blob: 19c85f7f33fbe272550f809fafecb36883973ddf [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "NeonLstmFloatWorkload.hpp"
#include "NeonWorkloadUtils.hpp"
#include <aclCommon/ArmComputeTensorUtils.hpp>
#include <aclCommon/ArmComputeUtils.hpp>
#include <armnn/utility/NumericCast.hpp>
#include "neon/NeonTensorHandle.hpp"
namespace armnn
{
using namespace armcomputetensorutils;
NeonLstmFloatWorkload::NeonLstmFloatWorkload(const LstmQueueDescriptor& descriptor, const WorkloadInfo& info)
: FloatWorkload<LstmQueueDescriptor>(descriptor, info)
{
// Report Profiling Details
ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonLstmFloatWorkload_Construct",
descriptor.m_Parameters,
info,
GetGuid());
arm_compute::LSTMParams<arm_compute::ITensor> lstm_param;
// Basic parameters
m_InputToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights->GetTensorInfo());
m_InputToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights->GetTensorInfo());
m_InputToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights->GetTensorInfo());
m_RecurrentToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights->GetTensorInfo());
m_RecurrentToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights->GetTensorInfo());
m_RecurrentToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights->GetTensorInfo());
m_ForgetGateBiasTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias->GetTensorInfo());
m_CellBiasTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_CellBiasTensor, m_Data.m_CellBias->GetTensorInfo());
m_OutputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias->GetTensorInfo());
// for future reference: check the AndroidNN API for the logic here
if (!m_Data.m_Parameters.m_CifgEnabled)
{
m_InputToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights->GetTensorInfo());
m_RecurrentToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights->GetTensorInfo());
m_CellToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
if (m_Data.m_CellToInputWeights != nullptr)
{
BuildArmComputeTensor(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights->GetTensorInfo());
}
m_InputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_InputGateBiasTensor, m_Data.m_InputGateBias->GetTensorInfo());
lstm_param.set_cifg_params(m_InputToInputWeightsTensor.get(),
m_RecurrentToInputWeightsTensor.get(),
m_Data.m_CellToInputWeights != nullptr ? m_CellToInputWeightsTensor.get() : nullptr,
m_InputGateBiasTensor.get());
}
if (m_Data.m_Parameters.m_ProjectionEnabled)
{
m_ProjectionWeightsTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights->GetTensorInfo());
m_ProjectionBiasTensor = std::make_unique<arm_compute::Tensor>();
if (m_Data.m_ProjectionBias != nullptr)
{
BuildArmComputeTensor(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias->GetTensorInfo());
}
lstm_param.set_projection_params(m_ProjectionWeightsTensor.get(),
m_Data.m_ProjectionBias != nullptr ? m_ProjectionBiasTensor.get() : nullptr);
}
if (m_Data.m_Parameters.m_PeepholeEnabled)
{
m_CellToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights->GetTensorInfo());
m_CellToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights->GetTensorInfo());
lstm_param.set_peephole_params(m_CellToForgetWeightsTensor.get(), m_CellToOutputWeightsTensor.get());
}
if (m_Data.m_Parameters.m_LayerNormEnabled)
{
m_InputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
if (!m_Data.m_Parameters.m_CifgEnabled)
{
BuildArmComputeTensor(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights->GetTensorInfo());
}
m_ForgetLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights->GetTensorInfo());
m_CellLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights->GetTensorInfo());
m_OutputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights->GetTensorInfo());
lstm_param.set_layer_normalization_params(m_Data.m_Parameters.m_CifgEnabled ?
