blob: cf541f491b499c75a549ac77bcc6bfdc8fa182d3 [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "NeonLayerSupport.hpp"
#include "NeonBackendId.hpp"
#include "NeonBackendModelContext.hpp"
#include <armnn/Exceptions.hpp>
#include <armnn/Tensor.hpp>
#include <armnn/Types.hpp>
#include <armnn/BackendRegistry.hpp>
#include <InternalTypes.hpp>
#include <LayerSupportCommon.hpp>
#include <armnn/utility/IgnoreUnused.hpp>
#include <armnn/utility/PolymorphicDowncast.hpp>
#if defined(ARMCOMPUTENEON_ENABLED)
#include <aclCommon/ArmComputeUtils.hpp>
#include <aclCommon/ArmComputeTensorUtils.hpp>
#include "workloads/NeonAbsWorkload.hpp"
#include "workloads/NeonAdditionWorkload.hpp"
#include "workloads/NeonActivationWorkload.hpp"
#include "workloads/NeonArgMinMaxWorkload.hpp"
#include "workloads/NeonBatchNormalizationWorkload.hpp"
#include "workloads/NeonBatchToSpaceNdWorkload.hpp"
#include "workloads/NeonCastWorkload.hpp"
#include "workloads/NeonChannelShuffleWorkload.hpp"
#include "workloads/NeonComparisonWorkload.hpp"
#include "workloads/NeonConcatWorkload.hpp"
#include "workloads/NeonConstantWorkload.hpp"
#include "workloads/NeonConvolution2dWorkload.hpp"
#include "workloads/NeonConvolution3dWorkload.hpp"
#include "workloads/NeonDepthToSpaceWorkload.hpp"
#include "workloads/NeonDepthwiseConvolutionWorkload.hpp"
#include "workloads/NeonDequantizeWorkload.hpp"
#include "workloads/NeonExpWorkload.hpp"
#include "workloads/NeonInstanceNormalizationWorkload.hpp"
#include "workloads/NeonL2NormalizationFloatWorkload.hpp"
#include "workloads/NeonLogWorkload.hpp"
#include "workloads/NeonLogSoftmaxWorkload.hpp"
#include "workloads/NeonLogicalAndWorkload.hpp"
#include "workloads/NeonLogicalNotWorkload.hpp"
#include "workloads/NeonLogicalOrWorkload.hpp"
#include "workloads/NeonLstmFloatWorkload.hpp"
#include "workloads/NeonMaximumWorkload.hpp"
#include "workloads/NeonMeanWorkload.hpp"
#include "workloads/NeonMinimumWorkload.hpp"
#include "workloads/NeonMultiplicationWorkload.hpp"
#include "workloads/NeonDivisionWorkload.hpp"
#include "workloads/NeonNegWorkload.hpp"
#include "workloads/NeonNormalizationFloatWorkload.hpp"
#include "workloads/NeonFullyConnectedWorkload.hpp"
#include "workloads/NeonGatherWorkload.hpp"
#include "workloads/NeonGatherNdWorkload.hpp"
#include "workloads/NeonPadWorkload.hpp"
#include "workloads/NeonPermuteWorkload.hpp"
#include "workloads/NeonPooling2dWorkload.hpp"
#include "workloads/NeonPooling3dWorkload.hpp"
#include "workloads/NeonPreluWorkload.hpp"
#include "workloads/NeonQLstmWorkload.hpp"
#include "workloads/NeonQuantizeWorkload.hpp"
#include "workloads/NeonQuantizedLstmWorkload.hpp"
#include "workloads/NeonReduceWorkload.hpp"
#include "workloads/NeonReshapeWorkload.hpp"
#include "workloads/NeonResizeWorkload.hpp"
#include "workloads/NeonRsqrtWorkload.hpp"
#include "workloads/NeonSinWorkload.hpp"
#include "workloads/NeonSliceWorkload.hpp"
#include "workloads/NeonSoftmaxWorkload.hpp"
#include "workloads/NeonSpaceToBatchNdWorkload.hpp"
#include "workloads/NeonSpaceToDepthWorkload.hpp"
#include "workloads/NeonSplitterWorkload.hpp"
#include "workloads/NeonSqrtWorkload.hpp"
#include "workloads/NeonStackWorkload.hpp"
#include "workloads/NeonStridedSliceWorkload.hpp"
#include "workloads/NeonSubtractionWorkload.hpp"
#include "workloads/NeonTransposeConvolution2dWorkload.hpp"
#include "workloads/NeonTransposeWorkload.hpp"
#include "workloads/NeonUnidirectionalSequenceLstmFloatWorkload.hpp"
#include "workloads/NeonUnidirectionalSequenceLstmWorkload.hpp"
#endif
namespace armnn
{
namespace
{
template< typename ... Args>
bool IsNeonBackendSupported(Optional<std::string&> reasonIfUnsupported, Args... args)
{
IgnoreUnused(reasonIfUnsupported, (args)...);
#if defined(ARMCOMPUTENEON_ENABLED)
return true;
#else
SetValueChecked(reasonIfUnsupported, "The armnn library has been built without NEON support");
return false;
#endif
}
template<typename FloatFunc, typename Uint8Func, typename ... Params>
bool IsSupportedForDataTypeNeon(Optional<std::string&> reasonIfUnsupported,
DataType dataType,
FloatFunc floatFuncPtr,
Uint8Func uint8FuncPtr,
Params&&... params)
{
return IsNeonBackendSupported(reasonIfUnsupported) &&
IsSupportedForDataTypeGeneric(reasonIfUnsupported,
dataType,
floatFuncPtr,
floatFuncPtr,
uint8FuncPtr,
&FalseFunc<>,
&FalseFunc<>,
std::forward<Params>(params)...);
}
#if defined(ARMCOMPUTENEON_ENABLED)
template<class FuncType, class... Args>
inline bool IsWorkloadSupported(FuncType& func, Optional<std::string&> reasonIfUnsupported, Args&&... args)
{
arm_compute::Status aclStatus = func(std::forward<Args>(args)...);
const bool supported = (aclStatus.error_code() == arm_compute::ErrorCode::OK);
if (!supported && reasonIfUnsupported)
{
reasonIfUnsupported.value() = aclStatus.error_description();
}
return supported;
}
#define FORWARD_WORKLOAD_VALIDATE_FUNC(func, reasonIfUnsupported, ...) \
return IsWorkloadSupported(func, reasonIfUnsupported, __VA_ARGS__);
#else
