blob: b896d26eaed80011dc9d531d33ee05eff87c2d8d [file] [log] [blame]
//
// Copyright © 2020 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "armnnTfLiteParser/ITfLiteParser.hpp"
#include "NMS.hpp"
#include <stb/stb_image.h>
#include <armnn/INetwork.hpp>
#include <armnn/IRuntime.hpp>
#include <armnn/Logging.hpp>
#include <armnn/utility/IgnoreUnused.hpp>
#include <cxxopts/cxxopts.hpp>
#include <ghc/filesystem.hpp>
#include <chrono>
#include <fstream>
#include <iostream>
#include <stdlib.h>
using namespace armnnTfLiteParser;
using namespace armnn;
static const int OPEN_FILE_ERROR = -2;
static const int OPTIMIZE_NETWORK_ERROR = -3;
static const int LOAD_NETWORK_ERROR = -4;
static const int LOAD_IMAGE_ERROR = -5;
static const int GENERAL_ERROR = -100;
#define CHECK_OK(v) \
do { \
try { \
auto r_local = v; \
if (r_local != 0) { return r_local;} \
} \
catch (const armnn::Exception& e) \
{ \
ARMNN_LOG(error) << "Oops: " << e.what(); \
return GENERAL_ERROR; \
} \
} while(0)
template<typename TContainer>
inline armnn::InputTensors MakeInputTensors(const std::vector<armnn::BindingPointInfo>& inputBindings,
const std::vector<std::reference_wrapper<TContainer>>& inputDataContainers)
{
armnn::InputTensors inputTensors;
const size_t numInputs = inputBindings.size();
if (numInputs != inputDataContainers.size())
{
throw armnn::Exception("Mismatching vectors");
}
for (size_t i = 0; i < numInputs; i++)
{
const armnn::BindingPointInfo& inputBinding = inputBindings[i];
const TContainer& inputData = inputDataContainers[i].get();
armnn::ConstTensor inputTensor(inputBinding.second, inputData.data());
inputTensors.push_back(std::make_pair(inputBinding.first, inputTensor));
}
return inputTensors;
}
template<typename TContainer>
inline armnn::OutputTensors MakeOutputTensors(
const std::vector<armnn::BindingPointInfo>& outputBindings,
const std::vector<std::reference_wrapper<TContainer>>& outputDataContainers)
{
armnn::OutputTensors outputTensors;
const size_t numOutputs = outputBindings.size();
if (numOutputs != outputDataContainers.size())
{
throw armnn::Exception("Mismatching vectors");
}
outputTensors.reserve(numOutputs);
for (size_t i = 0; i < numOutputs; i++)
{
const armnn::BindingPointInfo& outputBinding = outputBindings[i];
const TContainer& outputData = outputDataContainers[i].get();
armnn::Tensor outputTensor(outputBinding.second, const_cast<float*>(outputData.data()));
outputTensors.push_back(std::make_pair(outputBinding.first, outputTensor));
}
return outputTensors;
}
#define S_BOOL(name) enum class name {False=0, True=1};
S_BOOL(ImportMemory)
S_BOOL(DumpToDot)
S_BOOL(ExpectFile)
S_BOOL(OptionalArg)
int LoadModel(const char* filename,
ITfLiteParser& parser,
IRuntime& runtime,
NetworkId& networkId,
const std::vector<BackendId>& backendPreferences,
ImportMemory enableImport,
DumpToDot dumpToDot)
{
std::ifstream stream(filename, std::ios::in | std::ios::binary);
if (!stream.is_open())
{
ARMNN_LOG(error) << "Could not open model: " << filename;
return OPEN_FILE_ERROR;
}
std::vector<uint8_t> contents((std::istreambuf_iterator<char>(stream)), std::istreambuf_iterator<char>());
stream.close();
auto model = parser.CreateNetworkFromBinary(contents);
contents.clear();
ARMNN_LOG(debug) << "Model loaded ok: " << filename;
// Optimize backbone model
OptimizerOptions options;
options.m_ImportEnabled = enableImport != ImportMemory::False;
auto optimizedModel = Optimize(*model, backendPreferences, runtime.GetDeviceSpec(), options);
if (!optimizedModel)
{
ARMNN_LOG(fatal) << "Could not optimize the model:" << filename;
return OPTIMIZE_NETWORK_ERROR;
}
if (dumpToDot != DumpToDot::False)
{
std::stringstream ss;
ss << filename << ".dot";
std::ofstream dotStream(ss.str().c_str(), std::ofstream::out);
optimizedModel->SerializeToDot(dotStream);
