blob: 90d39fd25cb3cda8b43df4a1e87840bd3364b898 [file] [log] [blame]
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/decoder/partition.h"
#include "src/base/bottom_n.h"
#include "src/decoder/footprint.h"
#include <algorithm>
#include <array>
#include <limits>
#include <memory>
#include <numeric>
#include <queue>
#include <set>
#include <unordered_set>
#include <utility>
namespace astc_codec {
namespace {
// The maximum number of partitions supported by ASTC is four.
constexpr int kMaxNumSubsets = 4;
// Partition selection function based on the ASTC specification.
// See section C.2.21
int SelectASTCPartition(int seed, int x, int y, int z, int partitioncount,
int num_pixels) {
if (partitioncount <= 1) {
return 0;
}
if (num_pixels < 31) {
x <<= 1;
y <<= 1;
z <<= 1;
}
seed += (partitioncount - 1) * 1024;
uint32_t rnum = seed;
rnum ^= rnum >> 15;
rnum -= rnum << 17;
rnum += rnum << 7;
rnum += rnum << 4;
rnum ^= rnum >> 5;
rnum += rnum << 16;
rnum ^= rnum >> 7;
rnum ^= rnum >> 3;
rnum ^= rnum << 6;
rnum ^= rnum >> 17;
uint8_t seed1 = rnum & 0xF;
uint8_t seed2 = (rnum >> 4) & 0xF;
uint8_t seed3 = (rnum >> 8) & 0xF;
uint8_t seed4 = (rnum >> 12) & 0xF;
uint8_t seed5 = (rnum >> 16) & 0xF;
uint8_t seed6 = (rnum >> 20) & 0xF;
uint8_t seed7 = (rnum >> 24) & 0xF;
uint8_t seed8 = (rnum >> 28) & 0xF;
uint8_t seed9 = (rnum >> 18) & 0xF;
uint8_t seed10 = (rnum >> 22) & 0xF;
uint8_t seed11 = (rnum >> 26) & 0xF;
uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF;
seed1 *= seed1;
seed2 *= seed2;
seed3 *= seed3;
seed4 *= seed4;
seed5 *= seed5;
seed6 *= seed6;
seed7 *= seed7;
seed8 *= seed8;
seed9 *= seed9;
seed10 *= seed10;
seed11 *= seed11;
seed12 *= seed12;
int sh1, sh2, sh3;
if (seed & 1) {
sh1 = (seed & 2 ? 4 : 5);
sh2 = (partitioncount == 3 ? 6 : 5);
} else {
sh1 = (partitioncount == 3 ? 6 : 5);
sh2 = (seed & 2 ? 4 : 5);
}
sh3 = (seed & 0x10) ? sh1 : sh2;
seed1 >>= sh1;
seed2 >>= sh2;
seed3 >>= sh1;
seed4 >>= sh2;
seed5 >>= sh1;
seed6 >>= sh2;
seed7 >>= sh1;
seed8 >>= sh2;
seed9 >>= sh3;
seed10 >>= sh3;
seed11 >>= sh3;
seed12 >>= sh3;
int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 06);
int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 02);
a &= 0x3F;
b &= 0x3F;
c &= 0x3F;
d &= 0x3F;
if (partitioncount <= 3) {
d = 0;
}
if (partitioncount <= 2) {
c = 0;
}
if (a >= b && a >= c && a >= d) {
return 0;
} else if (b >= c && b >= d) {
return 1;
} else if (c >= d) {
return 2;
} else {
return 3;
}
}
// A partition hash that we can pass to containers like std::unordered_set
struct PartitionHasher {
size_t operator()(const Partition& part) const {
// The issue here is that if we have two different partitions, A and B, then
// their hash should be equal if A and B are equal. We define the distance
// between A and B using PartitionMetric, but internally that finds a 1-1
// mapping from labels in A to labels in B.
//
// With that in mind, when we define a hash for partitions, we need to find
// a 1-1 mapping to a 'universal' labeling scheme. Here we define that as
// the heuristic: the first encountered label will be 0, the second will be
// 1, etc. This creates a unique 1-1 mapping scheme from any partition.
//
// Note, we can't use this heuristic for the PartitionMetric, as it will
// generate very large discrepancies between similar labellings (for example
// 000...001 vs 011...111). We are just looking for a boolean distinction
// whether or not two partitions are different and don't care how different
// they are.
std::array<int, kMaxNumSubsets> mapping {{ -1, -1, -1, -1 }};
int next_subset = 0;
for (int subset : part.assignment) {
if (mapping[subset] < 0) {
mapping[subset] = next_subset++;
}
}
assert(next_subset <= kMaxNumSubsets);
// The return value will be the hash of the assignment according to this
// mapping
const auto seed = 0;
return std::accumulate(part.assignment.begin(), part.assignment.end(), seed,
[&mapping](size_t seed, const int& subset) {
std::hash<size_t> hasher;
const int s = mapping[subset];
return hasher(seed) ^ hasher(static_cast<size_t>(s));
});
}
};
// Construct a VP-Tree of partitions. Since our PartitionMetric satisfies
// the triangle inequality, we can use this general higher-dimensional space
// partitioning tree to organize our partitions.