#define FORWARD_WORKLOAD_VALIDATE_FUNC(func, reasonIfUnsupported, ...) \
return IsNeonBackendSupported(reasonIfUnsupported, __VA_ARGS__);
#endif
} // anonymous namespace
NeonLayerSupport::NeonLayerSupport(const IBackendInternal::IBackendSpecificModelContextPtr& modelContextPtr)
: m_ModelContextPtr(modelContextPtr)
{
}
NeonLayerSupport::NeonLayerSupport()
: m_ModelContextPtr(nullptr)
{
}
bool NeonLayerSupport::IsLayerSupported(const LayerType& type,
const std::vector<TensorInfo>& infos,
const BaseDescriptor& descriptor,
const Optional<LstmInputParamsInfo>& lstmParamsInfo,
const Optional<QuantizedLstmInputParamsInfo>& quantizedLstmParamsInfo,
Optional<std::string&> reasonIfUnsupported) const
{
switch (type)
{
case LayerType::Activation:
return IsActivationSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const ActivationDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Addition:
return IsAdditionSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::ArgMinMax:
return IsArgMinMaxSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const ArgMinMaxDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::BatchNormalization:
return IsBatchNormalizationSupported(infos[0],
infos[1],
infos[2],
infos[3],
infos[4],
infos[5],
*(PolymorphicDowncast<const BatchNormalizationDescriptor*>
(&descriptor)),
reasonIfUnsupported);
case LayerType::BatchToSpaceNd:
return IsBatchToSpaceNdSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const BatchToSpaceNdDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Cast:
return IsCastSupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::ChannelShuffle:
return IsChannelShuffleSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const ChannelShuffleDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Comparison:
return IsComparisonSupported(infos[0],
infos[1],
infos[2],
*(PolymorphicDowncast<const ComparisonDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Concat:
{
std::vector<const TensorInfo*> inputInfos;
for (uint32_t i = 0; i < (infos.size() - 1); i++)
{
inputInfos.push_back(&infos[i]);
}
return IsConcatSupported(inputInfos,
infos[infos.size() - 1],
*(PolymorphicDowncast<const OriginsDescriptor*>(&descriptor)),
reasonIfUnsupported);
}
case LayerType::Constant:
return IsConstantSupported(infos[0], reasonIfUnsupported);
case LayerType::ConvertBf16ToFp32:
return IsConvertBf16ToFp32Supported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::ConvertFp16ToFp32:
return IsConvertFp16ToFp32Supported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::ConvertFp32ToBf16:
return IsConvertFp32ToBf16Supported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::ConvertFp32ToFp16:
return IsConvertFp32ToFp16Supported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::Convolution2d:
{
if (infos.size() != 4)
{
throw InvalidArgumentException("Invalid number of TransposeConvolution2d TensorInfos. "
"TensorInfos should be of format: {input, output, weights, biases}.");
}
auto desc = *(PolymorphicDowncast<const Convolution2dDescriptor*>(&descriptor));
if (infos[3] == TensorInfo())
{
return IsConvolution2dSupported(infos[0],
infos[1],
desc,
infos[2],
EmptyOptional(),
reasonIfUnsupported);
}
else
{
return IsConvolution2dSupported(infos[0],
infos[1],
desc,
infos[2],
infos[3],
reasonIfUnsupported);
}
}
case LayerType::Convolution3d:
{
if (infos.size() != 4)
{
throw InvalidArgumentException("Invalid number of Convolution3d TensorInfos. "
"TensorInfos should be of format: {input, output, weights, biases}.");
}
auto desc = *(PolymorphicDowncast<const Convolution3dDescriptor*>(&descriptor));
if (infos[3] == TensorInfo())
{
return IsConvolution3dSupported(infos[0],
infos[1],
desc,
infos[2],
EmptyOptional(),
reasonIfUnsupported);
}
else
{
return IsConvolution3dSupported(infos[0],
infos[1],
desc,
infos[2],
infos[3],
reasonIfUnsupported);
}
}
case LayerType::DepthToSpace:
return IsDepthToSpaceSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const DepthToSpaceDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::DepthwiseConvolution2d:
{
if (infos.size() != 4)
{
throw InvalidArgumentException("Invalid number of DepthwiseConvolution2d TensorInfos. "
"TensorInfos should be of format: {input, output, weights, biases}.");
}
auto desc = *(PolymorphicDowncast<const DepthwiseConvolution2dDescriptor*>(&descriptor));
if (infos[3] == TensorInfo())
{
return IsDepthwiseConvolutionSupported(infos[0],
infos[1],
desc,
infos[2],
EmptyOptional(),
reasonIfUnsupported);
}
else
{
return IsDepthwiseConvolutionSupported(infos[0],
infos[1],
desc,
infos[2],
infos[3],
reasonIfUnsupported);
}
}
case LayerType::Dequantize:
return IsDequantizeSupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::DetectionPostProcess:
{
auto desc = *(PolymorphicDowncast<const DetectionPostProcessDescriptor*>(&descriptor));
return LayerSupportBase::IsDetectionPostProcessSupported(infos[0],
infos[1],
infos[2],
infos[3],
infos[4],
infos[5],
infos[6],
desc,
reasonIfUnsupported);
