blob: dd90368524912a678f6fa5241221c74b10292a8b [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include <armnn/INetwork.hpp>
#include <armnn/Tensor.hpp>
#include <armnn/INetworkQuantizer.hpp>
#include <armnn/Types.hpp>
#include "../LayerVisitorBase.hpp"
#include "../Network.hpp"
#include "../Graph.hpp"
#include "../NetworkQuantizerUtils.hpp"
#include "../OverrideInputRangeVisitor.hpp"
#include <boost/test/unit_test.hpp>
#include <unordered_map>
namespace armnn
{
using MinMaxRange = std::pair<float, float>;
using MinMaxRanges = std::vector<MinMaxRange>;
using MinMaxRangeMap = std::unordered_map<LayerGuid, MinMaxRanges>;
BOOST_AUTO_TEST_SUITE(Quantizer)
class TestQuantization : public LayerVisitorBase<VisitorThrowingPolicy>
{
public:
virtual void VisitInputLayer(const IConnectableLayer* layer,
LayerBindingId id,
const char* name = nullptr)
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
BOOST_TEST((info.GetDataType() == DataType::QuantisedAsymm8));
BOOST_TEST((info.GetQuantizationOffset() == 128));
// Based off current default [-15.0f, 15.0f]
BOOST_CHECK_CLOSE(info.GetQuantizationScale(), 30.0f/255.0f, 0.000001f);
}
virtual void VisitOutputLayer(const IConnectableLayer* layer,
LayerBindingId id,
const char* name = nullptr)
{}
};
void VisitLayersTopologically(const INetwork* inputNetwork, ILayerVisitor& visitor)
{
auto network = boost::polymorphic_downcast<const Network*>(inputNetwork);
auto graph = network->GetGraph().TopologicalSort();
VisitLayers(graph, visitor);
}
BOOST_AUTO_TEST_CASE(QuantizeAddition)
{
class TestAdditionQuantization : public TestQuantization
{
public:
virtual void VisitAdditionLayer(const IConnectableLayer* layer,
const char* name = nullptr)
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
BOOST_TEST((info.GetDataType() == DataType::QuantisedAsymm8));
BOOST_TEST((info.GetQuantizationOffset() == 128));
// Based off current static value [-20.0f, 20.0f]
BOOST_CHECK_CLOSE(info.GetQuantizationScale(), 40.0f/255.0f, 0.000001f);
}
};
auto network = INetwork::Create();
// Add the layers
IConnectableLayer* input0 = network->AddInputLayer(0);
IConnectableLayer* input1 = network->AddInputLayer(1);
IConnectableLayer* addition = network->AddAdditionLayer();
IConnectableLayer* output = network->AddOutputLayer(2);
// Establish connections
input0->GetOutputSlot(0).Connect(addition->GetInputSlot(0));
input1->GetOutputSlot(0).Connect(addition->GetInputSlot(1));
addition->GetOutputSlot(0).Connect(output->GetInputSlot(0));
//Set TensorInfo
TensorShape shape{1U};
TensorInfo info(shape, DataType::Float32);
input0->GetOutputSlot(0).SetTensorInfo(info);
input1->GetOutputSlot(0).SetTensorInfo(info);
addition->GetOutputSlot(0).SetTensorInfo(info);
auto quantizedNetwork = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestAdditionQuantization validator;
VisitLayersTopologically(quantizedNetwork.get(), validator);
}
class TestActivationQuantization : public TestQuantization
{
public:
virtual void VisitActivationLayer(const IConnectableLayer* layer,
const ActivationDescriptor& descriptor,
const char* name = nullptr)
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
BOOST_TEST((info.GetDataType() == DataType::QuantisedAsymm8));
BOOST_TEST((info.GetQuantizationOffset() == 0));
// Based off current static value [-20.0f, 20.0f]
BOOST_CHECK_CLOSE(info.GetQuantizationScale(), 15.0f/255.0f, 0.000001f);
}
};
INetworkPtr CreateNetworkWithActivationLayer(const ActivationDescriptor& descriptor)
{
auto network = INetwork::Create();
// Add the layers
IConnectableLayer* input0 = network->AddInputLayer(0);