dotStream.close();
}
// Load model into runtime
{
std::string errorMessage;
INetworkProperties modelProps(options.m_ImportEnabled, options.m_ImportEnabled);
Status status = runtime.LoadNetwork(networkId, std::move(optimizedModel), errorMessage, modelProps);
if (status != Status::Success)
{
ARMNN_LOG(fatal) << "Could not load " << filename << " model into runtime: " << errorMessage;
return LOAD_NETWORK_ERROR;
}
}
return 0;
}
std::vector<float> LoadImage(const char* filename)
{
if (strlen(filename) == 0)
{
return std::vector<float>(1920*10180*3, 0.0f);
}
struct Memory
{
~Memory() {stbi_image_free(m_Data);}
bool IsLoaded() const { return m_Data != nullptr;}
unsigned char* m_Data;
};
std::vector<float> image;
int width;
int height;
int channels;
Memory mem = {stbi_load(filename, &width, &height, &channels, 3)};
if (!mem.IsLoaded())
{
ARMNN_LOG(error) << "Could not load input image file: " << filename;
return image;
}
if (width != 1920 || height != 1080 || channels != 3)
{
ARMNN_LOG(error) << "Input image has wong dimension: " << width << "x" << height << "x" << channels << ". "
" Expected 1920x1080x3.";
return image;
}
image.resize(1920*1080*3);
// Expand to float. Does this need de-gamma?
for (unsigned int idx=0; idx <= 1920*1080*3; idx++)
{
image[idx] = static_cast<float>(mem.m_Data[idx]) /255.0f;
}
return image;
}
bool ValidateFilePath(std::string& file, ExpectFile expectFile)
{
if (!ghc::filesystem::exists(file))
{
std::cerr << "Given file path " << file << " does not exist" << std::endl;
return false;
}
if (!ghc::filesystem::is_regular_file(file) && expectFile == ExpectFile::True)
{
std::cerr << "Given file path " << file << " is not a regular file" << std::endl;
return false;
}
return true;
}
void CheckAccuracy(std::vector<float>* toDetector0, std::vector<float>* toDetector1,
std::vector<float>* toDetector2, std::vector<float>* detectorOutput,
const std::vector<yolov3::Detection>& nmsOut, const std::vector<std::string>& filePaths)
{
std::ifstream pathStream;
std::vector<float> expected;
std::vector<std::vector<float>*> outputs;
float compare = 0;
unsigned int count = 0;
//Push back output vectors from inference for use in loop
outputs.push_back(toDetector0);
outputs.push_back(toDetector1);
outputs.push_back(toDetector2);
outputs.push_back(detectorOutput);
for (unsigned int i = 0; i < outputs.size(); ++i)
{
// Reading expected output files and assigning them to @expected. Close and Clear to reuse stream and clean RAM
pathStream.open(filePaths[i]);
if (!pathStream.is_open())
{
ARMNN_LOG(error) << "Expected output file can not be opened: " << filePaths[i];
continue;
}
expected.assign(std::istream_iterator<float>(pathStream), {});
pathStream.close();
pathStream.clear();
// Ensure each vector is the same length
if (expected.size() != outputs[i]->size())
{
ARMNN_LOG(error) << "Expected output size does not match actual output size: " << filePaths[i];
}
else
{
count = 0;
// Compare abs(difference) with tolerance to check for value by value equality
for (unsigned int j = 0; j < outputs[i]->size(); ++j)
{
compare = abs(expected[j] - outputs[i]->at(j));
if (compare > 0.001f)
{
count++;
}
}
if (count > 0)
{
ARMNN_LOG(error) << count << " output(s) do not match expected values in: " << filePaths[i];
}
}
}
pathStream.open(filePaths[4]);
if (!pathStream.is_open())
{
ARMNN_LOG(error) << "Expected output file can not be opened: " << filePaths[4];
}
else
{
expected.assign(std::istream_iterator<float>(pathStream), {});
pathStream.close();
pathStream.clear();
unsigned int y = 0;
unsigned int numOfMember = 6;
std::vector<float> intermediate;
for (auto& detection: nmsOut)
{
for (unsigned int x = y * numOfMember; x < ((y * numOfMember) + numOfMember); ++x)
{
intermediate.push_back(expected[x]);
}
if (!yolov3::compare_detection(detection, intermediate))