}
case LayerType::Division:
return IsDivisionSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::ElementwiseUnary:
return IsElementwiseUnarySupported(infos[0],
infos[1],
*(PolymorphicDowncast<const ElementwiseUnaryDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Fill:
return IsFillSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const FillDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Floor:
return IsFloorSupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::FullyConnected:
return IsFullyConnectedSupported(infos[0],
infos[1],
infos[2],
infos[3],
*(PolymorphicDowncast<const FullyConnectedDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Gather:
return IsGatherSupported(infos[0],
infos[1],
infos[2],
*(PolymorphicDowncast<const GatherDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::GatherNd:
return IsGatherNdSupported(infos[0],
infos[1],
infos[2],
reasonIfUnsupported);
case LayerType::Input:
return IsInputSupported(infos[0], reasonIfUnsupported);
case LayerType::InstanceNormalization:
return IsInstanceNormalizationSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const InstanceNormalizationDescriptor*>
(&descriptor)),
reasonIfUnsupported);
case LayerType::L2Normalization:
return IsL2NormalizationSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const L2NormalizationDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::LogicalBinary:
return IsLogicalBinarySupported(infos[0],
infos[1],
infos[2],
*(PolymorphicDowncast<const LogicalBinaryDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::LogSoftmax:
return IsLogSoftmaxSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const LogSoftmaxDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Lstm:
return IsLstmSupported(infos[0],
infos[1],
infos[2],
infos[3],
infos[4],
infos[5],
infos[6],
*(PolymorphicDowncast<const LstmDescriptor*>(&descriptor)),
lstmParamsInfo.value(),
reasonIfUnsupported);
case LayerType::Map:
return true;
case LayerType::Maximum:
return IsMaximumSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::Mean:
return IsMeanSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const MeanDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::MemCopy:
return LayerSupportBase::IsMemCopySupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::MemImport:
return LayerSupportBase::IsMemImportSupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::Merge:
return LayerSupportBase::IsMergeSupported(infos[0],
infos[1],
infos[2],
reasonIfUnsupported);
case LayerType::Minimum:
return IsMinimumSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::Multiplication:
return IsMultiplicationSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::Normalization:
return IsNormalizationSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const NormalizationDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Output:
return IsOutputSupported(infos[0], reasonIfUnsupported);
case LayerType::Pad:
return IsPadSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const PadDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Permute:
return IsPermuteSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const PermuteDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Pooling2d:
return IsPooling2dSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const Pooling2dDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Pooling3d:
return IsPooling3dSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const Pooling3dDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Prelu:
return IsPreluSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::QLstm:
return IsQLstmSupported(infos[0],
infos[1],
infos[2],
infos[3],
infos[4],
infos[5],
*(PolymorphicDowncast<const QLstmDescriptor*>(&descriptor)),
lstmParamsInfo.value(),
reasonIfUnsupported);
case LayerType::Quantize:
return IsQuantizeSupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::QuantizedLstm:
return IsQuantizedLstmSupported(infos[0],
infos[1],
infos[2],
infos[3],
infos[4],
quantizedLstmParamsInfo.value(),
reasonIfUnsupported);
case LayerType::Rank:
return true;
case LayerType::Reshape:
return IsReshapeSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const ReshapeDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Resize:
return IsResizeSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const ResizeDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Reduce:
return IsReduceSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const ReduceDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Shape:
return LayerSupportBase::IsShapeSupported(infos[0],
infos[1],
reasonIfUnsupported);
case LayerType::Slice:
return IsSliceSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const SliceDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Softmax:
return IsSoftmaxSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const SoftmaxDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::SpaceToBatchNd:
return IsSpaceToBatchNdSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const SpaceToBatchNdDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::SpaceToDepth:
return IsSpaceToDepthSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const SpaceToDepthDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Splitter:
{
std::vector<TensorInfo> outputInfos;
for (uint32_t i = 1; i < infos.size(); i++)
{
outputInfos.push_back(infos[i]);
}
return IsSplitterSupported(infos[0],
{outputInfos.begin(), outputInfos.end()},
*(PolymorphicDowncast<const ViewsDescriptor*>(&descriptor)),
reasonIfUnsupported);
}
case LayerType::Stack:
{
std::vector<const TensorInfo*> inputInfos;
for (uint32_t i = 0; i < infos.size() - 1; i++)
{
inputInfos.push_back(&infos[i]);
}
return IsStackSupported(inputInfos,
infos[infos.size() - 1],
*(PolymorphicDowncast<const StackDescriptor*>(&descriptor)),
reasonIfUnsupported);
}
case LayerType::StridedSlice:
return IsStridedSliceSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const StridedSliceDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Subtraction:
return IsSubtractionSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::Transpose:
return IsTransposeSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const TransposeDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::TransposeConvolution2d:
{
if (infos.size() != 4)
{
throw InvalidArgumentException("Invalid number of TransposeConvolution2d TensorInfos. "
"TensorInfos should be of format: {input, output, weights, biases}.");
}
auto desc = *(PolymorphicDowncast<const TransposeConvolution2dDescriptor*>(&descriptor));
if (infos[3] == TensorInfo())
{
return IsTransposeConvolution2dSupported(infos[0],
infos[1],
desc,
infos[2],
EmptyOptional(),
reasonIfUnsupported);
}
else
{
return IsTransposeConvolution2dSupported(infos[0],
infos[1],
desc,
infos[2],
infos[3],
reasonIfUnsupported);
}
}
case LayerType::UnidirectionalSequenceLstm:
return IsUnidirectionalSequenceLstmSupported(infos[0],
infos[1],
infos[2],
infos[3],
infos[4],
infos[5],
*(PolymorphicDowncast<const
UnidirectionalSequenceLstmDescriptor*>(&descriptor)),
lstmParamsInfo.value(),
reasonIfUnsupported);
case LayerType::Unmap:
return true;
default:
// layers not supported in neon by default:
// debug, fakequantization, precompiled,
// standin, switch
return false;
}
}
bool NeonLayerSupport::IsActivationSupported(const TensorInfo& input,
const TensorInfo& output,
const ActivationDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonActivationWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsAdditionSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonAdditionWorkloadValidate,
reasonIfUnsupported,
input0,
input1,
output,
nullptr);
}
bool NeonLayerSupport::IsArgMinMaxSupported(const TensorInfo& input,
const TensorInfo& output,
const ArgMinMaxDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonArgMinMaxWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsBatchNormalizationSupported(const TensorInfo& input,
const TensorInfo& output,
const TensorInfo& mean,
const TensorInfo& var,
const TensorInfo& beta,
const TensorInfo& gamma,
const BatchNormalizationDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonBatchNormalizationValidate,
reasonIfUnsupported,
input,
output,
mean,
var,
beta,
gamma,
descriptor,
nullptr);
}
bool NeonLayerSupport::IsBatchToSpaceNdSupported(const TensorInfo& input,
const TensorInfo& output,
const BatchToSpaceNdDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonBatchToSpaceNdWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsCastSupported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonCastValidate,
reasonIfUnsupported,
input,
output);
}
bool NeonLayerSupport::IsChannelShuffleSupported(const TensorInfo& input,
const TensorInfo& output,
const ChannelShuffleDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonChannelShuffleValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsComparisonSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
const ComparisonDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonComparisonWorkloadValidate,
reasonIfUnsupported,
input0,
input1,
output,
descriptor);
}
bool NeonLayerSupport::IsConcatSupported(const std::vector<const TensorInfo*> inputs,
const TensorInfo& output,
const OriginsDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
if (descriptor.GetNumDimensions() <= descriptor.GetConcatAxis())
{
SetValueChecked(reasonIfUnsupported, "Neon Concat: Concat axis > Number of dimensions.");
return false;
}
unsigned int concatInnerAxis = (descriptor.GetNumDimensions() - descriptor.GetConcatAxis()) - 1;
if(concatInnerAxis < 3) // Width, height, or channels
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonConcatWorkloadValidate,
reasonIfUnsupported,
inputs,
output,
descriptor);
}
else if (concatInnerAxis == 3)
{
for (auto& input : inputs)
{
if (input && !output.IsTypeSpaceMatch(*input)) // Cannot use sub-tensors if the types are not same space