IConnectableLayer* activation = network->AddActivationLayer(descriptor);
IConnectableLayer* output = network->AddOutputLayer(2);
// Establish connections
input0->GetOutputSlot(0).Connect(activation->GetInputSlot(0));
activation->GetOutputSlot(0).Connect(output->GetInputSlot(0));
//Set TensorInfo
TensorShape shape{1U};
TensorInfo info(shape, DataType::Float32);
input0->GetOutputSlot(0).SetTensorInfo(info);
activation->GetOutputSlot(0).SetTensorInfo(info);
return network;
}
BOOST_AUTO_TEST_CASE(QuantizeAbsActivation)
{
ActivationDescriptor descriptor;
descriptor.m_Function = ActivationFunction::Abs;
descriptor.m_A = 3.5f;
descriptor.m_B = -10.0f;
auto network = CreateNetworkWithActivationLayer(descriptor);
auto quantizedNetwork = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestActivationQuantization validator;
VisitLayersTopologically(quantizedNetwork.get(), validator);
}
BOOST_AUTO_TEST_CASE(QuantizeLinearActivation)
{
ActivationDescriptor descriptor;
descriptor.m_Function = ActivationFunction::Linear;
descriptor.m_A = 3.5f;
descriptor.m_B = -10.0f;
auto network = CreateNetworkWithActivationLayer(descriptor);
auto quantizedNetwork = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestActivationQuantization validator;
VisitLayersTopologically(quantizedNetwork.get(), validator);
}
BOOST_AUTO_TEST_CASE(QuantizeReLuActivation)
{
ActivationDescriptor descriptor;
descriptor.m_Function = ActivationFunction::ReLu;
descriptor.m_A = 3.5f;
descriptor.m_B = -10.0f;
auto network = CreateNetworkWithActivationLayer(descriptor);
auto quantizedNetwork = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestActivationQuantization validator;
VisitLayersTopologically(quantizedNetwork.get(), validator);
}
BOOST_AUTO_TEST_CASE(QuantizeSoftReLuActivation)
{
ActivationDescriptor descriptor;
descriptor.m_Function = ActivationFunction::SoftReLu;
descriptor.m_A = 3.5f;
descriptor.m_B = -10.0f;
auto network = CreateNetworkWithActivationLayer(descriptor);
auto quantizedNetwork = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestActivationQuantization validator;
VisitLayersTopologically(quantizedNetwork.get(), validator);
}
BOOST_AUTO_TEST_CASE(QuantizeBoundedReluActivation)
{
class TestBoundedReluActivationQuantization : public TestQuantization
{
public:
virtual void VisitActivationLayer(const IConnectableLayer* layer,
const ActivationDescriptor& descriptor,
const char* name = nullptr)
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
BOOST_TEST((info.GetDataType() == DataType::QuantisedAsymm8));
BOOST_TEST((info.GetQuantizationOffset() == 0));
// Based off current static value [0.0f, 3.5f(<-layer upper bound)]
BOOST_CHECK_CLOSE(info.GetQuantizationScale(), 3.5f/255.0f, 0.000001f);
}
};
ActivationDescriptor descriptor;
descriptor.m_Function = ActivationFunction::BoundedReLu;
descriptor.m_A = 3.5f;
descriptor.m_B = -10.0f;
auto network = CreateNetworkWithActivationLayer(descriptor);
auto quantizedNetwork = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestBoundedReluActivationQuantization validator;
VisitLayersTopologically(quantizedNetwork.get(), validator);
}
BOOST_AUTO_TEST_CASE(QuantizeTanHActivation)
{
class TestTanHActivationQuantization : public TestQuantization
{
public:
virtual void VisitActivationLayer(const IConnectableLayer* layer,
const ActivationDescriptor& descriptor,
const char* name = nullptr)
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
BOOST_TEST((info.GetDataType() == DataType::QuantisedAsymm8));
BOOST_TEST((info.GetQuantizationOffset() == 128));
// Based off current static value [-1.0f, 1.0f]