//
// TODO(google): !SPEED! Right now this tree stores an actual linked
// structure of pointers which is likely very slow during construction and
// very not cache-coherent during traversal, so it'd probably be good to
// switch to a flattened binary tree structure if performance becomes an
// issue.
class PartitionTree {
public:
// Unclear what it means to have an uninitialized tree, so delete default
// constructors, but allow the tree to be moved
PartitionTree() = delete;
PartitionTree(const PartitionTree&) = delete;
PartitionTree(PartitionTree&& t) = default;
// Generate a PartitionTree from iterators over |Partition|s
template<typename Itr>
PartitionTree(Itr begin, Itr end) : parts_(begin, end) {
std::vector<int> part_indices(parts_.size());
std::iota(part_indices.begin(), part_indices.end(), 0);
root_ = std::unique_ptr<PartitionTreeNode>(
new PartitionTreeNode(parts_, part_indices));
}
// Search for the k-nearest partitions that are closest to part based on
// the result of PartitionMetric
void Search(const Partition& part, int k,
std::vector<const Partition*>* const results,
std::vector<int>* const distances) const {
ResultHeap heap(k);
SearchNode(root_, part, &heap);
results->clear();
if (nullptr != distances) {
distances->clear();
}
std::vector<ResultNode> search_results = heap.Pop();
for (const auto& result : search_results) {
results->push_back(&parts_[result.part_idx]);
if (nullptr != distances) {
distances->push_back(result.distance);
}
}
assert(results->size() == k);
}
private:
// Heap elements to be stored while searching the tree. The two relevant
// pieces of information are the partition index and it's distance from the
// queried partition.
struct ResultNode {
int part_idx;
int distance;
// Heap based on distance from query point.
bool operator<(const ResultNode& other) const {
return distance < other.distance;
}
};
using ResultHeap = base::BottomN<ResultNode>;
struct PartitionTreeNode {
int part_idx;
int split_dist;
std::unique_ptr<PartitionTreeNode> left;
std::unique_ptr<PartitionTreeNode> right;
PartitionTreeNode(const std::vector<Partition> &parts,
const std::vector<int> &part_indices)
: split_dist(-1) {
assert(part_indices.size() > 0);
right.reset(nullptr);
left.reset(nullptr);
// Store the first node as our vantage point
part_idx = part_indices[0];
const Partition& vantage_point = parts[part_indices[0]];
// Calculate the distances of the remaining nodes against the vantage
// point.
std::vector<std::pair<int, int>> part_dists;
for (int i = 1; i < part_indices.size(); ++i) {
const int idx = part_indices[i];
const int dist = PartitionMetric(vantage_point, parts[idx]);
if (dist > 0) {
part_dists.push_back(std::make_pair(idx, dist));
}
}
// If there are no more different parts, then this is a leaf node
if (part_dists.empty()) {
return;
}
struct OrderBySecond {
typedef std::pair<int, int> PairType;
bool operator()(const PairType& lhs, const PairType& rhs) {
return lhs.second < rhs.second;
}
};
// We want to partition the set such that the points are ordered
// based on their distances from the vantage point. We can do this
// using the partial sort of nth element.
std::nth_element(
part_dists.begin(), part_dists.begin() + part_dists.size() / 2,
part_dists.end(), OrderBySecond());
// Once that's done, our split position is in the middle
const auto split_iter = part_dists.begin() + part_dists.size() / 2;
split_dist = split_iter->second;
// Recurse down the right and left sub-trees with the indices of the
// parts that are farther and closer respectively
std::vector<int> right_indices;
for (auto itr = split_iter; itr != part_dists.end(); ++itr) {
right_indices.push_back(itr->first);
}
if (!right_indices.empty()) {
right.reset(new PartitionTreeNode(parts, right_indices));
}
std::vector<int> left_indices;
for (auto itr = part_dists.begin(); itr != split_iter; ++itr) {
left_indices.push_back(itr->first);
}
if (!left_indices.empty()) {
left.reset(new PartitionTreeNode(parts, left_indices));
}
}
};
void SearchNode(const std::unique_ptr<PartitionTreeNode>& node,
const Partition& p, ResultHeap* const heap) const {
if (nullptr == node) {
return;
}
// Calculate distance against current node
const int dist = PartitionMetric(parts_[node->part_idx], p);
// Push it onto the heap and remove the top-most nodes to maintain
// closest k indices.
