blob: 3f4cc75feadf00b27a247805ebf35e42b9dd5b8f [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include <test/CreateWorkload.hpp>
#include <backendsCommon/CpuTensorHandle.hpp>
#include <reference/RefWorkloadFactory.hpp>
#include <reference/workloads/RefWorkloads.hpp>
namespace
{
template<typename Workload>
void CheckInputOutput(std::unique_ptr<Workload> workload, const TensorInfo& inputInfo, const TensorInfo& outputInfo)
{
auto queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<ConstCpuTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto outputHandle = boost::polymorphic_downcast<CpuTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST((inputHandle->GetTensorInfo() == inputInfo));
BOOST_TEST((outputHandle->GetTensorInfo() == outputInfo));
}
template <typename Workload>
void CheckInputsOutput(std::unique_ptr<Workload> workload,
const TensorInfo& inputInfo0,
const TensorInfo& inputInfo1,
const TensorInfo& outputInfo)
{
auto queueDescriptor = workload->GetData();
auto inputHandle0 = boost::polymorphic_downcast<ConstCpuTensorHandle*>(queueDescriptor.m_Inputs[0]);
auto inputHandle1 = boost::polymorphic_downcast<ConstCpuTensorHandle*>(queueDescriptor.m_Inputs[1]);
auto outputHandle = boost::polymorphic_downcast<CpuTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST((inputHandle0->GetTensorInfo() == inputInfo0));
BOOST_TEST((inputHandle1->GetTensorInfo() == inputInfo1));
BOOST_TEST((outputHandle->GetTensorInfo() == outputInfo));
}
}
BOOST_AUTO_TEST_SUITE(CreateWorkloadRef)
template <typename ActivationWorkloadType, armnn::DataType DataType>
static void RefCreateActivationWorkloadTest()
{
Graph graph;
RefWorkloadFactory factory;
auto workload = CreateActivationWorkloadTest<ActivationWorkloadType, DataType>(factory, graph);
// Checks that outputs are as we expect them (see definition of CreateActivationWorkloadTest).
CheckInputOutput(std::move(workload),
TensorInfo({ 1, 1 }, DataType),
TensorInfo({ 1, 1 }, DataType));
}
BOOST_AUTO_TEST_CASE(CreateActivationFloat32Workload)
{
RefCreateActivationWorkloadTest<RefActivationWorkload, armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateActivationUint8Workload)
{
RefCreateActivationWorkloadTest<RefActivationWorkload, armnn::DataType::QuantisedAsymm8>();
}
template <typename WorkloadType,
typename DescriptorType,
typename LayerType,
armnn::DataType DataType>
static void RefCreateElementwiseWorkloadTest()
{
Graph graph;
RefWorkloadFactory factory;
auto workload = CreateElementwiseWorkloadTest<WorkloadType, DescriptorType, LayerType, DataType>(
factory, graph);
CheckInputsOutput(std::move(workload),
TensorInfo({ 2, 3 }, DataType),
TensorInfo({ 2, 3 }, DataType),
TensorInfo({ 2, 3 }, DataType));
}
BOOST_AUTO_TEST_CASE(CreateAdditionFloatWorkload)
{
RefCreateElementwiseWorkloadTest<RefAdditionWorkload,
AdditionQueueDescriptor,
AdditionLayer,
armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateAdditionUint8Workload)
{
RefCreateElementwiseWorkloadTest<RefAdditionWorkload,
AdditionQueueDescriptor,
AdditionLayer,
armnn::DataType::QuantisedAsymm8>();
}
BOOST_AUTO_TEST_CASE(CreateAdditionInt16Workload)
{
RefCreateElementwiseWorkloadTest<RefAdditionWorkload,
AdditionQueueDescriptor,
AdditionLayer,
armnn::DataType::QuantisedSymm16>();
}
BOOST_AUTO_TEST_CASE(CreateSubtractionFloatWorkload)
{
RefCreateElementwiseWorkloadTest<RefSubtractionWorkload,
SubtractionQueueDescriptor,
SubtractionLayer,
armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateSubtractionUint8Workload)
{
RefCreateElementwiseWorkloadTest<RefSubtractionWorkload,
SubtractionQueueDescriptor,
SubtractionLayer,
armnn::DataType::QuantisedAsymm8>();
}
BOOST_AUTO_TEST_CASE(CreateSubtractionInt16Workload)
{
RefCreateElementwiseWorkloadTest<RefSubtractionWorkload,
SubtractionQueueDescriptor,
SubtractionLayer,
armnn::DataType::QuantisedSymm16>();
}
