a;
bc_num_expand(c, len);
}
// Do the quick version if possible.
if (BC_NUM_NONZERO(a) && !BC_NUM_RDX_VAL(a) &&
!BC_NUM_RDX_VAL(b) && b->len == 1 && !scale)
{
BcBigDig rem;
bc_num_divArray(ptr_a, (BcBigDig) b->num[0], c, &rem);
assert(rem < BC_BASE_POW);
d->num[0] = (BcDig) rem;
d->len = (rem != 0);
}
// Do the slow method.
else bc_num_r(ptr_a, b, c, d, scale, ts);
assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c));
assert(BC_NUM_RDX_VALID(c));
assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len);
assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len);
assert(!BC_NUM_NEG(d) || BC_NUM_NONZERO(d));
assert(BC_NUM_RDX_VALID(d));
assert(BC_NUM_RDX_VAL(d) <= d->len || !d->len);
assert(!d->len || d->num[d->len - 1] || BC_NUM_RDX_VAL(d) == d->len);
err:
// Only cleanup if we initialized.
if (init) {
BC_SIG_MAYLOCK;
bc_num_free(&num2);
BC_LONGJMP_CONT;
}
}
void bc_num_modexp(BcNum *a, BcNum *b, BcNum *c, BcNum *restrict d) {
BcNum base, exp, two, temp, atemp, btemp, ctemp;
BcDig two_digs[2];
assert(a != NULL && b != NULL && c != NULL && d != NULL);
assert(a != d && b != d && c != d);
if (BC_ERR(BC_NUM_ZERO(c))) bc_err(BC_ERR_MATH_DIVIDE_BY_ZERO);
if (BC_ERR(BC_NUM_NEG(b))) bc_err(BC_ERR_MATH_NEGATIVE);
#ifndef NDEBUG
// This is entirely for quieting a useless scan-build error.
btemp.len = 0;
ctemp.len = 0;
#endif // NDEBUG
// Eliminate fractional parts that are zero or error if they are not zero.
if (BC_ERR(bc_num_nonInt(a, &atemp) || bc_num_nonInt(b, &btemp) ||
bc_num_nonInt(c, &ctemp)))
{
bc_err(BC_ERR_MATH_NON_INTEGER);
}
bc_num_expand(d, ctemp.len);
BC_SIG_LOCK;
bc_num_init(&base, ctemp.len);
bc_num_setup(&two, two_digs, sizeof(two_digs) / sizeof(BcDig));
bc_num_init(&temp, btemp.len + 1);
bc_num_createCopy(&exp, &btemp);
BC_SETJMP_LOCKED(err);
BC_SIG_UNLOCK;
bc_num_one(&two);
two.num[0] = 2;
bc_num_one(d);
// We already checked for 0.
bc_num_rem(&atemp, &ctemp, &base, 0);
// If you know the algorithm I used, the memory-efficient method, then this
// loop should be self-explanatory because it is the calculation loop.
while (BC_NUM_NONZERO(&exp)) {
// Num two cannot be 0, so no errors.
bc_num_divmod(&exp, &two, &exp, &temp, 0);
if (BC_NUM_ONE(&temp) && !BC_NUM_NEG_NP(temp)) {
assert(BC_NUM_RDX_VALID(d));
assert(BC_NUM_RDX_VALID_NP(base));
bc_num_mul(d, &base, &temp, 0);
// We already checked for 0.
bc_num_rem(&temp, &ctemp, d, 0);
}
assert(BC_NUM_RDX_VALID_NP(base));
bc_num_mul(&base, &base, &temp, 0);
// We already checked for 0.
bc_num_rem(&temp, &ctemp, &base, 0);
}
err:
BC_SIG_MAYLOCK;
bc_num_free(&exp);
bc_num_free(&temp);
bc_num_free(&base);
BC_LONGJMP_CONT;
assert(!BC_NUM_NEG(d) || d->len);
assert(BC_NUM_RDX_VALID(d));
assert(!d->len || d->num[d->len - 1] || BC_NUM_RDX_VAL(d) == d->len);
}
#if BC_DEBUG_CODE
void bc_num_printDebug(const BcNum *n, const char *name, bool emptyline) {
bc_file_puts(&vm.fout, bc_flush_none, name);
bc_file_puts(&vm.fout, bc_flush_none, ": ");
bc_num_printDecimal(n, true);
bc_file_putchar(&vm.fout, bc_flush_err, '\n');
if (emptyline) bc_file_putchar(&vm.fout, bc_flush_err, '\n');
vm.nchars = 0;
}
void bc_num_printDigs(const BcDig *n, size_t len, bool emptyline) {
size_t i;
for (i = len - 1; i < len; --i)
bc_file_printf(&vm.fout, " %lu", (unsigned long) n[i]);
bc_file_putchar(&vm.fout, bc_flush_err, '\n');
if (emptyline) bc_file_putchar(&vm.fout, bc_flush_err, '\n');
vm.nchars = 0;
}
void bc_num_printWithDigs(const BcNum *n, const char *name, bool emptyline) {
bc_file_puts(&vm.fout, bc_flush_none, name);
bc_file_printf(&vm.fout, " len: %zu, rdx: %zu, scale: %zu\n",
name, n->len, BC_NUM_RDX_VAL(n), n->scale);
bc_num_printDigs(n->num, n->len, emptyline);
}
void bc_num_dump(const char *varname, const BcNum *n) {
ulong i, scale = n->scale;
bc_file_printf(&vm.ferr, "\n%s = %s", varname,
n->len ? (BC_NUM_NEG(n) ? "-" : "+") : "0 ");
for (i = n->len - 1; i < n->len; --i) {
if (i + 1 == BC_NUM_RDX_VAL(n))
bc_file_puts(&vm.ferr, bc_flush_none, ". ");
if (scale / BC_BASE_DIGS != BC_NUM_RDX_VAL(n) - i - 1)
bc_file_printf(&vm.ferr, "%lu ", (unsigned long) n->num[i]);
else {
int mod = scale % BC_BASE_DIGS;
int d = BC_BASE_DIGS - mod;
BcDig div;
if (mod != 0) {
div = n->num[i] / ((BcDig) bc_num_pow10[(ulong) d]);
bc_file_printf(&vm.ferr, "%lu", (unsigned long) div);
}
div = n->num[i] % ((BcDig) bc_num_pow10[(ulong) d]);
bc_file_printf(&vm.ferr, " ' %lu ", (unsigned long) div);
}
}
bc_file_printf(&vm.ferr, "(%zu | %zu.%zu / %zu) %lu\n",
n->scale, n->len, BC_NUM_RDX_VAL(n), n->cap,
(unsigned long) (void*) n->num);
bc_file_flush(&vm.ferr, bc_flush_err);
}
#endif // BC_DEBUG_CODE