blob: 4f5e2974ed61427373d8f21353ed136763c2ece9 [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "Network.hpp"
#include "Graph.hpp"
#include "Layer.hpp"
#include "DeviceSpec.hpp"
#include "backends/CpuTensorHandle.hpp"
#include "backends/WorkloadFactory.hpp"
#include "Optimizer.hpp"
#include "armnn/Exceptions.hpp"
#include <armnn/Utils.hpp>
#include <armnn/TypesUtils.hpp>
#include <fcntl.h>
#include <algorithm>
#include <fstream>
#include <memory>
#include <vector>
#include <algorithm>
#include <boost/assert.hpp>
#include <boost/format.hpp>
#include <boost/log/trivial.hpp>
#include <boost/numeric/conversion/converter_policies.hpp>
#include <boost/cast.hpp>
#include "optimizations/All.hpp"
namespace armnn
{
armnn::INetwork* INetwork::CreateRaw()
{
return new Network();
}
armnn::INetworkPtr INetwork::Create()
{
return INetworkPtr(CreateRaw(), &INetwork::Destroy);
}
void INetwork::Destroy(INetwork* network)
{
delete boost::polymorphic_downcast<Network*>(network);
}
Status Network::PrintGraph()
{
m_Graph->Print();
return Status::Success;
}
void IOptimizedNetwork::Destroy(IOptimizedNetwork* network)
{
delete boost::polymorphic_downcast<OptimizedNetwork*>(network);
}
Status OptimizedNetwork::PrintGraph()
{
m_Graph->Print();
return Status::Success;
}
Status OptimizedNetwork::SerializeToDot(std::ostream& stream) const
{
return m_Graph->SerializeToDot(stream);
}
IOptimizedNetworkPtr Optimize(const INetwork& inNetwork,
const std::vector<armnn::Compute>& backendPreferences,
const IDeviceSpec& deviceSpec,
const OptimizerOptions& options)
{
if (backendPreferences.empty()) {
throw armnn::InvalidArgumentException("Invoked Optimize with no backends specified");
}
const Network& network = *boost::polymorphic_downcast<const Network*>(&inNetwork);
std::unique_ptr<Graph> graph = std::make_unique<Graph>(network.GetGraph());
auto optNet = IOptimizedNetworkPtr(new OptimizedNetwork(std::move(graph)), &IOptimizedNetwork::Destroy);
OptimizedNetwork* optNetObjPtr = boost::polymorphic_downcast<OptimizedNetwork*>(optNet.get());
// Perform optimisation passes
using namespace optimizations;
Optimizer::Pass(optNetObjPtr->GetGraph(), MakeOptimizations(SquashEqualPermuteSiblings(),
SquashEqualReshapeSiblings(),
OptimizeInversePermutes(),
MovePermuteUp(),
PermuteAsReshape(),
OptimizeConsecutiveReshapes()));
// Infer the tensor infos for all output slots. Throws an exception on failure.
optNetObjPtr->GetGraph().InferTensorInfos();
// if Fp32 to Fp16 optimization is set convert Fp32 network to Fp16
if (options.m_ReduceFp32ToFp16)
{
Optimizer::Pass(optNetObjPtr->GetGraph(), MakeOptimizations(Fp32NetworkToFp16Converter()));
}
// We know that DeviceSpec should be the only implementation of IDeviceSpec.
const DeviceSpec& spec = *boost::polymorphic_downcast<const DeviceSpec*>(&deviceSpec);
// determine which of the preferred backends we have available for use
// and whether we have specified CpuRef as one of those backends.
bool cpuRefUsed = false;
std::vector<armnn::Compute> availablePreferredBackends;
for (const armnn::Compute& backend : backendPreferences)
{
// Check if the backend is in the available backend devices.
