blob: a6f3540994503e6947b2933d865dd59ccb277df1 [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include <backends/neon/NeonWorkloadFactory.hpp>
#include <backends/neon/NeonTensorHandle.hpp>
#include <backends/neon/workloads/NeonWorkloadUtils.hpp>
#include <backends/neon/workloads/NeonWorkloads.hpp>
#include <backends/MemCopyWorkload.hpp>
#include "test/CreateWorkloadClNeon.hpp"
BOOST_AUTO_TEST_SUITE(CreateWorkloadNeon)
namespace
{
bool TestNeonTensorHandleInfo(armnn::INeonTensorHandle* handle, const armnn::TensorInfo& expectedInfo)
{
using namespace armnn::armcomputetensorutils;
const arm_compute::ITensorInfo* handleInfo = handle->GetTensor().info();
const arm_compute::TensorInfo expectedAclInfo = BuildArmComputeTensorInfo(expectedInfo);
if (handleInfo->data_type() != expectedAclInfo.data_type())
{
return false;
}
if (handleInfo->num_dimensions() != expectedAclInfo.num_dimensions())
{
return false;
}
if (handleInfo->quantization_info() != expectedAclInfo.quantization_info())
{
return false;
}
for (std::size_t d = 0; d < expectedAclInfo.num_dimensions(); ++d)
{
if (handleInfo->dimension(d) != expectedAclInfo.dimension(d))
{
return false;
}
}
return true;
}
} // namespace
template <typename ActivationWorkloadType, typename armnn::DataType DataType>
static void NeonCreateActivationWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
auto workload = CreateActivationWorkloadTest<ActivationWorkloadType, DataType>
(factory, graph);
// Checks that inputs/outputs are as we expect them (see definition of CreateActivationWorkloadTest).
ActivationQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({1, 1}, DataType)));
BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({1, 1}, DataType)));
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
BOOST_AUTO_TEST_CASE(CreateActivationFloat16Workload)
{
NeonCreateActivationWorkloadTest<NeonActivationFloatWorkload, DataType::Float16>();
}
#endif
BOOST_AUTO_TEST_CASE(CreateActivationFloatWorkload)
{
NeonCreateActivationWorkloadTest<NeonActivationFloatWorkload, DataType::Float32>();
}
template <typename WorkloadType,
typename DescriptorType,
typename LayerType,
armnn::DataType DataType>
static void NeonCreateArithmethicWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
auto workload = CreateArithmeticWorkloadTest<WorkloadType, DescriptorType, LayerType, DataType>(factory, graph);
DescriptorType queueDescriptor = workload->GetData();
auto inputHandle1 = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto inputHandle2 = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[1]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST(TestNeonTensorHandleInfo(inputHandle1, TensorInfo({2, 3}, DataType)));
BOOST_TEST(TestNeonTensorHandleInfo(inputHandle2, TensorInfo({2, 3}, DataType)));
BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({2, 3}, DataType)));
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
BOOST_AUTO_TEST_CASE(CreateAdditionFloat16Workload)
{
NeonCreateArithmethicWorkloadTest<NeonAdditionFloatWorkload,
AdditionQueueDescriptor,
AdditionLayer,
DataType::Float16>();
}
#endif
BOOST_AUTO_TEST_CASE(CreateAdditionFloatWorkload)
{
NeonCreateArithmethicWorkloadTest<NeonAdditionFloatWorkload,
AdditionQueueDescriptor,
AdditionLayer,
DataType::Float32>();
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
BOOST_AUTO_TEST_CASE(CreateSubtractionFloat16Workload)
{
NeonCreateArithmethicWorkloadTest<NeonSubtractionFloatWorkload,
SubtractionQueueDescriptor,
SubtractionLayer,
DataType::Float16>();
}
#endif
BOOST_AUTO_TEST_CASE(CreateSubtractionFloatWorkload)
{
NeonCreateArithmethicWorkloadTest<NeonSubtractionFloatWorkload,
SubtractionQueueDescriptor,
SubtractionLayer,
DataType::Float32>();
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
BOOST_AUTO_TEST_CASE(CreateMultiplicationFloat16Workload)
{
NeonCreateArithmethicWorkloadTest<NeonMultiplicationFloatWorkload,
MultiplicationQueueDescriptor,
MultiplicationLayer,
DataType::Float16>();
}
#endif
BOOST_AUTO_TEST_CASE(CreateMultiplicationFloatWorkload)
{
NeonCreateArithmethicWorkloadTest<NeonMultiplicationFloatWorkload,
MultiplicationQueueDescriptor,
MultiplicationLayer,
DataType::Float32>();
}
template <typename BatchNormalizationWorkloadType, typename armnn::DataType DataType>
static void NeonCreateBatchNormalizationWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
auto workload = CreateBatchNormalizationWorkloadTest<BatchNormalizationWorkloadType, DataType>(factory, graph);
// Checks that outputs and inputs are as we expect them (see definition of CreateBatchNormalizationWorkloadTest).
BatchNormalizationQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({2, 3, 1, 1}, DataType)));
BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({2, 3, 1, 1}, DataType)));
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
BOOST_AUTO_TEST_CASE(CreateBatchNormalizationFloat16Workload)
{
NeonCreateBatchNormalizationWorkloadTest<NeonBatchNormalizationFloatWorkload, DataType::Float16>();
}
#endif
BOOST_AUTO_TEST_CASE(CreateBatchNormalizationFloatWorkload)
{
NeonCreateBatchNormalizationWorkloadTest<NeonBatchNormalizationFloatWorkload, DataType::Float32>();
}
template <typename Convolution2dWorkloadType, typename armnn::DataType DataType>
static void NeonCreateConvolution2dWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
auto workload = CreateConvolution2dWorkloadTest<Convolution2dWorkloadType,
DataType>(factory, graph);
// Checks that outputs and inputs are as we expect them (see definition of CreateConvolution2dWorkloadTest).
Convolution2dQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({2, 3, 8, 16}, DataType)));
BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({2, 2, 2, 10}, DataType)));
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
BOOST_AUTO_TEST_CASE(CreateConvolution2dFloat16Workload)
{
NeonCreateConvolution2dWorkloadTest<NeonConvolution2dFloatWorkload, DataType::Float16>();
}
#endif
BOOST_AUTO_TEST_CASE(CreateConvolution2dFloatWorkload)
{
NeonCreateConvolution2dWorkloadTest<NeonConvolution2dFloatWorkload, DataType::Float32>();
}
template <typename FullyConnectedWorkloadType, typename armnn::DataType DataType>
static void NeonCreateFullyConnectedWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
auto workload = CreateFullyConnectedWorkloadTest<FullyConnectedWorkloadType,
DataType>(factory, graph);
// Checks that outputs and inputs are as we expect them (see definition of CreateFullyConnectedWorkloadTest).
FullyConnectedQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({3, 1, 4, 5}, DataType)));
BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({3, 7}, DataType)));
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
BOOST_AUTO_TEST_CASE(CreateFullyConnectedFloat16Workload)
{
NeonCreateFullyConnectedWorkloadTest<NeonFullyConnectedWorkload, DataType::Float16>();
}
#endif
BOOST_AUTO_TEST_CASE(CreateFullyConnectedFloatWorkload)
{
NeonCreateFullyConnectedWorkloadTest<NeonFullyConnectedWorkload, DataType::Float32>();
}
template <typename NormalizationWorkloadType, typename armnn::DataType DataType>
static void NeonCreateNormalizationWorkloadTest(DataLayout dataLayout)
{
Graph graph;
NeonWorkloadFactory factory;
auto workload = CreateNormalizationWorkloadTest<NormalizationWorkloadType, DataType>(factory, graph, dataLayout);
// Checks that outputs and inputs are as we expect them (see definition of CreateNormalizationWorkloadTest).
NormalizationQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({3, 5, 5, 1}, DataType)));
BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({3, 5, 5, 1}, DataType)));
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
BOOST_AUTO_TEST_CASE(CreateNormalizationFloat16NchwWorkload)
{
NeonCreateNormalizationWorkloadTest<NeonNormalizationFloatWorkload, DataType::Float16>(DataLayout::NCHW);
}
BOOST_AUTO_TEST_CASE(CreateNormalizationFloat16NhwcWorkload)
{
NeonCreateNormalizationWorkloadTest<NeonNormalizationFloatWorkload, DataType::Float16>(DataLayout::NHWC);
}
#endif
BOOST_AUTO_TEST_CASE(CreateNormalizationFloatNchwWorkload)
{
NeonCreateNormalizationWorkloadTest<NeonNormalizationFloatWorkload, DataType::Float32>(DataLayout::NCHW);
}
BOOST_AUTO_TEST_CASE(CreateNormalizationFloatNhwcWorkload)
{
NeonCreateNormalizationWorkloadTest<NeonNormalizationFloatWorkload, DataType::Float32>(DataLayout::NHWC);
}
template <typename Pooling2dWorkloadType, typename armnn::DataType DataType>
static void NeonCreatePooling2dWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
auto workload = CreatePooling2dWorkloadTest<Pooling2dWorkloadType, DataType>
(factory, graph);
// Checks that outputs and inputs are as we expect them (see definition of CreatePooling2dWorkloadTest).