ResultNode result;
result.part_idx = node->part_idx;
result.distance = dist;
heap->Push(result);
// If the split distance is uninitialized, it means we have no children.
if (node->split_dist < 0) {
assert(nullptr == node->left);
assert(nullptr == node->right);
return;
}
// Next we need to check the left and right trees if their distance
// is closer/farther than the farthest element on the heap
const int tau = heap->Top().distance;
if (dist + tau < node->split_dist || dist - tau < node->split_dist) {
SearchNode(node->left, p, heap);
}
if (dist + tau > node->split_dist || dist - tau > node->split_dist) {
SearchNode(node->right, p, heap);
}
}
std::vector<Partition> parts_;
std::unique_ptr<PartitionTreeNode> root_;
};
// A helper function that generates all of the partitions for each number of
// subsets in ASTC blocks and stores them in a PartitionTree for fast retrieval.
const int kNumASTCPartitionIDBits = 10;
PartitionTree GenerateASTCPartitionTree(Footprint footprint) {
std::unordered_set<Partition, PartitionHasher> parts;
for (int num_parts = 2; num_parts <= kMaxNumSubsets; ++num_parts) {
for (int id = 0; id < (1 << kNumASTCPartitionIDBits); ++id) {
Partition part = GetASTCPartition(footprint, num_parts, id);
// Make sure we're not using a degenerate partition assignment that wastes
// an endpoint pair...
bool valid_part = true;
for (int i = 0; i < num_parts; ++i) {
if (std::find(part.assignment.begin(), part.assignment.end(), i) ==
part.assignment.end()) {
valid_part = false;
break;
}
}
if (valid_part) {
parts.insert(std::move(part));
}
}
}
return PartitionTree(parts.begin(), parts.end());
}
// To avoid needing any fancy boilerplate for mapping from a width, height
// tuple, we can define a simple encoding for the block mode:
constexpr int EncodeDims(int width, int height) {
return (width << 16) | height;
}
} // namespace
////////////////////////////////////////////////////////////////////////////////
int PartitionMetric(const Partition& a, const Partition& b) {
// Make sure that one partition is at least a subset of the other...
assert(a.footprint == b.footprint);
// Make sure that the number of parts is within our limits. ASTC has a maximum
// of four subsets per block according to the specification.
assert(a.num_parts <= kMaxNumSubsets);
assert(b.num_parts <= kMaxNumSubsets);
const int w = a.footprint.Width();
const int h = b.footprint.Height();
struct PairCount {
int a;
int b;
int count;
// Comparison needed for sort below.
bool operator>(const PairCount& other) const {
return count > other.count;
}
};
// Since we need to find the smallest mapping from labels in A to labels in B,
// we need to store each label pair in a structure that can later be sorted.
// The maximum number of subsets in an ASTC block is four, meaning that
// between the two partitions, we can have up to sixteen different pairs.
std::array<PairCount, 16> pair_counts;
for (int y = 0; y < 4; ++y) {
for (int x = 0; x < 4; ++x) {
const int idx = y * 4 + x;
pair_counts[idx].a = x;
pair_counts[idx].b = y;
pair_counts[idx].count = 0;
}
}
// Count how many times we see each pair of assigned values (order matters!)
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
const int idx = y * w + x;
const int a_val = a.assignment[idx];
const int b_val = b.assignment[idx];
assert(a_val >= 0);
assert(b_val >= 0);
assert(a_val < 4);
assert(b_val < 4);
++(pair_counts[b_val * 4 + a_val].count);
}
}
// Sort the pairs in descending order based on their count
std::sort(pair_counts.begin(), pair_counts.end(), std::greater<PairCount>());
// Now assign pairs one by one until we have no more pairs to assign. Once
// a value from A is assigned to a value in B, it can no longer be reassigned,
// so we can keep track of this in a matrix. Similarly, to keep the assignment
// one-to-one, once a value in B has been assigned to, it cannot be assigned
// to again.
std::array<std::array<bool, kMaxNumSubsets>, kMaxNumSubsets> assigned { };
int pixels_matched = 0;
for (const auto& pair_count : pair_counts) {
bool is_assigned = false;
for (int i = 0; i < kMaxNumSubsets; ++i) {
is_assigned |= assigned.at(pair_count.a).at(i);
is_assigned |= assigned.at(i).at(pair_count.b);
}
if (!is_assigned) {
assigned.at(pair_count.a).at(pair_count.b) = true;
pixels_matched += pair_count.count;
}
}
// The difference is the number of pixels that had an assignment versus the
// total number of pixels.
return w * h - pixels_matched;
}
// Generates the partition assignment for the given block attributes.