{
ARMNN_LOG(error) << "Expected NMS output does not match: Detection " << y + 1;
}
intermediate.clear();
y++;
}
}
}
struct ParseArgs
{
ParseArgs(int ac, char *av[]) : options{"TfLiteYoloV3Big-Armnn",
"Executes YoloV3Big using ArmNN. YoloV3Big consists "
"of 3 parts: A backbone TfLite model, a detector TfLite "
"model, and None Maximum Suppression. All parts are "
"executed successively."}
{
options.add_options()
("b,backbone-path",
"File path where the TfLite model for the yoloV3big backbone "
"can be found e.g. mydir/yoloV3big_backbone.tflite",
cxxopts::value<std::string>())
("c,comparison-files",
"Defines the expected outputs for the model "
"of yoloV3big e.g. 'mydir/file1.txt,mydir/file2.txt,mydir/file3.txt,mydir/file4.txt'->InputToDetector1"
" will be tried first then InputToDetector2 then InputToDetector3 then the Detector Output and finally"
" the NMS output. NOTE: Files are passed as comma separated list without whitespaces.",
cxxopts::value<std::vector<std::string>>())
("d,detector-path",
"File path where the TfLite model for the yoloV3big "
"detector can be found e.g.'mydir/yoloV3big_detector.tflite'",
cxxopts::value<std::string>())
("h,help", "Produce help message")
("i,image-path",
"File path to a 1080x1920 jpg image that should be "
"processed e.g. 'mydir/example_img_180_1920.jpg'",
cxxopts::value<std::string>())
("B,preferred-backends-backbone",
"Defines the preferred backends to run the backbone model "
"of yoloV3big e.g. 'GpuAcc,CpuRef' -> GpuAcc will be tried "
"first before falling back to CpuRef. NOTE: Backends are passed "
"as comma separated list without whitespaces.",
cxxopts::value<std::vector<std::string>>()->default_value("GpuAcc,CpuRef"))
("D,preferred-backends-detector",
"Defines the preferred backends to run the detector model "
"of yoloV3big e.g. 'CpuAcc,CpuRef' -> CpuAcc will be tried "
"first before falling back to CpuRef. NOTE: Backends are passed "
"as comma separated list without whitespaces.",
cxxopts::value<std::vector<std::string>>()->default_value("CpuAcc,CpuRef"))
("M, model-to-dot",
"Dump the optimized model to a dot file for debugging/analysis",
cxxopts::value<bool>()->default_value("false"))
("Y, dynamic-backends-path",
"Define a path from which to load any dynamic backends.",
cxxopts::value<std::string>());
auto result = options.parse(ac, av);
if (result.count("help"))
{
std::cout << options.help() << "\n";
exit(EXIT_SUCCESS);
}
backboneDir = GetPathArgument(result, "backbone-path", ExpectFile::True, OptionalArg::False);
comparisonFiles = GetPathArgument(result["comparison-files"].as<std::vector<std::string>>(), OptionalArg::True);
detectorDir = GetPathArgument(result, "detector-path", ExpectFile::True, OptionalArg::False);
imageDir = GetPathArgument(result, "image-path", ExpectFile::True, OptionalArg::True);
dynamicBackendPath = GetPathArgument(result, "dynamic-backends-path", ExpectFile::False, OptionalArg::True);
prefBackendsBackbone = GetBackendIDs(result["preferred-backends-backbone"].as<std::vector<std::string>>());
LogBackendsInfo(prefBackendsBackbone, "Backbone");
prefBackendsDetector = GetBackendIDs(result["preferred-backends-detector"].as<std::vector<std::string>>());
LogBackendsInfo(prefBackendsDetector, "detector");
dumpToDot = result["model-to-dot"].as<bool>() ? DumpToDot::True : DumpToDot::False;
}
/// Takes a vector of backend strings and returns a vector of backendIDs
std::vector<BackendId> GetBackendIDs(const std::vector<std::string>& backendStrings)
{
std::vector<BackendId> backendIDs;
for (const auto& b : backendStrings)
{
backendIDs.push_back(BackendId(b));
}
return backendIDs;
}
/// Verifies if the program argument with the name argName contains a valid file path.
/// Returns the valid file path string if given argument is associated a valid file path.
