blob: 92c67ae2255be2f2985217d261b3123d001b8a57 [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "InferenceTestImage.hpp"
#include <boost/core/ignore_unused.hpp>
#include <boost/format.hpp>
#include <boost/core/ignore_unused.hpp>
#include <boost/numeric/conversion/cast.hpp>
#include <array>
#define STB_IMAGE_IMPLEMENTATION
#include <stb/stb_image.h>
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include <stb/stb_image_resize.h>
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include <stb/stb_image_write.h>
namespace
{
unsigned int GetImageChannelIndex(ImageChannelLayout channelLayout, ImageChannel channel)
{
switch (channelLayout)
{
case ImageChannelLayout::Rgb:
return static_cast<unsigned int>(channel);
case ImageChannelLayout::Bgr:
return 2u - static_cast<unsigned int>(channel);
default:
throw UnknownImageChannelLayout(boost::str(boost::format("Unknown layout %1%")
% static_cast<int>(channelLayout)));
}
}
inline float Lerp(float a, float b, float w)
{
return w * b + (1.f - w) * a;
}
inline void PutData(std::vector<float> & data,
const unsigned int width,
const unsigned int x,
const unsigned int y,
const unsigned int c,
float value)
{
data[(3*((y*width)+x)) + c] = value;
}
std::vector<float> ResizeBilinearAndNormalize(const InferenceTestImage & image,
const unsigned int outputWidth,
const unsigned int outputHeight,
const float scale,
const std::array<float, 3>& mean,
const std::array<float, 3>& stddev)
{
std::vector<float> out;
out.resize(outputWidth * outputHeight * 3);
// We follow the definition of TensorFlow and AndroidNN: the top-left corner of a texel in the output
// image is projected into the input image to figure out the interpolants and weights. Note that this
// will yield different results than if projecting the centre of output texels.
const unsigned int inputWidth = image.GetWidth();
const unsigned int inputHeight = image.GetHeight();
// How much to scale pixel coordinates in the output image to get the corresponding pixel coordinates
// in the input image.
const float scaleY = boost::numeric_cast<float>(inputHeight) / boost::numeric_cast<float>(outputHeight);
const float scaleX = boost::numeric_cast<float>(inputWidth) / boost::numeric_cast<float>(outputWidth);
uint8_t rgb_x0y0[3];
uint8_t rgb_x1y0[3];
uint8_t rgb_x0y1[3];
uint8_t rgb_x1y1[3];
for (unsigned int y = 0; y < outputHeight; ++y)
{
// Corresponding real-valued height coordinate in input image.
const float iy = boost::numeric_cast<float>(y) * scaleY;
// Discrete height coordinate of top-left texel (in the 2x2 texel area used for interpolation).
const float fiy = floorf(iy);
const unsigned int y0 = boost::numeric_cast<unsigned int>(fiy);
// Interpolation weight (range [0,1])
const float yw = iy - fiy;
for (unsigned int x = 0; x < outputWidth; ++x)
{
// Real-valued and discrete width coordinates in input image.
const float ix = boost::numeric_cast<float>(x) * scaleX;
const float fix = floorf(ix);
const unsigned int x0 = boost::numeric_cast<unsigned int>(fix);
// Interpolation weight (range [0,1]).
const float xw = ix - fix;
// Discrete width/height coordinates of texels below and to the right of (x0, y0).