BOOST_CHECK_CLOSE(info.GetQuantizationScale(), 2.0f/255.0f, 0.000001f);
}
};
ActivationDescriptor descriptor;
descriptor.m_Function = ActivationFunction::TanH;
descriptor.m_A = 3.5f;
descriptor.m_B = -10.0f;
auto network = CreateNetworkWithActivationLayer(descriptor);
auto quantizedNetwork = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestTanHActivationQuantization validator;
VisitLayersTopologically(quantizedNetwork.get(), validator);
}
BOOST_AUTO_TEST_CASE(QuantizeLeakyReLuActivation)
{
class TestLeakyReLuActivationQuantization : public TestQuantization
{
public:
virtual void VisitActivationLayer(const IConnectableLayer* layer,
const ActivationDescriptor& descriptor,
const char* name = nullptr)
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
BOOST_TEST((info.GetDataType() == DataType::QuantisedAsymm8));
BOOST_TEST((info.GetQuantizationOffset() == 64));
// Based off current static value [-5.0f, 15.0f]
BOOST_CHECK_CLOSE(info.GetQuantizationScale(), 20.0f/255.0f, 0.000001f);
}
};
ActivationDescriptor descriptor;
descriptor.m_Function = ActivationFunction::LeakyReLu;
descriptor.m_A = 3.5f;
descriptor.m_B = -10.0f;
auto network = CreateNetworkWithActivationLayer(descriptor);
auto quantizedNetwork = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestLeakyReLuActivationQuantization validator;
VisitLayersTopologically(quantizedNetwork.get(), validator);
}
BOOST_AUTO_TEST_CASE(QuantizeBatchNorm)
{
class TestQuantization : public LayerVisitorBase<VisitorThrowingPolicy>
{
public:
virtual void VisitBatchNormalizationLayer(const IConnectableLayer* layer,
const BatchNormalizationDescriptor& desc,
const ConstTensor& mean,
const ConstTensor& variance,
const ConstTensor& beta,
const ConstTensor& gamma,
const char* name = nullptr)
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
BOOST_TEST((info.GetDataType() == DataType::QuantisedAsymm8));
BOOST_TEST((info.GetQuantizationOffset() == 128));
// Based off current static value [-15.0f, 15.0f]
BOOST_CHECK_CLOSE(info.GetQuantizationScale(), 30.0f/255.0f, 0.000001f);
//Test constants
BOOST_TEST((mean.GetInfo().GetDataType() == DataType::QuantisedAsymm8));
BOOST_TEST((variance.GetInfo().GetDataType() == DataType::QuantisedAsymm8));
BOOST_TEST((beta.GetInfo().GetDataType() == DataType::QuantisedAsymm8));
BOOST_TEST((gamma.GetInfo().GetDataType() == DataType::QuantisedAsymm8));
BOOST_CHECK_CLOSE(mean.GetInfo().GetQuantizationScale(), 3.0f/255.0f, 0.000001f);
BOOST_CHECK_CLOSE(variance.GetInfo().GetQuantizationScale(), 3.0f/255.0f, 0.000001f);
BOOST_CHECK_CLOSE(beta.GetInfo().GetQuantizationScale(), 3.0f/255.0f, 0.000001f);
BOOST_CHECK_CLOSE(gamma.GetInfo().GetQuantizationScale(), 3.0f/255.0f, 0.000001f);
BOOST_TEST((mean.GetInfo().GetQuantizationOffset() == 85));
}
virtual void VisitInputLayer(const IConnectableLayer* layer,
LayerBindingId id,
const char* name = nullptr)
{}
virtual void VisitOutputLayer(const IConnectableLayer* layer,
LayerBindingId id,
const char* name = nullptr)
{}
};
auto network = INetwork::Create();
TensorShape shape{3U};
TensorInfo info(shape, DataType::Float32);
std::vector<float> meanData{-1.0f, 1.5f, 2.0f};
std::vector<float> varData{-1.0f, 1.5f, 2.0f};
std::vector<float> betaData{-1.0f, 1.5f, 2.0f};
std::vector<float> gammaData{-1.0f, 1.5f, 2.0f};
ConstTensor mean(info, meanData);
ConstTensor var(info, varData);
ConstTensor beta(info, betaData);
ConstTensor gamma(info, gammaData);
BatchNormalizationDescriptor desc;
// Add the layers
IConnectableLayer* input0 = network->AddInputLayer(0);
IConnectableLayer* batchNorm = network->AddBatchNormalizationLayer(desc, mean, var, beta, gamma);