nullptr : m_InputLayerNormWeightsTensor.get(),
m_ForgetLayerNormWeightsTensor.get(),
m_CellLayerNormWeightsTensor.get(),
m_OutputLayerNormWeightsTensor.get());
}
const arm_compute::ITensor& input = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
const arm_compute::ITensor& output_state_in = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
const arm_compute::ITensor& cell_state_in = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
arm_compute::ITensor& output_state_out = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[1])->GetTensor();
arm_compute::ITensor& cell_state_out = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[2])->GetTensor();
arm_compute::ITensor& output = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[3])->GetTensor();
// Get the batch_size and the num_units from the cellStateIn dimensions
const TensorInfo& inputTensorInfo = info.m_InputTensorInfos[2];
const unsigned int batch_size = armnn::numeric_cast<unsigned int>(inputTensorInfo.GetShape()[0]);
const unsigned int num_units = armnn::numeric_cast<unsigned int>(inputTensorInfo.GetShape()[1]);
m_ScratchBuffer = std::make_unique<arm_compute::Tensor>();
if (m_Data.m_Parameters.m_CifgEnabled)
{
// 2D tensor with dimensions [num_units * 3, batch_size] with CIFG
armnn::TensorInfo scratchBuffer1({ batch_size, num_units * 3 }, DataType::Float32);
BuildArmComputeTensor(*m_ScratchBuffer, scratchBuffer1);
}
else
{
// scratch_buffer [num_units * 4, batch_size] without CIFG
armnn::TensorInfo scratchBuffer2({ batch_size, num_units * 4 }, DataType::Float32);
BuildArmComputeTensor(*m_ScratchBuffer, scratchBuffer2);
}
float cell_threshold = m_Data.m_Parameters.m_ClippingThresCell;
float projection_threshold = m_Data.m_Parameters.m_ClippingThresProj;
// for preparing the object for the class ActivationLayerInfo, we need to consider 5 situations
arm_compute::ActivationLayerInfo activationLayerInfo =
ConvertLstmActivationFuncToAclLayerInfo(m_Data.m_Parameters.m_ActivationFunc);
m_LstmLayer.configure(&input, m_InputToForgetWeightsTensor.get(), m_InputToCellWeightsTensor.get(),
m_InputToOutputWeightsTensor.get(), m_RecurrentToForgetWeightsTensor.get(),
m_RecurrentToCellWeightsTensor.get(), m_RecurrentToOutputWeightsTensor.get(),
m_ForgetGateBiasTensor.get(), m_CellBiasTensor.get(), m_OutputGateBiasTensor.get(),
&output_state_in, &cell_state_in, m_ScratchBuffer.get(), &output_state_out,
&cell_state_out, &output, lstm_param, activationLayerInfo,
cell_threshold, projection_threshold);
armcomputetensorutils::InitialiseArmComputeTensorEmpty(*m_ScratchBuffer);
InitializeArmComputeTensorData(*m_InputToForgetWeightsTensor,
m_Data.m_InputToForgetWeights);
InitializeArmComputeTensorData(*m_InputToCellWeightsTensor,
m_Data.m_InputToCellWeights);
InitializeArmComputeTensorData(*m_InputToOutputWeightsTensor,
m_Data.m_InputToOutputWeights);
InitializeArmComputeTensorData(*m_RecurrentToForgetWeightsTensor,
m_Data.m_RecurrentToForgetWeights);
InitializeArmComputeTensorData(*m_RecurrentToCellWeightsTensor,
m_Data.m_RecurrentToCellWeights);
InitializeArmComputeTensorData(*m_RecurrentToOutputWeightsTensor,
m_Data.m_RecurrentToOutputWeights);
InitializeArmComputeTensorData(*m_ForgetGateBiasTensor,
m_Data.m_ForgetGateBias);
InitializeArmComputeTensorData(*m_CellBiasTensor,
m_Data.m_CellBias);
InitializeArmComputeTensorData(*m_OutputGateBiasTensor,
m_Data.m_OutputGateBias);
if (!m_Data.m_Parameters.m_CifgEnabled)
{
InitializeArmComputeTensorData(*m_InputToInputWeightsTensor,
m_Data.m_InputToInputWeights);
InitializeArmComputeTensorData(*m_RecurrentToInputWeightsTensor,
m_Data.m_RecurrentToInputWeights);
if (m_Data.m_CellToInputWeights != nullptr)
{
InitializeArmComputeTensorData(*m_CellToInputWeightsTensor,
m_Data.m_CellToInputWeights);
}
InitializeArmComputeTensorData(*m_InputGateBiasTensor,
m_Data.m_InputGateBias);
}
if (m_Data.m_Parameters.m_ProjectionEnabled)
{
InitializeArmComputeTensorData(*m_ProjectionWeightsTensor,
m_Data.m_ProjectionWeights);
if (m_Data.m_ProjectionBias != nullptr)
{
InitializeArmComputeTensorData(*m_ProjectionBiasTensor,
m_Data.m_ProjectionBias);
}
}
if (m_Data.m_Parameters.m_PeepholeEnabled)
{
InitializeArmComputeTensorData(*m_CellToForgetWeightsTensor,
m_Data.m_CellToForgetWeights);
InitializeArmComputeTensorData(*m_CellToOutputWeightsTensor,
m_Data.m_CellToOutputWeights);
}
if (m_Data.m_Parameters.m_LayerNormEnabled)
{
if (!m_Data.m_Parameters.m_CifgEnabled)
{