if (std::find(spec.m_SupportedComputeDevices.begin(),
spec.m_SupportedComputeDevices.end(), backend) !=
spec.m_SupportedComputeDevices.end())
{
availablePreferredBackends.push_back(backend);
if (armnn::Compute::CpuRef == backend) {
cpuRefUsed = true;
}
}
}
if (availablePreferredBackends.empty()) {
BOOST_LOG_TRIVIAL(warning) << "None of the preferred backends " << backendPreferences
<< " are supported. Current platform provides " << spec.m_SupportedComputeDevices;
return {nullptr, &IOptimizedNetwork::Destroy};
}
auto ReturnWithError = [&](Layer* layer)
{
BOOST_LOG_TRIVIAL(warning) << "Layer of type " << GetLayerTypeAsCString(layer->GetType())
<< " is not supported on any preferred backend " << backendPreferences;
return IOptimizedNetworkPtr(nullptr, &IOptimizedNetwork::Destroy);
};
// Assign a compute device for all nodes
for (auto&& layer : optNetObjPtr->GetGraph())
{
DataType dataType = layer->GetDataType();
std::string reasonIfUnsupported;
bool found = false;
for (const armnn::Compute& backend : availablePreferredBackends)
{
// need to set the compute device on the layer
// before we can check if it is supported
layer->SetComputeDevice(backend);
if (!IWorkloadFactory::IsLayerSupported(*layer, dataType, reasonIfUnsupported))
{
if (dataType == DataType::Float16)
{
if (IWorkloadFactory::IsLayerSupported(*layer, DataType::Float32, reasonIfUnsupported)
&& layer->GetType() != LayerType::ConvertFp32ToFp16
&& layer->GetType() != LayerType::ConvertFp16ToFp32)
{
// Insert FP16 -> FP32 conversion layer before current layer
std::vector<ConvertFp16ToFp32Layer*> convertFp16ToFp32Layers =
InsertConvertFp16ToFp32LayersBefore(optNetObjPtr->GetGraph(), *layer);
// Insert FP32 -> FP16 conversion layer after current layer
std::vector<ConvertFp32ToFp16Layer*> convertFp32ToFp16Layers =
InsertConvertFp32ToFp16LayersAfter(optNetObjPtr->GetGraph(), *layer);
// Assign a supported backend to the newly introduced conversion layers
auto AssignFirstSupportedBackend = [&](Layer* layer, Compute preferredBackend)
{
bool supportedBackendFound = false;
std::string reasonIfUnsupported;
// Try preferred backend first
layer->SetComputeDevice(preferredBackend);
if (IWorkloadFactory::IsLayerSupported(*layer, boost::none, reasonIfUnsupported))
{
supportedBackendFound = true;
}
else
{
for (const Compute& backend : availablePreferredBackends)
{
// Skip preferred backend (we already determined that it is not supported)
if (backend == preferredBackend)
{
continue;
}
layer->SetComputeDevice(backend);
if (IWorkloadFactory::IsLayerSupported(*layer, boost::none, reasonIfUnsupported))
{
supportedBackendFound = true;
break;
}
}
}
return supportedBackendFound;
};
for (ConvertFp16ToFp32Layer* convertLayer : convertFp16ToFp32Layers)
{
if (!AssignFirstSupportedBackend(convertLayer, backend))
{
return ReturnWithError(convertLayer);
}
}
for (ConvertFp32ToFp16Layer* convertLayer : convertFp32ToFp16Layers)
{
if (!AssignFirstSupportedBackend(convertLayer, backend))
{
return ReturnWithError(convertLayer);
}
}
found = true;
break;
}
}
BOOST_LOG_TRIVIAL(warning) << "Layer of type " << GetLayerTypeAsCString(layer->GetType())
<< " is not supported on requested backend " << layer->GetComputeDevice()
<< " (reason: " << reasonIfUnsupported
<< "), falling back to the next backend.";
}
else
{
found = true;
break;
}
}
// If the layer is unsupported by any devices, log and return a null network.