Partition GetASTCPartition(const Footprint& footprint, int num_parts,
int partition_id) {
// Partitions must have at least one subset but may have at most four
assert(num_parts >= 0);
assert(num_parts <= kMaxNumSubsets);
// Partition ID can be no more than 10 bits.
assert(partition_id >= 0);
assert(partition_id < 1 << 10);
Partition part = {footprint, num_parts, partition_id, /* assignment = */ {}};
part.assignment.reserve(footprint.NumPixels());
// Maintain column-major order so that we match all of the image processing
// algorithms that depend on this class.
for (int y = 0; y < footprint.Height(); ++y) {
for (int x = 0; x < footprint.Width(); ++x) {
const int p = SelectASTCPartition(partition_id, x, y, 0, num_parts,
footprint.NumPixels());
part.assignment.push_back(p);
}
}
return part;
}
const std::vector<const Partition*> FindKClosestASTCPartitions(
const Partition& candidate, int k) {
const int encoded_dims = EncodeDims(candidate.footprint.Width(),
candidate.footprint.Height());
int index = 0;
switch (encoded_dims) {
case EncodeDims(4, 4): index = 0; break;
case EncodeDims(5, 4): index = 1; break;
case EncodeDims(5, 5): index = 2; break;
case EncodeDims(6, 5): index = 3; break;
case EncodeDims(6, 6): index = 4; break;
case EncodeDims(8, 5): index = 5; break;
case EncodeDims(8, 6): index = 6; break;
case EncodeDims(8, 8): index = 7; break;
case EncodeDims(10, 5): index = 8; break;
case EncodeDims(10, 6): index = 9; break;
case EncodeDims(10, 8): index = 10; break;
case EncodeDims(10, 10): index = 11; break;
case EncodeDims(12, 10): index = 12; break;
case EncodeDims(12, 12): index = 13; break;
default:
assert(false && "Unknown footprint dimensions. This should have been caught sooner.");
break;
}
static const auto* const kASTCPartitionTrees =
new std::array<PartitionTree, Footprint::NumValidFootprints()> {{
GenerateASTCPartitionTree(Footprint::Get4x4()),
GenerateASTCPartitionTree(Footprint::Get5x4()),
GenerateASTCPartitionTree(Footprint::Get5x5()),
GenerateASTCPartitionTree(Footprint::Get6x5()),
GenerateASTCPartitionTree(Footprint::Get6x6()),
GenerateASTCPartitionTree(Footprint::Get8x5()),
GenerateASTCPartitionTree(Footprint::Get8x6()),
GenerateASTCPartitionTree(Footprint::Get8x8()),
GenerateASTCPartitionTree(Footprint::Get10x5()),
GenerateASTCPartitionTree(Footprint::Get10x6()),
GenerateASTCPartitionTree(Footprint::Get10x8()),
GenerateASTCPartitionTree(Footprint::Get10x10()),
GenerateASTCPartitionTree(Footprint::Get12x10()),
GenerateASTCPartitionTree(Footprint::Get12x12()),
}};
const PartitionTree& parts_vptree = kASTCPartitionTrees->at(index);
std::vector<const Partition*> results;
parts_vptree.Search(candidate, k, &results, nullptr);
return results;
}
// Returns the valid ASTC partition that is closest to the candidate based on
// the PartitionMetric defined above.
const Partition& FindClosestASTCPartition(const Partition& candidate) {
// Given a candidate, the closest valid partition will likely not be an exact
// match. Consider all of the texels for which this valid partition differs
// with the candidate.
//
// If the valid partition has more subsets than the candidate, then all of the
// highest subset will be included in the mismatched texels. Since the number
// of possible partitions with increasing subsets grows exponentially, the
// chance that a valid partition with fewer subsets appears within the first
// few closest partitions is relatively high. Empirically, we can usually find
// a partition with at most |candidate.num_parts| number of subsets within the
// first four closest partitions.
constexpr int kSearchItems = 4;
const std::vector<const Partition*> results =
FindKClosestASTCPartitions(candidate, kSearchItems);
// Optimistically, look for result with the same number of subsets.
for (const auto& result : results) {
if (result->num_parts == candidate.num_parts) {
return *result;
}
}
// If all else fails, then at least find the result with fewer subsets than
// we asked for.
for (const auto& result : results) {
if (result->num_parts < candidate.num_parts) {
return *result;
}
}
assert(false &&
"Could not find partition with acceptable number of subsets!");
return *(results[0]);
}
} // namespace astc_codec