BOOST_AUTO_TEST_CASE(CreateMultiplicationFloatWorkload)
{
RefCreateElementwiseWorkloadTest<RefMultiplicationWorkload,
MultiplicationQueueDescriptor,
MultiplicationLayer,
armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateMultiplicationUint8Workload)
{
RefCreateElementwiseWorkloadTest<RefMultiplicationWorkload,
MultiplicationQueueDescriptor,
MultiplicationLayer,
armnn::DataType::QuantisedAsymm8>();
}
BOOST_AUTO_TEST_CASE(CreateMultiplicationInt16Workload)
{
RefCreateElementwiseWorkloadTest<RefMultiplicationWorkload,
MultiplicationQueueDescriptor,
MultiplicationLayer,
armnn::DataType::QuantisedSymm16>();
}
BOOST_AUTO_TEST_CASE(CreateDivisionFloatWorkload)
{
RefCreateElementwiseWorkloadTest<RefDivisionWorkload,
DivisionQueueDescriptor,
DivisionLayer,
armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateDivisionUint8Workload)
{
RefCreateElementwiseWorkloadTest<RefDivisionWorkload,
DivisionQueueDescriptor,
DivisionLayer,
armnn::DataType::QuantisedAsymm8>();
}
BOOST_AUTO_TEST_CASE(CreateDivisionInt16Workload)
{
RefCreateElementwiseWorkloadTest<RefDivisionWorkload,
DivisionQueueDescriptor,
DivisionLayer,
armnn::DataType::QuantisedSymm16>();
}
template <typename BatchNormalizationWorkloadType, armnn::DataType DataType>
static void RefCreateBatchNormalizationWorkloadTest(DataLayout dataLayout)
{
Graph graph;
RefWorkloadFactory factory;
auto workload =
CreateBatchNormalizationWorkloadTest<BatchNormalizationWorkloadType, DataType>(factory, graph, dataLayout);
TensorShape inputShape;
TensorShape outputShape;
switch (dataLayout)
{
case DataLayout::NHWC:
inputShape = { 2, 4, 4, 3 };
outputShape = { 2, 4, 4, 3 };
break;
case DataLayout::NCHW:
default:
inputShape = { 2, 3, 4, 4 };
outputShape = { 2, 3, 4, 4 };
break;
}
// Checks that outputs and inputs are as we expect them (see definition of CreateBatchNormalizationWorkloadTest).
CheckInputOutput(std::move(workload), TensorInfo(inputShape, DataType), TensorInfo(outputShape, DataType));
}
BOOST_AUTO_TEST_CASE(CreateBatchNormalizationFloat32Workload)
{
RefCreateBatchNormalizationWorkloadTest<RefBatchNormalizationFloat32Workload,armnn::DataType::Float32>
(DataLayout::NCHW);
}
BOOST_AUTO_TEST_CASE(CreateBatchNormalizationFloat32WorkloadNhwc)
{
RefCreateBatchNormalizationWorkloadTest<RefBatchNormalizationFloat32Workload, armnn::DataType::Float32>
(DataLayout::NHWC);
}
BOOST_AUTO_TEST_CASE(CreateBatchNormalizationUint8Workload)
{
RefCreateBatchNormalizationWorkloadTest<RefBatchNormalizationUint8Workload, armnn::DataType::QuantisedAsymm8>
(DataLayout::NCHW);
}
BOOST_AUTO_TEST_CASE(CreateBatchNormalizationUint8WorkloadNhwc)
{
RefCreateBatchNormalizationWorkloadTest<RefBatchNormalizationUint8Workload, armnn::DataType::QuantisedAsymm8>
(DataLayout::NHWC);
}
BOOST_AUTO_TEST_CASE(CreateConvertFp16ToFp32Float32Workload)
{
Graph graph;
RefWorkloadFactory factory;
auto workload = CreateConvertFp16ToFp32WorkloadTest<RefConvertFp16ToFp32Workload>(factory, graph);
// Checks that outputs and inputs are as we expect them
CheckInputOutput(
std::move(workload), TensorInfo({1, 3, 2, 3}, DataType::Float16), TensorInfo({1, 3, 2, 3}, DataType::Float32));
}
BOOST_AUTO_TEST_CASE(CreateConvertFp32ToFp16Float16Workload)
{
Graph graph;
RefWorkloadFactory factory;
auto workload = CreateConvertFp32ToFp16WorkloadTest<RefConvertFp32ToFp16Workload>(factory, graph);
// Checks that outputs and inputs are as we expect them
CheckInputOutput(
std::move(workload), TensorInfo({1, 3, 2, 3}, DataType::Float32), TensorInfo({1, 3, 2, 3}, DataType::Float16));
}
static void RefCreateConvolution2dWorkloadTest(DataLayout dataLayout = DataLayout::NCHW)
{
Graph graph;
RefWorkloadFactory factory;
auto workload = CreateConvolution2dWorkloadTest<RefConvolution2dWorkload, DataType::Float32>
(factory, graph, dataLayout);
std::initializer_list<unsigned int> inputShape = (dataLayout == DataLayout::NCHW) ?