if (!found) {
// NOTE: if the layer is not an operation queue type AND we have not got CpuRef as a
// fallback we should set the compute device on the layer to CpuRef (these are not
// available as accelerated operations, or are only available under certain
// conditions, currently they comprise MemCopy, Constant, Permute)
armnn::LayerType layerType = layer->GetType();
if (!cpuRefUsed && (layerType == armnn::LayerType::MemCopy ||
layerType == armnn::LayerType::Constant ||
layerType == armnn::LayerType::Permute))
{
layer->SetComputeDevice(armnn::Compute::CpuRef);
}
else
{
return ReturnWithError(layer);
}
}
}
Optimizer::Pass(optNetObjPtr->GetGraph(), MakeOptimizations(OptimizeInverseConversionsFp16(),
OptimizeInverseConversionsFp32()));
optNetObjPtr->GetGraph().AddCopyLayers();
// Convert constants
Optimizer::Pass(optNetObjPtr->GetGraph(), MakeOptimizations(ConvertConstantsFloatToHalf()));
Optimizer::Pass(optNetObjPtr->GetGraph(), MakeOptimizations(ConvertConstantsHalfToFloat()));
return optNet;
}
Network::Network()
: m_Graph(std::make_unique<Graph>())
{
}
Network::~Network()
{
}
IConnectableLayer* Network::AddInputLayer(LayerBindingId id, const char* name)
{
return m_Graph->AddLayer<InputLayer>(id, name);
}
IConnectableLayer* Network::AddFullyConnectedLayerImpl(const FullyConnectedDescriptor& fullyConnectedDescriptor,
const ConstTensor& weights,
const ConstTensor* biases,
const char* name)
{
if (fullyConnectedDescriptor.m_BiasEnabled && (biases == nullptr))
{
throw InvalidArgumentException("AddFullyConnectedLayer: biases cannot be NULL");
}
const auto layer = m_Graph->AddLayer<FullyConnectedLayer>(fullyConnectedDescriptor, name);
layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(weights);
if (fullyConnectedDescriptor.m_BiasEnabled)
{
layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>(*biases);
}
return layer;
}
IConnectableLayer* Network::AddFullyConnectedLayer(const FullyConnectedDescriptor& fullyConnectedDescriptor,
const ConstTensor& weights,
const char* name)
{
return AddFullyConnectedLayerImpl(fullyConnectedDescriptor, weights, nullptr, name);
}
IConnectableLayer* Network::AddFullyConnectedLayer(const FullyConnectedDescriptor& fullyConnectedDescriptor,
const ConstTensor& weights,
const ConstTensor& biases,
const char* name)
{
return AddFullyConnectedLayerImpl(fullyConnectedDescriptor, weights, &biases, name);
}
IConnectableLayer* Network::AddConvolution2dLayerImpl(const Convolution2dDescriptor& convolution2dDescriptor,
const ConstTensor& weights,
const ConstTensor* biases,
const char* name)
{
if (convolution2dDescriptor.m_BiasEnabled && (biases == nullptr))
{
throw InvalidArgumentException("AddConvolution2dLayer: biases cannot be NULL");
}
const auto layer = m_Graph->AddLayer<Convolution2dLayer>(convolution2dDescriptor, name);
layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(weights);
if (convolution2dDescriptor.m_BiasEnabled)
{
layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>(*biases);
}
return layer;
}
IConnectableLayer* Network::AddConvolution2dLayer(const Convolution2dDescriptor& convolution2dDescriptor,
const ConstTensor& weights,
const char* name)
{
return AddConvolution2dLayerImpl(convolution2dDescriptor, weights, nullptr, name);
}
IConnectableLayer* Network::AddConvolution2dLayer(const Convolution2dDescriptor& convolution2dDescriptor,
const ConstTensor& weights,
const ConstTensor& biases,
const char* name)
{
return AddConvolution2dLayerImpl(convolution2dDescriptor, weights, &biases, name);
}
IConnectableLayer* Network::AddDepthwiseConvolution2dLayerImpl(
const DepthwiseConvolution2dDescriptor& convolution2dDescriptor,
const ConstTensor& weights,
const ConstTensor* biases,
const char* name)
{
if (convolution2dDescriptor.m_BiasEnabled && (biases == nullptr))
{
throw InvalidArgumentException("AddDepthwiseConvolution2dLayer: biases cannot be NULL");
}
const auto layer = m_Graph->AddLayer<DepthwiseConvolution2dLayer>(convolution2dDescriptor,
name);
layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(weights);