{
SetValueChecked(reasonIfUnsupported, "Neon Concat: Types and quantization parameters must match.");
return false;
}
}
return true; // Sub-tensors support concat along batch
}
else // > 4 dimensions not supported.
{
SetValueChecked(reasonIfUnsupported, "Neon Concat: Maximum of 4 dimensions supported.");
return false;
}
}
bool NeonLayerSupport::IsConstantSupported(const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonConstantWorkloadValidate,
reasonIfUnsupported,
output);
}
bool NeonLayerSupport::IsConvertBf16ToFp32Supported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
armnn::IgnoreUnused(input);
armnn::IgnoreUnused(output);
armnn::IgnoreUnused(reasonIfUnsupported);
return true;
}
bool NeonLayerSupport::IsConvertFp16ToFp32Supported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
armnn::IgnoreUnused(input);
armnn::IgnoreUnused(output);
armnn::IgnoreUnused(reasonIfUnsupported);
return true;
}
bool NeonLayerSupport::IsConvertFp32ToBf16Supported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
armnn::IgnoreUnused(input);
armnn::IgnoreUnused(output);
armnn::IgnoreUnused(reasonIfUnsupported);
return true;
}
bool NeonLayerSupport::IsConvertFp32ToFp16Supported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
armnn::IgnoreUnused(input);
armnn::IgnoreUnused(output);
armnn::IgnoreUnused(reasonIfUnsupported);
return true;
}
bool NeonLayerSupport::IsConvolution2dSupported(const TensorInfo& input,
const TensorInfo& output,
const Convolution2dDescriptor& descriptor,
const TensorInfo& weights,
const Optional<TensorInfo>& biases,
Optional<std::string&> reasonIfUnsupported) const
{
bool isFastMathEnabled = false;
#if defined(ARMCOMPUTENEON_ENABLED)
if (m_ModelContextPtr)
{
if (m_ModelContextPtr.get() != nullptr)
{
auto modelOptions = dynamic_cast<NeonBackendModelContext*>(m_ModelContextPtr.get());
if (modelOptions)
{
isFastMathEnabled = modelOptions->IsFastMathEnabled();
}
}
}
#endif
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonConvolution2dWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor,
weights,
biases,
isFastMathEnabled,
nullptr);
}
bool NeonLayerSupport::IsConvolution3dSupported(const TensorInfo& input,
const TensorInfo& output,
const Convolution3dDescriptor& descriptor,
const TensorInfo& weights,
const Optional<TensorInfo>& biases,
Optional<std::string&> reasonIfUnsupported) const
{
bool isFastMathEnabled = false;
#if defined(ARMCOMPUTENEON_ENABLED)
if (m_ModelContextPtr)
{
if (m_ModelContextPtr.get() != nullptr)
{
auto modelOptions = dynamic_cast<NeonBackendModelContext*>(m_ModelContextPtr.get());
if (modelOptions)
{
isFastMathEnabled = modelOptions->IsFastMathEnabled();
}
}
}
#endif
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonConvolution3dWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor,
weights,
biases,
isFastMathEnabled,
nullptr);
}
bool NeonLayerSupport::IsDepthToSpaceSupported(const TensorInfo& input,
const TensorInfo& output,
const DepthToSpaceDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonDepthToSpaceWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsDepthwiseConvolutionSupported(const TensorInfo& input,
const TensorInfo& output,
const DepthwiseConvolution2dDescriptor& descriptor,
const TensorInfo& weights,
const Optional<TensorInfo>& biases,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonDepthwiseConvolutionWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor,
weights,
biases,
nullptr);
}
bool NeonLayerSupport::IsDequantizeSupported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonDequantizeWorkloadValidate,
reasonIfUnsupported,
input,
output);
}
bool NeonLayerSupport::IsDilatedDepthwiseConvolutionSupported(const TensorInfo& input,
const TensorInfo& output,
const DepthwiseConvolution2dDescriptor& descriptor,
const TensorInfo& weights,
const Optional<TensorInfo>& biases,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonDepthwiseConvolutionWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor,
weights,
biases,
nullptr);
}
bool NeonLayerSupport::IsElementwiseUnarySupported(const TensorInfo& input,
const TensorInfo& output,
const ElementwiseUnaryDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
switch(descriptor.m_Operation)
{
case UnaryOperation::Abs:
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonAbsWorkloadValidate,
reasonIfUnsupported,
input,
output);
case UnaryOperation::Exp:
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonExpWorkloadValidate,
reasonIfUnsupported,
input,
output);
case UnaryOperation::LogicalNot:
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonLogicalNotWorkloadValidate,
reasonIfUnsupported,
input,
output);
case UnaryOperation::Log:
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonLogWorkloadValidate,
reasonIfUnsupported,
input,
output);
case UnaryOperation::Neg:
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonNegWorkloadValidate,
reasonIfUnsupported,
input,
output);
case UnaryOperation::Rsqrt:
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonRsqrtWorkloadValidate,
reasonIfUnsupported,
input,
output);
case UnaryOperation::Sin:
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonSinWorkloadValidate,
reasonIfUnsupported,
input,
output);
case UnaryOperation::Sqrt:
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonSqrtWorkloadValidate,
reasonIfUnsupported,
input,
output);
default:
return false;
}
}
bool NeonLayerSupport::IsFillSupported(const TensorInfo& input,
const TensorInfo& output,
const FillDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
armnn::IgnoreUnused(input);
armnn::IgnoreUnused(output);
armnn::IgnoreUnused(descriptor);
return IsNeonBackendSupported(reasonIfUnsupported);
}
bool NeonLayerSupport::IsFloorSupported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
armnn::IgnoreUnused(output);
return IsNeonBackendSupported(reasonIfUnsupported) &&
IsSupportedForDataTypeGeneric(reasonIfUnsupported,
input.GetDataType(),
&FalseFuncF16<>,
&TrueFunc<>,
&FalseFuncU8<>,
&FalseFuncI32<>,
&FalseFuncU8<>);
}
bool NeonLayerSupport::IsFullyConnectedSupported(const TensorInfo& input,
const TensorInfo& output,
const TensorInfo& weights,
const TensorInfo& biases,
const FullyConnectedDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonFullyConnectedWorkloadValidate,
reasonIfUnsupported,
input,
output,
weights,
biases,
descriptor,
nullptr);
}
bool NeonLayerSupport::IsGatherSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
const GatherDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonGatherWorkloadValidate,
reasonIfUnsupported,
input0,
input1,
output,
descriptor);
}
bool NeonLayerSupport::IsGatherNdSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonGatherNdWorkloadValidate,
reasonIfUnsupported,
input0,
input1,
output);
}
bool NeonLayerSupport::IsInputSupported(const TensorInfo& input,
Optional<std::string&> reasonIfUnsupported) const
{
return IsNeonBackendSupported(reasonIfUnsupported, input);
}
bool NeonLayerSupport::IsInstanceNormalizationSupported(const TensorInfo& input,
const TensorInfo& output,
const InstanceNormalizationDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonInstanceNormalizationWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsL2NormalizationSupported(const TensorInfo& input,
const TensorInfo& output,
const L2NormalizationDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonL2NormalizationWorkloadValidate, reasonIfUnsupported, input, output, descriptor);
}
bool NeonLayerSupport::IsLogicalBinarySupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
const LogicalBinaryDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
switch(descriptor.m_Operation)
{
case LogicalBinaryOperation::LogicalAnd:
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonLogicalAndWorkloadValidate,
reasonIfUnsupported,
input0,
input1,
output);
case LogicalBinaryOperation::LogicalOr:
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonLogicalOrWorkloadValidate,
reasonIfUnsupported,
input0,
input1,
output);
default:
return false;
}
}
bool NeonLayerSupport::IsLogSoftmaxSupported(const TensorInfo& input,
const TensorInfo& output,
const LogSoftmaxDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonLogSoftmaxWorkloadValidate, reasonIfUnsupported, input, output, descriptor);
}
bool NeonLayerSupport::IsLstmSupported(const TensorInfo& input,
const TensorInfo& outputStateIn,
const TensorInfo& cellStateIn,
const TensorInfo& scratchBuffer,
const TensorInfo& outputStateOut,
const TensorInfo& cellStateOut,
const TensorInfo& output,
const LstmDescriptor& descriptor,
const LstmInputParamsInfo& paramsInfo,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonLstmFloatWorkloadValidate,
reasonIfUnsupported,
input,
outputStateIn,
cellStateIn,
scratchBuffer,
outputStateOut,
cellStateOut,
output,
descriptor,
paramsInfo);
}
bool NeonLayerSupport::IsMaximumSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonMaximumWorkloadValidate,
reasonIfUnsupported,
input0,
input1,
output);
}
bool NeonLayerSupport::IsMeanSupported(const TensorInfo& input,
const TensorInfo& output,
const MeanDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonMeanWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsMinimumSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonMinimumWorkloadValidate,
reasonIfUnsupported,
input0,
input1,
output);
}
bool NeonLayerSupport::IsMultiplicationSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonMultiplicationWorkloadValidate,
reasonIfUnsupported,
input0,
input1,
output,
nullptr);
}
bool NeonLayerSupport::IsDivisionSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonDivisionWorkloadValidate,
reasonIfUnsupported,
input0,
input1,
output,
nullptr);
}
bool NeonLayerSupport::IsNormalizationSupported(const TensorInfo& input,
const TensorInfo& output,
const NormalizationDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonNormalizationWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsOutputSupported(const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