IConnectableLayer* output = network->AddOutputLayer(1);
// Establish connections
input0->GetOutputSlot(0).Connect(batchNorm->GetInputSlot(0));
batchNorm->GetOutputSlot(0).Connect(output->GetInputSlot(0));
//Set TensorInfo
input0->GetOutputSlot(0).SetTensorInfo(info);
batchNorm->GetOutputSlot(0).SetTensorInfo(info);
auto quantizedNetwork = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestQuantization validator;
VisitLayersTopologically(quantizedNetwork.get(), validator);
}
BOOST_AUTO_TEST_CASE(OverrideInputRangeEmptyNetwork)
{
MinMaxRangeMap guidToRangesMap; // Empty map of ranges
MinMaxRange minMaxRange(-12.3f, 45.6f); // Range to use for the override
Network network; // Empty network
auto inputLayers = network.GetGraph().GetInputLayers(); // Empty list of input layers
OverrideInputRangeVisitor overrideInputRangeVisitor(guidToRangesMap, 0, minMaxRange);
VisitLayers(inputLayers, overrideInputRangeVisitor);
BOOST_CHECK(guidToRangesMap.empty()); // Check that the map of ranges remained untouched
}
BOOST_AUTO_TEST_CASE(OverrideInputRangeNoInputLayers)
{
MinMaxRangeMap guidToRangesMap; // Empty map of ranges
MinMaxRange minMaxRange(-12.3f, 45.6f); // Range to use for the override
Network network;
network.AddAdditionLayer(); // Network with no input layers
auto inputLayers = network.GetGraph().GetInputLayers(); // Empty list of input layers
OverrideInputRangeVisitor overrideInputRangeVisitor(guidToRangesMap, 0, minMaxRange);
VisitLayers(inputLayers, overrideInputRangeVisitor);
BOOST_CHECK(guidToRangesMap.empty()); // Check that the map of ranges remained untouched
}
BOOST_AUTO_TEST_CASE(OverrideInputRangeInputLayers)
{
MinMaxRangeMap guidToRangesMap; // Empty map of ranges
MinMaxRange minMaxRange(-12.3f, 45.6f); // Range to use for the override
Network network;
// Adding the layers
IConnectableLayer* input0 = network.AddInputLayer(0);
IConnectableLayer* input1 = network.AddInputLayer(1);
IConnectableLayer* addition = network.AddAdditionLayer();
IConnectableLayer* output = network.AddOutputLayer(2);
// Connecting the layer
input0->GetOutputSlot(0).Connect(addition->GetInputSlot(0));
input1->GetOutputSlot(0).Connect(addition->GetInputSlot(1));
addition->GetOutputSlot(0).Connect(output->GetInputSlot(0));
// Setting the TensorInfos
TensorShape shape{1U};
TensorInfo info(shape, DataType::Float32);
input0->GetOutputSlot(0).SetTensorInfo(info);
input1->GetOutputSlot(0).SetTensorInfo(info);
addition->GetOutputSlot(0).SetTensorInfo(info);
auto inputLayers = network.GetGraph().GetInputLayers(); // List of input layers
// Trying to override the input range for the input layer with binding id 3 (does not exist in the network)
OverrideInputRangeVisitor overrideInputRangeVisitorLayer3(guidToRangesMap, 3, minMaxRange);
VisitLayers(inputLayers, overrideInputRangeVisitorLayer3);
// Check that the map of ranges remained untouched
BOOST_CHECK(guidToRangesMap.empty());
// Override the input range for the input layer with binding id 1
OverrideInputRangeVisitor overrideInputRangeVisitorLayer1(guidToRangesMap, 1, minMaxRange);
VisitLayers(inputLayers, overrideInputRangeVisitorLayer1);
// Check that the map of ranges has been populated
BOOST_CHECK(!guidToRangesMap.empty());
// Check that an entry for the input layer with binding id 0 does not exist
BOOST_CHECK(guidToRangesMap.find(input0->GetGuid()) == guidToRangesMap.end());
// Check that an entry for the input layer with binding id 1 exists
BOOST_CHECK(guidToRangesMap.find(input1->GetGuid()) != guidToRangesMap.end());