std::initializer_list<unsigned int>({2, 3, 8, 16}) : std::initializer_list<unsigned int>({2, 8, 16, 3});
std::initializer_list<unsigned int> outputShape = (dataLayout == DataLayout::NCHW) ?
std::initializer_list<unsigned int>({2, 2, 2, 10}) : std::initializer_list<unsigned int>({2, 2, 10, 2});
// Checks that outputs and inputs are as we expect them (see definition of CreateConvolution2dWorkloadTest).
CheckInputOutput(std::move(workload),
TensorInfo(inputShape, DataType::Float32),
TensorInfo(outputShape, DataType::Float32));
}
BOOST_AUTO_TEST_CASE(CreateConvolution2dFloatNchwWorkload)
{
RefCreateConvolution2dWorkloadTest(DataLayout::NCHW);
}
BOOST_AUTO_TEST_CASE(CreateConvolution2dFloatNhwcWorkload)
{
RefCreateConvolution2dWorkloadTest(DataLayout::NHWC);
}
static void RefCreateDepthwiseConvolutionWorkloadTest(DataLayout dataLayout)
{
Graph graph;
RefWorkloadFactory factory;
auto workload = CreateDepthwiseConvolution2dWorkloadTest<RefDepthwiseConvolution2dWorkload, DataType::Float32>
(factory, graph, dataLayout);
std::initializer_list<unsigned int> inputShape = (dataLayout == DataLayout::NCHW)
? std::initializer_list<unsigned int>({ 2, 2, 5, 5 })
: std::initializer_list<unsigned int>({ 2, 5, 5, 2 });
std::initializer_list<unsigned int> outputShape = (dataLayout == DataLayout::NCHW)
? std::initializer_list<unsigned int>({ 2, 2, 5, 5 })
: std::initializer_list<unsigned int>({ 2, 5, 5, 2 });
// Checks that inputs/outputs are as we expect them (see definition of CreateDepthwiseConvolution2dWorkloadTest).
CheckInputOutput(std::move(workload),
TensorInfo(inputShape, DataType::Float32),
TensorInfo(outputShape, DataType::Float32));
}
BOOST_AUTO_TEST_CASE(CreateDepthwiseConvolutionFloat32NhwcWorkload)
{
RefCreateDepthwiseConvolutionWorkloadTest(DataLayout::NHWC);
}
template <typename FullyConnectedWorkloadType, armnn::DataType DataType>
static void RefCreateFullyConnectedWorkloadTest()
{
Graph graph;
RefWorkloadFactory factory;
auto workload = CreateFullyConnectedWorkloadTest<FullyConnectedWorkloadType, DataType>(factory, graph);
// Checks that outputs and inputs are as we expect them (see definition of CreateFullyConnectedWorkloadTest).