Pooling2dQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({3, 2, 5, 5}, DataType)));
BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({3, 2, 2, 4}, DataType)));
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
BOOST_AUTO_TEST_CASE(CreatePooling2dFloat16Workload)
{
NeonCreatePooling2dWorkloadTest<NeonPooling2dFloatWorkload, DataType::Float16>();
}
#endif
BOOST_AUTO_TEST_CASE(CreatePooling2dFloatWorkload)
{
NeonCreatePooling2dWorkloadTest<NeonPooling2dFloatWorkload, DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreatePooling2dUint8Workload)
{
NeonCreatePooling2dWorkloadTest<NeonPooling2dUint8Workload, DataType::QuantisedAsymm8>();
}
template <typename ReshapeWorkloadType, typename armnn::DataType DataType>
static void NeonCreateReshapeWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
auto workload = CreateReshapeWorkloadTest<ReshapeWorkloadType, DataType>(factory, graph);
// Checks that outputs and inputs are as we expect them (see definition of CreateReshapeWorkloadTest).
ReshapeQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({4, 1}, DataType)));
BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({1, 4}, DataType)));
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
BOOST_AUTO_TEST_CASE(CreateReshapeFloat16Workload)
{
NeonCreateReshapeWorkloadTest<NeonReshapeFloatWorkload, DataType::Float16>();
}
#endif
BOOST_AUTO_TEST_CASE(CreateReshapeFloatWorkload)
{
NeonCreateReshapeWorkloadTest<NeonReshapeFloatWorkload, DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateReshapeUint8Workload)
{
NeonCreateReshapeWorkloadTest<NeonReshapeUint8Workload, DataType::QuantisedAsymm8>();
}
template <typename SoftmaxWorkloadType, typename armnn::DataType DataType>
static void NeonCreateSoftmaxWorkloadTest()
{
Graph graph;
NeonWorkloadFactory factory;
auto workload = CreateSoftmaxWorkloadTest<SoftmaxWorkloadType, DataType>(factory, graph);
// Checks that outputs and inputs are as we expect them (see definition of CreateSoftmaxWorkloadTest).
SoftmaxQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({4, 1}, DataType)));
BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({4, 1}, DataType)));
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
BOOST_AUTO_TEST_CASE(CreateSoftmaxFloat16Workload)
{
NeonCreateSoftmaxWorkloadTest<NeonSoftmaxFloatWorkload, DataType::Float16>();
}
#endif
BOOST_AUTO_TEST_CASE(CreateSoftmaxFloatWorkload)
{
NeonCreateSoftmaxWorkloadTest<NeonSoftmaxFloatWorkload, DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateSplitterWorkload)
{
Graph graph;
NeonWorkloadFactory factory;
auto workload = CreateSplitterWorkloadTest<NeonSplitterFloatWorkload, DataType::Float32>(factory, graph);
// Checks that outputs are as we expect them (see definition of CreateSplitterWorkloadTest).
SplitterQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({5, 7, 7}, DataType::Float32)));
auto outputHandle0 = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST(TestNeonTensorHandleInfo(outputHandle0, TensorInfo({1, 7, 7}, DataType::Float32)));
auto outputHandle1 = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[1]);
BOOST_TEST(TestNeonTensorHandleInfo(outputHandle1, TensorInfo({2, 7, 7}, DataType::Float32)));
auto outputHandle2 = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[2]);
BOOST_TEST(TestNeonTensorHandleInfo(outputHandle2, TensorInfo({2, 7, 7}, DataType::Float32)));
}
BOOST_AUTO_TEST_CASE(CreateSplitterMerger)
{
// Tests that it is possible to decide which output of the splitter layer
// should be lined to which input of the merger layer.
// We tested that is is possible to specify 0th output
// of the splitter to be the 1st input to the merger, and the 1st output of the splitter to be 0th input
// of the merger.
Graph graph;
NeonWorkloadFactory factory;
auto workloads =
CreateSplitterMergerWorkloadTest<NeonSplitterFloatWorkload, NeonMergerFloatWorkload,
DataType::Float32>(factory, graph);
auto wlSplitter = std::move(workloads.first);
auto wlMerger = std::move(workloads.second);
//Checks that the index of inputs/outputs matches what we declared on InputDescriptor construction.
armnn::INeonTensorHandle* sOut0 = dynamic_cast<armnn::INeonTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
armnn::INeonTensorHandle* sOut1 = dynamic_cast<armnn::INeonTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
armnn::INeonTensorHandle* mIn0 = dynamic_cast<armnn::INeonTensorHandle*>(wlMerger->GetData().m_Inputs[0]);
armnn::INeonTensorHandle* mIn1 = dynamic_cast<armnn::INeonTensorHandle*>(wlMerger->GetData().m_Inputs[1]);
BOOST_TEST(sOut0);
BOOST_TEST(sOut1);
BOOST_TEST(mIn0);
BOOST_TEST(mIn1);
bool validDataPointers = (sOut0 == mIn1) && (sOut1 == mIn0);
BOOST_TEST(validDataPointers);
}
BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputs)
{
// Tests that it is possible to assign multiple (two) different layers to each of the outputs of a splitter layer.