// Check that at least a value has been added for the input layer with binding id 1
BOOST_CHECK(!guidToRangesMap[input1->GetGuid()].empty());
// Check the the overridden values are what we intended to set
BOOST_CHECK(guidToRangesMap[input1->GetGuid()].at(0).first == minMaxRange.first);
BOOST_CHECK(guidToRangesMap[input1->GetGuid()].at(0).second == minMaxRange.second);
}
INetworkPtr CreateNetworkWithFullyConnectedLayer(const bool biasEnabled)
{
FullyConnectedDescriptor desc;
desc.m_BiasEnabled = biasEnabled;
auto network = INetwork::Create();
TensorShape shape{3U};
TensorInfo info(shape, DataType::Float32);
std::vector<float> weightsData{-1.0f, 1.5f, 2.0f};
ConstTensor weights(info, weightsData);
// Add the layers
IConnectableLayer* input0 = network->AddInputLayer(0);
IConnectableLayer* fullyConnected;
if (desc.m_BiasEnabled)
{
std::vector<float> biasData{10.0f, 20.0f, 30.0f};
ConstTensor bias(info, biasData);
fullyConnected = network->AddFullyConnectedLayer(desc, weights, bias);
}
else
{
fullyConnected = network->AddFullyConnectedLayer(desc, weights);
}
IConnectableLayer* output = network->AddOutputLayer(1);
// Establish connections
input0->GetOutputSlot(0).Connect(fullyConnected->GetInputSlot(0));
fullyConnected->GetOutputSlot(0).Connect(output->GetInputSlot(0));
//Set TensorInfo
input0->GetOutputSlot(0).SetTensorInfo(info);
fullyConnected->GetOutputSlot(0).SetTensorInfo(info);
return network;
}
class TestFullyConnectedQuantization : public TestQuantization
{
public:
virtual void VisitFullyConnectedLayer(const IConnectableLayer* layer,
const FullyConnectedDescriptor& desc,
const ConstTensor& weights,
const char* name = nullptr)
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
BOOST_TEST((info.GetDataType() == DataType::QuantisedAsymm8));
BOOST_TEST((info.GetQuantizationOffset() == 128));
// Based off current static value [-15.0f, 15.0f]
BOOST_CHECK_CLOSE(info.GetQuantizationScale(), 30.0f/255.0f, 0.000001f );
//Test constants
BOOST_TEST((weights.GetInfo().GetDataType() == DataType::QuantisedAsymm8));
BOOST_CHECK_CLOSE(weights.GetInfo().GetQuantizationScale(), 3.0f/255.0f, 0.000001f);
BOOST_TEST((weights.GetInfo().GetQuantizationOffset() == 85));
}
virtual void VisitFullyConnectedLayer(const IConnectableLayer* layer,
const FullyConnectedDescriptor& desc,
const ConstTensor& weights,
const ConstTensor& bias,
const char* name = nullptr)
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
BOOST_TEST((info.GetDataType() == DataType::QuantisedAsymm8));
BOOST_TEST((info.GetQuantizationOffset() == 128));
// Based off current static value [-15.0f, 15.0f]
BOOST_CHECK_CLOSE(info.GetQuantizationScale(), 30.0f/255.0f, 0.000001f );
//Test constants
BOOST_TEST((weights.GetInfo().GetDataType() == DataType::QuantisedAsymm8));
BOOST_TEST((bias.GetInfo().GetDataType() == DataType::QuantisedAsymm8));
BOOST_CHECK_CLOSE(weights.GetInfo().GetQuantizationScale(), 3.0f/255.0f, 0.000001f);
BOOST_CHECK_CLOSE(bias.GetInfo().GetQuantizationScale(), 30.0f/255.0f, 0.000001f);
BOOST_TEST((weights.GetInfo().GetQuantizationOffset() == 85));
}
};
void ValidateFullyConnectedLayer(const bool biasEnabled)
{
auto network = CreateNetworkWithFullyConnectedLayer(biasEnabled);
auto quantizedNetwork = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestFullyConnectedQuantization validator;
VisitLayersTopologically(quantizedNetwork.get(), validator);
}
BOOST_AUTO_TEST_CASE(QuantizeFullyConnected)
{
ValidateFullyConnectedLayer(false);
}
BOOST_AUTO_TEST_CASE(QuantizeFullyConnectedBiasEnabled)
{
ValidateFullyConnectedLayer(true);
}
BOOST_AUTO_TEST_SUITE_END()
} // namespace armnn