return IsNeonBackendSupported(reasonIfUnsupported, output);
}
bool NeonLayerSupport::IsPadSupported(const TensorInfo& input,
const TensorInfo& output,
const PadDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonPadWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsPermuteSupported(const TensorInfo& input,
const TensorInfo& output,
const PermuteDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonPermuteWorkloadValidate, reasonIfUnsupported, input, output, descriptor);
}
bool NeonLayerSupport::IsPooling2dSupported(const TensorInfo& input,
const TensorInfo& output,
const Pooling2dDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonPooling2dWorkloadValidate, reasonIfUnsupported, input, output, descriptor);
}
bool NeonLayerSupport::IsPooling3dSupported(const TensorInfo& input,
const TensorInfo& output,
const Pooling3dDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonPooling3dWorkloadValidate, reasonIfUnsupported, input, output, descriptor);
}
bool NeonLayerSupport::IsPreluSupported(const armnn::TensorInfo &input,
const armnn::TensorInfo &alpha,
const armnn::TensorInfo &output,
armnn::Optional<std::string &> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonPreluWorkloadValidate, reasonIfUnsupported, input, alpha, output);
}
bool NeonLayerSupport::IsQLstmSupported(const TensorInfo& input,
const TensorInfo& previousOutputIn,
const TensorInfo& previousCellStateIn,
const TensorInfo& outputStateOut,
const TensorInfo& cellStateOut,
const TensorInfo& output,
const QLstmDescriptor& descriptor,
const LstmInputParamsInfo& paramsInfo,
Optional<std::string&> reasonIfUnsupported) const
{
// Check required here in order to pass IsLayerSupported for datatypes tests
if (input.GetDataType() == armnn::DataType::QAsymmS8 &&
previousOutputIn.GetDataType() == armnn::DataType::QAsymmS8 &&
previousCellStateIn.GetDataType() == armnn::DataType::QSymmS16 &&
outputStateOut.GetDataType() == armnn::DataType::QAsymmS8 &&
cellStateOut.GetDataType() == armnn::DataType::QSymmS16 &&
output.GetDataType() == armnn::DataType::QAsymmS8)
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonQLstmWorkloadValidate,
reasonIfUnsupported,
input,
previousCellStateIn,
previousOutputIn,
cellStateOut,
outputStateOut,
output,
descriptor,
paramsInfo);
}
else
{
return false;
}
}
bool NeonLayerSupport::IsQuantizeSupported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonQuantizeWorkloadValidate,
reasonIfUnsupported,
input,
output);
}
bool NeonLayerSupport::IsQuantizedLstmSupported(const TensorInfo& input,
const TensorInfo& cellStateIn,
const TensorInfo& outputStateIn,
const TensorInfo& cellStateOut,
const TensorInfo& outputStateOut,
const QuantizedLstmInputParamsInfo& paramsInfo,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonQuantizedLstmWorkloadValidate,
reasonIfUnsupported,
input,
cellStateIn,
outputStateIn,
cellStateOut,
outputStateOut,
paramsInfo);
}
bool NeonLayerSupport::IsReduceSupported(const TensorInfo& input,
const TensorInfo& output,
const ReduceDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonReduceWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsReshapeSupported(const TensorInfo& input,
const TensorInfo& output,
const ReshapeDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
armnn::IgnoreUnused(descriptor);
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonReshapeWorkloadValidate,
reasonIfUnsupported,
input,
output);
}
bool NeonLayerSupport::IsResizeSupported(const TensorInfo& input,
const TensorInfo& output,
const ResizeDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonResizeWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsSliceSupported(const TensorInfo& input,
const TensorInfo& output,
const SliceDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonSliceWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsSoftmaxSupported(const TensorInfo& input,
const TensorInfo& output,
const SoftmaxDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonSoftmaxWorkloadValidate, reasonIfUnsupported, input, output, descriptor);
}
bool NeonLayerSupport::IsSpaceToBatchNdSupported(const TensorInfo& input,
const TensorInfo& output,
const SpaceToBatchNdDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonSpaceToBatchNdWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsSpaceToDepthSupported(const TensorInfo& input,
const TensorInfo& output,
const SpaceToDepthDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonSpaceToDepthWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsSplitterSupported(const TensorInfo& input,
const std::vector<std::reference_wrapper<TensorInfo>>& outputs,
const ViewsDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
#if defined(ARMCOMPUTENEON_ENABLED)
// Split along the last dimension, cannot use sub-tensors
// as width and height of the sub-tensors do not match
// the width and height of the parent tensor
// in case of input with more than 2D.