if (convolution2dDescriptor.m_BiasEnabled)
{
layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>(*biases);
}
return layer;
}
IConnectableLayer* Network::AddDepthwiseConvolution2dLayer(
const DepthwiseConvolution2dDescriptor& convolution2dDescriptor,
const ConstTensor& weights,
const char* name)
{
return AddDepthwiseConvolution2dLayerImpl(convolution2dDescriptor, weights, nullptr, name);
}
IConnectableLayer* Network::AddDepthwiseConvolution2dLayer(
const DepthwiseConvolution2dDescriptor& convolution2dDescriptor,
const ConstTensor& weights,
const ConstTensor& biases,
const char* name)
{
return AddDepthwiseConvolution2dLayerImpl(convolution2dDescriptor, weights, &biases, name);
}
IConnectableLayer* Network::AddPermuteLayer(const PermuteDescriptor& permuteDescriptor,
const char* name)
{
return m_Graph->AddLayer<PermuteLayer>(permuteDescriptor, name);
}
IConnectableLayer* Network::AddPooling2dLayer(const Pooling2dDescriptor& pooling2dDescriptor,
const char* name)
{
return m_Graph->AddLayer<Pooling2dLayer>(pooling2dDescriptor, name);
}
IConnectableLayer* Network::AddActivationLayer(const ActivationDescriptor& activationDescriptor,
const char* name)
{
return m_Graph->AddLayer<ActivationLayer>(activationDescriptor, name);
}
IConnectableLayer* Network::AddNormalizationLayer(const NormalizationDescriptor&
normalizationDescriptor,
const char* name)
{
return m_Graph->AddLayer<NormalizationLayer>(normalizationDescriptor, name);
}
IConnectableLayer* Network::AddSoftmaxLayer(const SoftmaxDescriptor& softmaxDescriptor,
const char* name)
{
return m_Graph->AddLayer<SoftmaxLayer>(softmaxDescriptor, name);
}
IConnectableLayer* Network::AddSplitterLayer(const ViewsDescriptor& splitterDescriptor,
const char* name)
{
return m_Graph->AddLayer<SplitterLayer>(splitterDescriptor, name);
}
IConnectableLayer* Network::AddMergerLayer(const OriginsDescriptor& mergerDescriptor,
const char* name)
{
return m_Graph->AddLayer<MergerLayer>(mergerDescriptor, name);
}
IConnectableLayer* Network::AddAdditionLayer(const char* name)
{
return m_Graph->AddLayer<AdditionLayer>(name);
}
IConnectableLayer* Network::AddMultiplicationLayer(const char* name)
{
return m_Graph->AddLayer<MultiplicationLayer>(name);
}
IConnectableLayer* Network::AddOutputLayer(LayerBindingId id, const char* name)
{
return m_Graph->AddLayer<OutputLayer>(id, name);
}
IConnectableLayer* Network::AddBatchNormalizationLayer(const BatchNormalizationDescriptor& desc,
const ConstTensor& mean,
const ConstTensor& variance,
const ConstTensor& beta,
const ConstTensor& gamma,
const char* name)
{
const auto layer = m_Graph->AddLayer<BatchNormalizationLayer>(desc, name);
layer->m_Mean = std::make_unique<ScopedCpuTensorHandle>(mean);
layer->m_Variance = std::make_unique<ScopedCpuTensorHandle>(variance);
layer->m_Beta = std::make_unique<ScopedCpuTensorHandle>(beta);
layer->m_Gamma = std::make_unique<ScopedCpuTensorHandle>(gamma);
return layer;
}
IConnectableLayer* Network::AddResizeBilinearLayer(const ResizeBilinearDescriptor&
resizeDescriptor, const char* name)
{
return m_Graph->AddLayer<ResizeBilinearLayer>(resizeDescriptor,name);
}
IConnectableLayer* Network::AddL2NormalizationLayer(const char* name)
{
return m_Graph->AddLayer<L2NormalizationLayer>(name);
}
IConnectableLayer* Network::AddConstantLayer(const ConstTensor& input, const char* name)
{
auto layer = m_Graph->AddLayer<ConstantLayer>(name);
layer->m_LayerOutput = std::make_unique<ScopedCpuTensorHandle>(input);
return layer;
}
IConnectableLayer* Network::AddReshapeLayer(const ReshapeDescriptor& reshapeDescriptor,
const char* name)
{
return m_Graph->AddLayer<ReshapeLayer>(reshapeDescriptor, name);
}
IConnectableLayer* Network::AddFloorLayer(const char* name)
{
return m_Graph->AddLayer<FloorLayer>(name);
}
IConnectableLayer* Network::AddLstmLayer(const LstmDescriptor& descriptor,
const LstmInputParams& params,
const char* name)
{
const auto layer = m_Graph->AddLayer<LstmLayer>(descriptor, name);
//Lstm Basic Parameters