const unsigned int x1 = std::min(x0 + 1, inputWidth - 1u);
const unsigned int y1 = std::min(y0 + 1, inputHeight - 1u);
std::tie(rgb_x0y0[0], rgb_x0y0[1], rgb_x0y0[2]) = image.GetPixelAs3Channels(x0, y0);
std::tie(rgb_x1y0[0], rgb_x1y0[1], rgb_x1y0[2]) = image.GetPixelAs3Channels(x1, y0);
std::tie(rgb_x0y1[0], rgb_x0y1[1], rgb_x0y1[2]) = image.GetPixelAs3Channels(x0, y1);
std::tie(rgb_x1y1[0], rgb_x1y1[1], rgb_x1y1[2]) = image.GetPixelAs3Channels(x1, y1);
for (unsigned c=0; c<3; ++c)
{
const float ly0 = Lerp(float(rgb_x0y0[c]), float(rgb_x1y0[c]), xw);
const float ly1 = Lerp(float(rgb_x0y1[c]), float(rgb_x1y1[c]), xw);
const float l = Lerp(ly0, ly1, yw);
PutData(out, outputWidth, x, y, c, ((l / scale) - mean[c]) / stddev[c]);
}
}
}
return out;
}
} // namespace
InferenceTestImage::InferenceTestImage(char const* filePath)
: m_Width(0u)
, m_Height(0u)
, m_NumChannels(0u)
{
int width;
int height;
int channels;
using StbImageDataPtr = std::unique_ptr<unsigned char, decltype(&stbi_image_free)>;
StbImageDataPtr stbData(stbi_load(filePath, &width, &height, &channels, 0), &stbi_image_free);
if (stbData == nullptr)
{
throw InferenceTestImageLoadFailed(boost::str(boost::format("Could not load the image at %1%") % filePath));
}
if (width == 0 || height == 0)
{
throw InferenceTestImageLoadFailed(boost::str(boost::format("Could not load empty image at %1%") % filePath));
}
m_Width = boost::numeric_cast<unsigned int>(width);
m_Height = boost::numeric_cast<unsigned int>(height);
m_NumChannels = boost::numeric_cast<unsigned int>(channels);
const unsigned int sizeInBytes = GetSizeInBytes();
m_Data.resize(sizeInBytes);
memcpy(m_Data.data(), stbData.get(), sizeInBytes);
}
std::tuple<uint8_t, uint8_t, uint8_t> InferenceTestImage::GetPixelAs3Channels(unsigned int x, unsigned int y) const
{
if (x >= m_Width || y >= m_Height)
{
throw InferenceTestImageOutOfBoundsAccess(boost::str(boost::format("Attempted out of bounds image access. "
"Requested (%1%, %2%). Maximum valid coordinates (%3%, %4%).") % x % y % (m_Width - 1) % (m_Height - 1)));
}
const unsigned int pixelOffset = x * GetNumChannels() + y * GetWidth() * GetNumChannels();
const uint8_t* const pixelData = m_Data.data() + pixelOffset;
BOOST_ASSERT(pixelData <= (m_Data.data() + GetSizeInBytes()));
std::array<uint8_t, 3> outPixelData;
outPixelData.fill(0);
const unsigned int maxChannelsInPixel = std::min(GetNumChannels(), static_cast<unsigned int>(outPixelData.size()));
for (unsigned int c = 0; c < maxChannelsInPixel; ++c)
{
outPixelData[c] = pixelData[c];
}
return std::make_tuple(outPixelData[0], outPixelData[1], outPixelData[2]);
}
void InferenceTestImage::StbResize(InferenceTestImage& im, const unsigned int newWidth, const unsigned int newHeight)
{
std::vector<uint8_t> newData;
newData.resize(newWidth * newHeight * im.GetNumChannels() * im.GetSingleElementSizeInBytes());
// boost::numeric_cast<>() is used for user-provided data (protecting about overflows).
// static_cast<> is ok for internal data (assumes that, when internal data was originally provided by a user,
// a boost::numeric_cast<>() handled the conversion).
const int nW = boost::numeric_cast<int>(newWidth);
const int nH = boost::numeric_cast<int>(newHeight);
const int w = static_cast<int>(im.GetWidth());
const int h = static_cast<int>(im.GetHeight());
const int numChannels = static_cast<int>(im.GetNumChannels());
const int res = stbir_resize_uint8(im.m_Data.data(), w, h, 0, newData.data(), nW, nH, 0, numChannels);
if (res == 0)
{
throw InferenceTestImageResizeFailed("The resizing operation failed");
}
im.m_Data.swap(newData);
im.m_Width = newWidth;
im.m_Height = newHeight;
}
std::vector<float> InferenceTestImage::Resize(unsigned int newWidth,
unsigned int newHeight,
const armnn::CheckLocation& location,
const ResizingMethods meth,
const std::array<float, 3>& mean,
const std::array<float, 3>& stddev,
const float scale)
{
std::vector<float> out;
if (newWidth == 0 || newHeight == 0)
{