std::set<unsigned int> splitAxis = ComputeSplitAxis(descriptor, input.GetShape());
if (descriptor.GetNumDimensions() > 2 && splitAxis.size() == 1 &&
*splitAxis.begin() == descriptor.GetNumDimensions() - 1 )
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonSplitterWorkloadValidate,
reasonIfUnsupported,
input,
outputs,
*splitAxis.begin());
}
#endif
IgnoreUnused(descriptor);
for (auto output : outputs)
{
if (!input.IsTypeSpaceMatch(output)) // Cannot use sub-tensors if the types are not same space
{
SetValueChecked(reasonIfUnsupported, "Neon Splitter: Types and quantization parameters must match.");
return false;
}
}
return true;
}
bool NeonLayerSupport::IsStackSupported(const std::vector<const TensorInfo*>& inputs,
const TensorInfo& output,
const StackDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonStackWorkloadValidate,
reasonIfUnsupported,
inputs,
output,
descriptor);
}
bool NeonLayerSupport::IsStridedSliceSupported(const TensorInfo& input,
const TensorInfo& output,
const StridedSliceDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonStridedSliceWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor);
}
bool NeonLayerSupport::IsSubtractionSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonSubtractionWorkloadValidate,
reasonIfUnsupported,
input0,
input1,
output,
nullptr);
}
bool NeonLayerSupport::IsTransposeConvolution2dSupported(const TensorInfo& input,
const TensorInfo& output,
const TransposeConvolution2dDescriptor& descriptor,
const TensorInfo& weights,
const Optional<TensorInfo>& biases,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonTransposeConvolution2dWorkloadValidate,
reasonIfUnsupported,
input,
output,
descriptor,
weights,
biases);
}
bool NeonLayerSupport::IsTransposeSupported(const TensorInfo& input,
const TensorInfo& output,
const TransposeDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonTransposeWorkloadValidate, reasonIfUnsupported, input, output, descriptor);
}
bool NeonLayerSupport::IsUnidirectionalSequenceLstmSupported(const TensorInfo& input,
const TensorInfo& outputStateIn,
const TensorInfo& cellStateIn,
const TensorInfo& outputStateOut,
const TensorInfo& cellStateOut,
const TensorInfo& output,
const UnidirectionalSequenceLstmDescriptor& descriptor,
const LstmInputParamsInfo& paramsInfo,
Optional<std::string&> reasonIfUnsupported) const
{
if (input.GetDataType() == armnn::DataType::QAsymmS8 &&
outputStateIn.GetDataType() == armnn::DataType::QAsymmS8 &&
cellStateIn.GetDataType() == armnn::DataType::QSymmS16 &&
outputStateOut.GetDataType() == armnn::DataType::QAsymmS8 &&
cellStateOut.GetDataType() == armnn::DataType::QSymmS16 &&
output.GetDataType() == armnn::DataType::QAsymmS8)
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonUnidirectionalSequenceLstmWorkloadValidate,
reasonIfUnsupported,
input,
outputStateIn,
cellStateIn,
outputStateOut,
cellStateOut,
output,
descriptor,
paramsInfo);
}
else
{
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonUnidirectionalSequenceLstmFloatWorkloadValidate,
reasonIfUnsupported,
input,
outputStateIn,
cellStateIn,
outputStateOut,
cellStateOut,
output,
descriptor,
paramsInfo);
}
}
} // namespace armnn