/// Otherwise throws an exception.
std::string GetPathArgument(cxxopts::ParseResult& result,
std::string&& argName,
ExpectFile expectFile,
OptionalArg isOptionalArg)
{
if (result.count(argName))
{
std::string path = result[argName].as<std::string>();
if (!ValidateFilePath(path, expectFile))
{
std::stringstream ss;
ss << "Argument given to" << argName << "is not a valid file path";
throw cxxopts::option_syntax_exception(ss.str().c_str());
}
return path;
}
else
{
if (isOptionalArg == OptionalArg::True)
{
return "";
}
throw cxxopts::missing_argument_exception(argName);
}
}
/// Assigns vector of strings to struct member variable
std::vector<std::string> GetPathArgument(const std::vector<std::string>& pathStrings, OptionalArg isOptional)
{
if (pathStrings.size() < 5){
if (isOptional == OptionalArg::True)
{
return std::vector<std::string>();
}
throw cxxopts::option_syntax_exception("Comparison files requires 5 file paths.");
}
std::vector<std::string> filePaths;
for (auto& path : pathStrings)
{
filePaths.push_back(path);
if (!ValidateFilePath(filePaths.back(), ExpectFile::True))
{
throw cxxopts::option_syntax_exception("Argument given to Comparison Files is not a valid file path");
}
}
return filePaths;
}
/// Log info about assigned backends
void LogBackendsInfo(std::vector<BackendId>& backends, std::string&& modelName)
{
std::string info;
info = "Preferred backends for " + modelName + " set to [ ";
for (auto const &backend : backends)
{
info = info + std::string(backend) + " ";
}
ARMNN_LOG(info) << info << "]";
}
// Member variables
std::string backboneDir;
std::vector<std::string> comparisonFiles;
std::string detectorDir;
std::string imageDir;
std::string dynamicBackendPath;
std::vector<BackendId> prefBackendsBackbone;
std::vector<BackendId> prefBackendsDetector;
cxxopts::Options options;
DumpToDot dumpToDot;
};
int main(int argc, char* argv[])
{
// Configure logging
SetAllLoggingSinks(true, true, true);
SetLogFilter(LogSeverity::Trace);
// Check and get given program arguments
ParseArgs progArgs = ParseArgs(argc, argv);
// Create runtime
IRuntime::CreationOptions runtimeOptions; // default
if (!progArgs.dynamicBackendPath.empty())
{
std::cout << "Loading backends from" << progArgs.dynamicBackendPath << "\n";
runtimeOptions.m_DynamicBackendsPath = progArgs.dynamicBackendPath;
}
auto runtime = IRuntime::Create(runtimeOptions);
if (!runtime)
{
ARMNN_LOG(fatal) << "Could not create runtime.";
return -1;
}
// Create TfLite Parsers
ITfLiteParser::TfLiteParserOptions parserOptions;
auto parser = ITfLiteParser::Create(parserOptions);
// Load backbone model
ARMNN_LOG(info) << "Loading backbone...";
NetworkId backboneId;
const DumpToDot dumpToDot = progArgs.dumpToDot;
CHECK_OK(LoadModel(progArgs.backboneDir.c_str(),
*parser,
*runtime,
backboneId,
progArgs.prefBackendsBackbone,
ImportMemory::False,
dumpToDot));
auto inputId = parser->GetNetworkInputBindingInfo(0, "inputs");
auto bbOut0Id = parser->GetNetworkOutputBindingInfo(0, "input_to_detector_1");
auto bbOut1Id = parser->GetNetworkOutputBindingInfo(0, "input_to_detector_2");
auto bbOut2Id = parser->GetNetworkOutputBindingInfo(0, "input_to_detector_3");
auto backboneProfile = runtime->GetProfiler(backboneId);
backboneProfile->EnableProfiling(true);
// Load detector model
ARMNN_LOG(info) << "Loading detector...";
NetworkId detectorId;
CHECK_OK(LoadModel(progArgs.detectorDir.c_str(),
*parser,
*runtime,
detectorId,
progArgs.prefBackendsDetector,
ImportMemory::True,
dumpToDot));
auto detectIn0Id = parser->GetNetworkInputBindingInfo(0, "input_to_detector_1");
auto detectIn1Id = parser->GetNetworkInputBindingInfo(0, "input_to_detector_2");