InitializeArmComputeTensorData(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights);
}
InitializeArmComputeTensorData(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights);
InitializeArmComputeTensorData(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights);
InitializeArmComputeTensorData(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights);
}
// Force Compute Library to perform the necessary copying and reshaping, after which
// delete all the input tensors that will no longer be needed
m_LstmLayer.prepare();
FreeUnusedTensors();
}
void NeonLstmFloatWorkload::Execute() const
{
ARMNN_SCOPED_PROFILING_EVENT_NEON_GUID("NeonLstmFloatWorkload_Execute", GetGuid());
m_LstmLayer.run();
}
arm_compute::Status NeonLstmFloatWorkloadValidate(const TensorInfo& input,
const TensorInfo& outputStateIn,
const TensorInfo& cellStateIn,
const TensorInfo& scratchBuffer,
const TensorInfo& outputStateOut,
const TensorInfo& cellStateOut,
const TensorInfo& output,
const LstmDescriptor& descriptor,
const LstmInputParamsInfo& paramsInfo)
{
arm_compute::LSTMParams<arm_compute::ITensorInfo> lstm_params_info;
// The inputs and outputs
const arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input);
const arm_compute::TensorInfo aclOutputStateInInfo = BuildArmComputeTensorInfo(outputStateIn);
const arm_compute::TensorInfo aclCellStateInInfo = BuildArmComputeTensorInfo(cellStateIn);
const arm_compute::TensorInfo aclScratchBufferInfo = BuildArmComputeTensorInfo(scratchBuffer);
const arm_compute::TensorInfo aclOutputStateOutInfo = BuildArmComputeTensorInfo(outputStateOut);
const arm_compute::TensorInfo aclCellStateOutInfo = BuildArmComputeTensorInfo(cellStateOut);
const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output);
// Basic parameters
const arm_compute::TensorInfo aclInputToForgetWeightsInfo
= BuildArmComputeTensorInfo(paramsInfo.GetInputToForgetWeights());
const arm_compute::TensorInfo aclInputToCellWeightsInfo
= BuildArmComputeTensorInfo(paramsInfo.GetInputToCellWeights());
const arm_compute::TensorInfo aclInputToOutputWeightsInfo
= BuildArmComputeTensorInfo(paramsInfo.GetInputToOutputWeights());
const arm_compute::TensorInfo aclRecurrentToForgetWeightsInfo
= BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToForgetWeights());
const arm_compute::TensorInfo aclRecurrentToCellWeightsInfo
= BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToCellWeights());
const arm_compute::TensorInfo aclRecurrentToOutputWeightsInfo
= BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToOutputWeights());
const arm_compute::TensorInfo aclForgetGateBiasInfo
= BuildArmComputeTensorInfo(paramsInfo.GetForgetGateBias());
const arm_compute::TensorInfo aclCellBiasInfo
= BuildArmComputeTensorInfo(paramsInfo.GetCellBias());
const arm_compute::TensorInfo aclOutputGateBiasInfo
= BuildArmComputeTensorInfo(paramsInfo.GetOutputGateBias());
arm_compute::TensorInfo aclInputToInputWeightsInfo;
arm_compute::TensorInfo aclRecurrentToInputWeightsInfo;
arm_compute::TensorInfo aclCellToInputWeightsInfo;
arm_compute::TensorInfo aclInputGateBiasInfo;
arm_compute::TensorInfo aclProjectionWeightsInfo;
arm_compute::TensorInfo aclProjectionBiasInfo;
arm_compute::TensorInfo aclCellToForgetWeightsInfo;
arm_compute::TensorInfo aclCellToOutputWeightsInfo;
arm_compute::TensorInfo aclInputLayerNormWeightsInfo;
arm_compute::TensorInfo aclForgetLayerNormWeightsInfo;
arm_compute::TensorInfo aclCellLayerNormWeightsInfo;
arm_compute::TensorInfo aclOutputLayerNormWeightsInfo;
if (!descriptor.m_CifgEnabled)
{
if (descriptor.m_PeepholeEnabled)
{
aclCellToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToInputWeights());
}
aclInputToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputToInputWeights());
aclRecurrentToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToInputWeights());
aclInputGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputGateBias());
lstm_params_info.set_cifg_params(&aclInputToInputWeightsInfo, &aclRecurrentToInputWeightsInfo,
descriptor.m_PeepholeEnabled ? &aclCellToInputWeightsInfo : nullptr,
&aclInputGateBiasInfo);
}
if (descriptor.m_ProjectionEnabled)
{
if (paramsInfo.m_ProjectionBias != nullptr)
{
aclProjectionBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionBias());
}
aclProjectionWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionWeights());
lstm_params_info.set_projection_params(&aclProjectionWeightsInfo,
paramsInfo.m_ProjectionBias != nullptr ?