float inputsQScale = DataType == armnn::DataType::QuantisedAsymm8 ? 1.0f : 0.0;
float outputQScale = DataType == armnn::DataType::QuantisedAsymm8 ? 2.0f : 0.0;
CheckInputOutput(std::move(workload),
TensorInfo({ 3, 1, 4, 5 }, DataType, inputsQScale),
TensorInfo({ 3, 7 }, DataType, outputQScale));
}
BOOST_AUTO_TEST_CASE(CreateFullyConnectedWorkloadFloat32)
{
RefCreateFullyConnectedWorkloadTest<RefFullyConnectedWorkload, armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateFullyConnectedWorkloadQuantisedAsymm8)
{
RefCreateFullyConnectedWorkloadTest<RefFullyConnectedWorkload, armnn::DataType::QuantisedAsymm8>();
}
BOOST_AUTO_TEST_CASE(CreateFullyConnectedWorkloadQuantisedAsymm16)
{
RefCreateFullyConnectedWorkloadTest<RefFullyConnectedWorkload, armnn::DataType::QuantisedSymm16>();
}
template <typename NormalizationWorkloadType, armnn::DataType DataType>
static void RefCreateNormalizationWorkloadTest(DataLayout dataLayout)
{
Graph graph;
RefWorkloadFactory factory;
auto workload = CreateNormalizationWorkloadTest<NormalizationWorkloadType, DataType>(factory, graph, dataLayout);
TensorShape inputShape;
TensorShape outputShape;
switch (dataLayout)
{
case DataLayout::NHWC:
inputShape = { 3, 1, 5, 5 };
outputShape = { 3, 1, 5, 5 };
break;
case DataLayout::NCHW:
default:
inputShape = { 3, 5, 5, 1 };
outputShape = { 3, 5, 5, 1 };
break;
}
// Checks that outputs and inputs are as we expect them (see definition of CreateNormalizationWorkloadTest).
CheckInputOutput(std::move(workload), TensorInfo(inputShape, DataType), TensorInfo(outputShape, DataType));
}
BOOST_AUTO_TEST_CASE(CreateRefNormalizationNchwWorkload)
{
RefCreateNormalizationWorkloadTest<RefNormalizationFloat32Workload, armnn::DataType::Float32>(DataLayout::NCHW);
}
BOOST_AUTO_TEST_CASE(CreateRefNormalizationNhwcWorkload)
{
RefCreateNormalizationWorkloadTest<RefNormalizationFloat32Workload, armnn::DataType::Float32>(DataLayout::NHWC);
}
template <typename Pooling2dWorkloadType, armnn::DataType DataType>
static void RefCreatePooling2dWorkloadTest(DataLayout dataLayout)
{
Graph graph;
RefWorkloadFactory factory;
auto workload = CreatePooling2dWorkloadTest<Pooling2dWorkloadType, DataType>(factory, graph, dataLayout);
TensorShape inputShape;
TensorShape outputShape;
switch (dataLayout)
{
case DataLayout::NHWC:
inputShape = { 3, 5, 5, 2 };
outputShape = { 3, 2, 4, 2 };
break;
case DataLayout::NCHW:
default:
inputShape = { 3, 2, 5, 5 };
outputShape = { 3, 2, 2, 4 };
}
// Checks that outputs and inputs are as we expect them (see definition of CreatePooling2dWorkloadTest).
CheckInputOutput(std::move(workload),
TensorInfo(inputShape, DataType),
TensorInfo(outputShape, DataType));
}
BOOST_AUTO_TEST_CASE(CreatePooling2dFloat32Workload)
{
RefCreatePooling2dWorkloadTest<RefPooling2dFloat32Workload, armnn::DataType::Float32>(DataLayout::NCHW);
}
BOOST_AUTO_TEST_CASE(CreatePooling2dFloat32NhwcWorkload)
{
RefCreatePooling2dWorkloadTest<RefPooling2dFloat32Workload, armnn::DataType::Float32>(DataLayout::NHWC);
}
BOOST_AUTO_TEST_CASE(CreatePooling2dUint8Workload)
{
RefCreatePooling2dWorkloadTest<RefPooling2dUint8Workload, armnn::DataType::QuantisedAsymm8>(DataLayout::NCHW);
}
BOOST_AUTO_TEST_CASE(CreatePooling2dUint8NhwcWorkload)
{
RefCreatePooling2dWorkloadTest<RefPooling2dUint8Workload, armnn::DataType::QuantisedAsymm8>(DataLayout::NHWC);
}
template <typename SoftmaxWorkloadType, armnn::DataType DataType>
static void RefCreateSoftmaxWorkloadTest()
{
Graph graph;
RefWorkloadFactory factory;
auto workload = CreateSoftmaxWorkloadTest<SoftmaxWorkloadType, DataType>(factory, graph);
// Checks that outputs and inputs are as we expect them (see definition of CreateSoftmaxWorkloadTest).