auto detectIn2Id = parser->GetNetworkInputBindingInfo(0, "input_to_detector_3");
auto outputBoxesId = parser->GetNetworkOutputBindingInfo(0, "output_boxes");
auto detectorProfile = runtime->GetProfiler(detectorId);
// Load input from file
ARMNN_LOG(info) << "Loading test image...";
auto image = LoadImage(progArgs.imageDir.c_str());
if (image.empty())
{
return LOAD_IMAGE_ERROR;
}
// Allocate the intermediate tensors
std::vector<float> intermediateMem0(bbOut0Id.second.GetNumElements());
std::vector<float> intermediateMem1(bbOut1Id.second.GetNumElements());
std::vector<float> intermediateMem2(bbOut2Id.second.GetNumElements());
std::vector<float> intermediateMem3(outputBoxesId.second.GetNumElements());
// Setup inputs and outputs
using BindingInfos = std::vector<armnn::BindingPointInfo>;
using FloatTensors = std::vector<std::reference_wrapper<std::vector<float>>>;
InputTensors bbInputTensors = MakeInputTensors(BindingInfos{ inputId },
FloatTensors{ image });
OutputTensors bbOutputTensors = MakeOutputTensors(BindingInfos{ bbOut0Id, bbOut1Id, bbOut2Id },
FloatTensors{ intermediateMem0,
intermediateMem1,
intermediateMem2 });
InputTensors detectInputTensors = MakeInputTensors(BindingInfos{ detectIn0Id,
detectIn1Id,
detectIn2Id } ,
FloatTensors{ intermediateMem0,
intermediateMem1,
intermediateMem2 });
OutputTensors detectOutputTensors = MakeOutputTensors(BindingInfos{ outputBoxesId },
FloatTensors{ intermediateMem3 });
static const int numIterations=2;
using DurationUS = std::chrono::duration<double, std::micro>;
std::vector<DurationUS> nmsDurations(0);
std::vector<yolov3::Detection> filtered_boxes;
nmsDurations.reserve(numIterations);
for (int i=0; i < numIterations; i++)
{
// Execute backbone
ARMNN_LOG(info) << "Running backbone...";
runtime->EnqueueWorkload(backboneId, bbInputTensors, bbOutputTensors);
// Execute detector
ARMNN_LOG(info) << "Running detector...";
runtime->EnqueueWorkload(detectorId, detectInputTensors, detectOutputTensors);
// Execute NMS
ARMNN_LOG(info) << "Running nms...";
using clock = std::chrono::steady_clock;
auto nmsStartTime = clock::now();
yolov3::NMSConfig config;
config.num_boxes = 127800;
config.num_classes = 80;
config.confidence_threshold = 0.9f;
config.iou_threshold = 0.5f;
filtered_boxes = yolov3::nms(config, intermediateMem3);
auto nmsEndTime = clock::now();
// Enable the profiling after the warm-up run
if (i>0)
{
print_detection(std::cout, filtered_boxes);
const auto nmsDuration = DurationUS(nmsStartTime - nmsEndTime);
nmsDurations.push_back(nmsDuration);
}
backboneProfile->EnableProfiling(true);
detectorProfile->EnableProfiling(true);
}
// Log timings to file
std::ofstream backboneProfileStream("backbone.json");
backboneProfile->Print(backboneProfileStream);
backboneProfileStream.close();
std::ofstream detectorProfileStream("detector.json");
detectorProfile->Print(detectorProfileStream);
detectorProfileStream.close();
// Manually construct the json output
std::ofstream nmsProfileStream("nms.json");
nmsProfileStream << "{" << "\n";
nmsProfileStream << R"( "NmsTimings": {)" << "\n";
nmsProfileStream << R"( "raw": [)" << "\n";
bool isFirst = true;
for (auto duration : nmsDurations)
{
if (!isFirst)
{
nmsProfileStream << ",\n";
}
nmsProfileStream << " " << duration.count();
isFirst = false;
}
nmsProfileStream << "\n";
nmsProfileStream << R"( "units": "us")" << "\n";
nmsProfileStream << " ]" << "\n";
nmsProfileStream << " }" << "\n";
nmsProfileStream << "}" << "\n";
nmsProfileStream.close();
if (progArgs.comparisonFiles.size() > 0)
{
CheckAccuracy(&intermediateMem0,
&intermediateMem1,
&intermediateMem2,
&intermediateMem3,
filtered_boxes,
progArgs.comparisonFiles);
}
ARMNN_LOG(info) << "Run completed";
return 0;
}