layer->m_BasicParameters.m_InputToForgetWeights =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_InputToForgetWeights));
layer->m_BasicParameters.m_InputToCellWeights =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_InputToCellWeights));
layer->m_BasicParameters.m_InputToOutputWeights =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_InputToOutputWeights));
layer->m_BasicParameters.m_RecurrentToForgetWeights =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_RecurrentToForgetWeights));
layer->m_BasicParameters.m_RecurrentToCellWeights =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_RecurrentToCellWeights));
layer->m_BasicParameters.m_RecurrentToOutputWeights =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_RecurrentToOutputWeights));
layer->m_BasicParameters.m_ForgetGateBias =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_ForgetGateBias));
layer->m_BasicParameters.m_CellBias =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_CellBias));
layer->m_BasicParameters.m_OutputGateBias =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_OutputGateBias));
//Lstm Cifg parameters
if(!descriptor.m_CifgEnabled)
{
if(params.m_InputToInputWeights == nullptr)
{
throw InvalidArgumentException("AddLstmLayer: Input To Input Weights cannot be NULL");
}
if(params.m_RecurrentToInputWeights == nullptr)
{
throw InvalidArgumentException(
"AddLstmLayer: Recurrent To Input Weights cannot be NULL");
}
if(params.m_InputGateBias == nullptr)
{
throw InvalidArgumentException("AddLstmLayer: Input Gate Bias cannot be NULL");
}
layer->m_CifgParameters.m_InputToInputWeights =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_InputToInputWeights));
layer->m_CifgParameters.m_RecurrentToInputWeights =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_RecurrentToInputWeights));
// In the VTS tests, cell-to-input weights may be null, even if the other CIFG params are not.
if(params.m_CellToInputWeights != nullptr)
{
layer->m_CifgParameters.m_CellToInputWeights =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_CellToInputWeights));
}
layer->m_CifgParameters.m_InputGateBias =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_InputGateBias));
}
//Lstm projection parameters
if(descriptor.m_ProjectionEnabled)
{
if(params.m_ProjectionWeights == nullptr)
{
throw InvalidArgumentException("AddLstmLayer: Projection Weights cannot be NULL");
}
layer->m_ProjectionParameters.m_ProjectionWeights =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_ProjectionWeights));
if(params.m_ProjectionBias != nullptr)
{
layer->m_ProjectionParameters.m_ProjectionBias =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_ProjectionBias));
}
}
//Lstm Peephole params
if(descriptor.m_PeepholeEnabled)
{
if(params.m_CellToForgetWeights == nullptr)
{
throw InvalidArgumentException("AddLstmLayer: Cell To Forget Weights cannot be NULL");
}
if(params.m_CellToOutputWeights == nullptr)
{
throw InvalidArgumentException("AddLstmLayer: Cell To Output Weights cannot be NULL");
}
layer->m_PeepholeParameters.m_CellToForgetWeights =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_CellToForgetWeights));
layer->m_PeepholeParameters.m_CellToOutputWeights =
std::make_unique<ScopedCpuTensorHandle>(*(params.m_CellToOutputWeights));
}
return layer;
}
IConnectableLayer* Network::AddDivisionLayer(const char* name)
{
return m_Graph->AddLayer<DivisionLayer>(name);
}
IConnectableLayer* Network::AddSubtractionLayer(const char* name)
{
return m_Graph->AddLayer<SubtractionLayer>(name);
}
IConnectableLayer* Network::AddMeanLayer(const MeanDescriptor& meanDescriptor, const char* name)
{
return m_Graph->AddLayer<MeanLayer>(meanDescriptor,name);
}
IConnectableLayer* Network::AddPadLayer(const PadDescriptor& padDescriptor, const char* name)
{
return m_Graph->AddLayer<PadLayer>(padDescriptor,name);
}
OptimizedNetwork::OptimizedNetwork(std::unique_ptr<Graph> graph)
: m_Graph(std::move(graph))
{
}
OptimizedNetwork::~OptimizedNetwork()
{
}
} // namespace armnn