// We created a splitter with two outputs. That each of those outputs is used by two different activation layers
Graph graph;
NeonWorkloadFactory factory;
std::unique_ptr<NeonSplitterFloatWorkload> wlSplitter;
std::unique_ptr<NeonActivationFloatWorkload> wlActiv0_0;
std::unique_ptr<NeonActivationFloatWorkload> wlActiv0_1;
std::unique_ptr<NeonActivationFloatWorkload> wlActiv1_0;
std::unique_ptr<NeonActivationFloatWorkload> wlActiv1_1;
CreateSplitterMultipleInputsOneOutputWorkloadTest<NeonSplitterFloatWorkload,
NeonActivationFloatWorkload, DataType::Float32>(factory, graph, wlSplitter, wlActiv0_0, wlActiv0_1,
wlActiv1_0, wlActiv1_1);
armnn::INeonTensorHandle* sOut0 = dynamic_cast<armnn::INeonTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
armnn::INeonTensorHandle* sOut1 = dynamic_cast<armnn::INeonTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
armnn::INeonTensorHandle* activ0_0Im = dynamic_cast<armnn::INeonTensorHandle*>(wlActiv0_0->GetData().m_Inputs[0]);
armnn::INeonTensorHandle* activ0_1Im = dynamic_cast<armnn::INeonTensorHandle*>(wlActiv0_1->GetData().m_Inputs[0]);
armnn::INeonTensorHandle* activ1_0Im = dynamic_cast<armnn::INeonTensorHandle*>(wlActiv1_0->GetData().m_Inputs[0]);
armnn::INeonTensorHandle* activ1_1Im = dynamic_cast<armnn::INeonTensorHandle*>(wlActiv1_1->GetData().m_Inputs[0]);
BOOST_TEST(sOut0);
BOOST_TEST(sOut1);
BOOST_TEST(activ0_0Im);
BOOST_TEST(activ0_1Im);
BOOST_TEST(activ1_0Im);
BOOST_TEST(activ1_1Im);
bool validDataPointers = (sOut0 == activ0_0Im) && (sOut0 == activ0_1Im) &&
(sOut1 == activ1_0Im) && (sOut1 == activ1_1Im);
BOOST_TEST(validDataPointers);
}
BOOST_AUTO_TEST_CASE(CreateMemCopyWorkloadsNeon)
{
NeonWorkloadFactory factory;
CreateMemCopyWorkloads<INeonTensorHandle>(factory);
}
template <typename L2NormalizationWorkloadType, typename armnn::DataType DataType>
static void NeonCreateL2NormalizationWorkloadTest(DataLayout dataLayout)
{
Graph graph;
NeonWorkloadFactory factory;
auto workload = CreateL2NormalizationWorkloadTest<L2NormalizationWorkloadType,
DataType>(factory, graph, dataLayout);
// Checks that inputs/outputs are as we expect them (see definition of CreateNormalizationWorkloadTest).
L2NormalizationQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<INeonTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST(TestNeonTensorHandleInfo(inputHandle, TensorInfo({ 5, 20, 50, 67 }, DataType)));
BOOST_TEST(TestNeonTensorHandleInfo(outputHandle, TensorInfo({ 5, 20, 50, 67 }, DataType)));
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
BOOST_AUTO_TEST_CASE(CreateL2NormalizationFloat16NchwWorkload)
{
NeonCreateL2NormalizationWorkloadTest<NeonL2NormalizationFloatWorkload, DataType::Float16>(DataLayout::NCHW);
}
BOOST_AUTO_TEST_CASE(CreateL2NormalizationFloat16NhwcWorkload)
{
NeonCreateL2NormalizationWorkloadTest<NeonL2NormalizationFloatWorkload, DataType::Float16>(DataLayout::NHWC);
}
#endif
BOOST_AUTO_TEST_CASE(CreateL2NormalizationNchwWorkload)
{
NeonCreateL2NormalizationWorkloadTest<NeonL2NormalizationFloatWorkload, DataType::Float32>(DataLayout::NCHW);
}
BOOST_AUTO_TEST_CASE(CreateL2NormalizationNhwcWorkload)
{
NeonCreateL2NormalizationWorkloadTest<NeonL2NormalizationFloatWorkload, DataType::Float32>(DataLayout::NHWC);
}
BOOST_AUTO_TEST_SUITE_END()