throw InferenceTestImageResizeFailed(boost::str(boost::format("None of the dimensions passed to a resize "
"operation can be zero. Requested width: %1%. Requested height: %2%.") % newWidth % newHeight));
}
switch (meth) {
case ResizingMethods::STB:
{
StbResize(*this, newWidth, newHeight);
break;
}
case ResizingMethods::BilinearAndNormalized:
{
out = ResizeBilinearAndNormalize(*this, newWidth, newHeight, scale, mean, stddev);
break;
}
default:
throw InferenceTestImageResizeFailed(boost::str(
boost::format("Unknown resizing method asked ArmNN only supports {STB, BilinearAndNormalized} %1%")
% location.AsString()));
}
return out;
}
void InferenceTestImage::Write(WriteFormat format, const char* filePath) const
{
const int w = static_cast<int>(GetWidth());
const int h = static_cast<int>(GetHeight());
const int numChannels = static_cast<int>(GetNumChannels());
int res = 0;
switch (format)
{
case WriteFormat::Png:
{
res = stbi_write_png(filePath, w, h, numChannels, m_Data.data(), 0);
break;
}
case WriteFormat::Bmp:
{
res = stbi_write_bmp(filePath, w, h, numChannels, m_Data.data());
break;
}
case WriteFormat::Tga:
{
res = stbi_write_tga(filePath, w, h, numChannels, m_Data.data());
break;
}
default:
throw InferenceTestImageWriteFailed(boost::str(boost::format("Unknown format %1%")
% static_cast<int>(format)));
}
if (res == 0)
{
throw InferenceTestImageWriteFailed(boost::str(boost::format("An error occurred when writing to file %1%")
% filePath));
}
}
template <typename TProcessValueCallable>
std::vector<float> GetImageDataInArmNnLayoutAsFloats(ImageChannelLayout channelLayout,
const InferenceTestImage& image,
TProcessValueCallable processValue)
{
const unsigned int h = image.GetHeight();
const unsigned int w = image.GetWidth();
std::vector<float> imageData;
imageData.resize(h * w * 3);
for (unsigned int j = 0; j < h; ++j)
{
for (unsigned int i = 0; i < w; ++i)
{
uint8_t r, g, b;
std::tie(r, g, b) = image.GetPixelAs3Channels(i, j);
// ArmNN order: C, H, W
const unsigned int rDstIndex = GetImageChannelIndex(channelLayout, ImageChannel::R) * h * w + j * w + i;
const unsigned int gDstIndex = GetImageChannelIndex(channelLayout, ImageChannel::G) * h * w + j * w + i;
const unsigned int bDstIndex = GetImageChannelIndex(channelLayout, ImageChannel::B) * h * w + j * w + i;
imageData[rDstIndex] = processValue(ImageChannel::R, float(r));
imageData[gDstIndex] = processValue(ImageChannel::G, float(g));
imageData[bDstIndex] = processValue(ImageChannel::B, float(b));
}
}
return imageData;
}
std::vector<float> GetImageDataInArmNnLayoutAsNormalizedFloats(ImageChannelLayout layout,
const InferenceTestImage& image)
{
return GetImageDataInArmNnLayoutAsFloats(layout, image,
[](ImageChannel channel, float value)
{
boost::ignore_unused(channel);
return value / 255.f;
});
}
std::vector<float> GetImageDataInArmNnLayoutAsFloatsSubtractingMean(ImageChannelLayout layout,
const InferenceTestImage& image,
const std::array<float, 3>& mean)
{
return GetImageDataInArmNnLayoutAsFloats(layout, image,
[layout, &mean](ImageChannel channel, float value)
{
const unsigned int channelIndex = GetImageChannelIndex(layout, channel);
return value - mean[channelIndex];
});
}
std::vector<float> GetImageDataAsNormalizedFloats(ImageChannelLayout layout,
const InferenceTestImage& image)
{
std::vector<float> imageData;
const unsigned int h = image.GetHeight();
const unsigned int w = image.GetWidth();
const unsigned int rDstIndex = GetImageChannelIndex(layout, ImageChannel::R);
const unsigned int gDstIndex = GetImageChannelIndex(layout, ImageChannel::G);
const unsigned int bDstIndex = GetImageChannelIndex(layout, ImageChannel::B);
imageData.resize(h * w * 3);
unsigned int offset = 0;
for (unsigned int j = 0; j < h; ++j)
{
for (unsigned int i = 0; i < w; ++i)
{
uint8_t r, g, b;
std::tie(r, g, b) = image.GetPixelAs3Channels(i, j);
imageData[offset+rDstIndex] = float(r) / 255.0f;
imageData[offset+gDstIndex] = float(g) / 255.0f;
imageData[offset+bDstIndex] = float(b) / 255.0f;
offset += 3;
}
}
return imageData;
}