&aclProjectionBiasInfo : nullptr);
}
if (descriptor.m_PeepholeEnabled)
{
aclCellToForgetWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToForgetWeights());
aclCellToOutputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToOutputWeights());
lstm_params_info.set_peephole_params(&aclCellToForgetWeightsInfo, &aclCellToOutputWeightsInfo);
}
if (descriptor.m_LayerNormEnabled)
{
if (!descriptor.m_CifgEnabled)
{
aclInputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputLayerNormWeights());
}
aclForgetLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetForgetLayerNormWeights());
aclCellLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellLayerNormWeights());
aclOutputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetOutputLayerNormWeights());
lstm_params_info.set_layer_normalization_params(descriptor.m_CifgEnabled ?
nullptr : &aclInputLayerNormWeightsInfo,
&aclForgetLayerNormWeightsInfo,
&aclCellLayerNormWeightsInfo,
&aclOutputLayerNormWeightsInfo);
}
float cell_threshold = descriptor.m_ClippingThresCell;
float projection_threshold = descriptor.m_ClippingThresProj;
// for preparing the object for the class ActivationLayerInfo, we need to consider 5 situations
arm_compute::ActivationLayerInfo activationLayerInfo =
ConvertLstmActivationFuncToAclLayerInfo(descriptor.m_ActivationFunc);
return arm_compute::NELSTMLayer::validate(&aclInputInfo,
&aclInputToForgetWeightsInfo,
&aclInputToCellWeightsInfo,
&aclInputToOutputWeightsInfo,
&aclRecurrentToForgetWeightsInfo,
&aclRecurrentToCellWeightsInfo,
&aclRecurrentToOutputWeightsInfo,
&aclForgetGateBiasInfo,
&aclCellBiasInfo,
&aclOutputGateBiasInfo,
&aclOutputStateInInfo,
&aclCellStateInInfo,
&aclScratchBufferInfo,
&aclOutputStateOutInfo,
&aclCellStateOutInfo,
&aclOutputInfo,
lstm_params_info,
activationLayerInfo,
cell_threshold,
projection_threshold);
}
void NeonLstmFloatWorkload::FreeUnusedTensors()
{
FreeTensorIfUnused(m_InputToInputWeightsTensor);
FreeTensorIfUnused(m_InputToForgetWeightsTensor);
FreeTensorIfUnused(m_InputToCellWeightsTensor);
FreeTensorIfUnused(m_InputToOutputWeightsTensor);
FreeTensorIfUnused(m_RecurrentToInputWeightsTensor);
FreeTensorIfUnused(m_RecurrentToForgetWeightsTensor);
FreeTensorIfUnused(m_RecurrentToCellWeightsTensor);
FreeTensorIfUnused(m_RecurrentToOutputWeightsTensor);
FreeTensorIfUnused(m_CellToInputWeightsTensor);
FreeTensorIfUnused(m_CellToForgetWeightsTensor);
FreeTensorIfUnused(m_CellToOutputWeightsTensor);
FreeTensorIfUnused(m_InputGateBiasTensor);
FreeTensorIfUnused(m_ForgetGateBiasTensor);
FreeTensorIfUnused(m_CellBiasTensor);
FreeTensorIfUnused(m_OutputGateBiasTensor);
FreeTensorIfUnused(m_ProjectionWeightsTensor);
FreeTensorIfUnused(m_ProjectionBiasTensor);
FreeTensorIfUnused(m_ScratchBuffer);
FreeTensorIfUnused(m_InputLayerNormWeightsTensor);
FreeTensorIfUnused(m_ForgetLayerNormWeightsTensor);
FreeTensorIfUnused(m_CellLayerNormWeightsTensor);
FreeTensorIfUnused(m_OutputLayerNormWeightsTensor);
}
void NeonLstmFloatWorkload::ReplaceInputTensorHandle(ITensorHandle* tensorHandle, unsigned int slot)
{
ITensorHandle* backupHandle = this->m_Data.m_Inputs[slot];
this->m_Data.m_Inputs[slot] = tensorHandle;
try
{
Reconfigure();
}
catch(armnn::UnimplementedException& e)
{
// Cannot reconfigure, revert the slot back and throw the exception.
this->m_Data.m_Inputs[slot] = backupHandle;
throw e;
}
}
// Replace output tensor handle with the given TensorHandle
void NeonLstmFloatWorkload::ReplaceOutputTensorHandle(ITensorHandle* tensorHandle, unsigned int slot)
{
ITensorHandle* backupHandle = this->m_Data.m_Inputs[slot];
this->m_Data.m_Inputs[slot] = tensorHandle;
try
{
Reconfigure();
}
catch(armnn::UnimplementedException& e)
{
// Cannot reconfigure, revert the slot back and throw the exception.
this->m_Data.m_Inputs[slot] = backupHandle;
throw e;
}
}
void NeonLstmFloatWorkload::Reconfigure()
{
throw armnn::UnimplementedException("Reconfigure not implemented for this workload");
}
} //namespace armnn