CheckInputOutput(
std::move(workload),
TensorInfo({4, 1}, DataType),
TensorInfo({4, 1}, DataType));
}
BOOST_AUTO_TEST_CASE(CreateSoftmaxFloat32Workload)
{
RefCreateSoftmaxWorkloadTest<RefSoftmaxFloat32Workload, armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateSoftmaxUint8Workload)
{
RefCreateSoftmaxWorkloadTest<RefSoftmaxUint8Workload, armnn::DataType::QuantisedAsymm8>();
}
template <typename SplitterWorkloadType, armnn::DataType DataType>
static void RefCreateSplitterWorkloadTest()
{
Graph graph;
RefWorkloadFactory factory;
auto workload = CreateSplitterWorkloadTest<SplitterWorkloadType, DataType>(factory, graph);
// Checks that outputs are as we expect them (see definition of CreateSplitterWorkloadTest).
SplitterQueueDescriptor queueDescriptor = workload->GetData();
auto inputHandle = boost::polymorphic_downcast<ConstCpuTensorHandle*>(queueDescriptor.m_Inputs[0]);
BOOST_TEST((inputHandle->GetTensorInfo() == TensorInfo({ 5, 7, 7 }, DataType)));
auto outputHandle0 = boost::polymorphic_downcast<CpuTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST((outputHandle0->GetTensorInfo() == TensorInfo({ 1, 7, 7 }, DataType)));
auto outputHandle1 = boost::polymorphic_downcast<CpuTensorHandle*>(queueDescriptor.m_Outputs[1]);
BOOST_TEST((outputHandle1->GetTensorInfo() == TensorInfo({ 2, 7, 7 }, DataType)));
auto outputHandle2 = boost::polymorphic_downcast<CpuTensorHandle*>(queueDescriptor.m_Outputs[2]);
BOOST_TEST((outputHandle2->GetTensorInfo() == TensorInfo({ 2, 7, 7 }, DataType)));
}
BOOST_AUTO_TEST_CASE(CreateSplitterFloat32Workload)
{
RefCreateSplitterWorkloadTest<RefSplitterFloat32Workload, armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateSplitterUint8Workload)
{
RefCreateSplitterWorkloadTest<RefSplitterUint8Workload, armnn::DataType::QuantisedAsymm8>();
}
template <typename SplitterWorkloadType, typename MergerWorkloadType, armnn::DataType DataType>
static void RefCreateSplitterMergerWorkloadTest()
{
// Tests that it is possible to decide which output of the splitter layer
// should be lined to which input of the merger layer.
// We tested that is is possible to specify 0th output
// of the splitter to be the 1st input to the merger and the 1st output of the splitter to be 0th input
// of the merger.
Graph graph;
RefWorkloadFactory factory;
auto workloads = CreateSplitterMergerWorkloadTest<SplitterWorkloadType, MergerWorkloadType, DataType>
(factory, graph);
auto wlSplitter = std::move(workloads.first);
auto wlMerger = std::move(workloads.second);
//Checks that the index of inputs/outputs matches what we declared on InputDescriptor construction.
armnn::CpuTensorHandle* sOut0 = dynamic_cast<armnn::CpuTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
armnn::CpuTensorHandle* sOut1 = dynamic_cast<armnn::CpuTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
armnn::CpuTensorHandle* mIn0 = dynamic_cast<armnn::CpuTensorHandle*>(wlMerger->GetData().m_Inputs[0]);
armnn::CpuTensorHandle* mIn1 = dynamic_cast<armnn::CpuTensorHandle*>(wlMerger->GetData().m_Inputs[1]);
BOOST_TEST(sOut0);
BOOST_TEST(sOut1);
BOOST_TEST(mIn0);
BOOST_TEST(mIn1);
bool validDataPointers = (sOut0 == mIn1) && (sOut1 == mIn0);
BOOST_TEST(validDataPointers);
}
BOOST_AUTO_TEST_CASE(CreateSplitterMergerFloat32)
{
RefCreateSplitterMergerWorkloadTest<RefSplitterFloat32Workload, RefConcatWorkload, DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateSplitterMergerUint8)
{
RefCreateSplitterMergerWorkloadTest<RefSplitterUint8Workload, RefConcatWorkload, DataType::QuantisedAsymm8>();
}
template <typename SplitterWorkloadType, typename ActivationWorkloadType, armnn::DataType DataType>
static void RefCreateSingleOutputMultipleInputsTest()
{
// Tests that it is possible to assign multiple (two) different layers to each of the outputs of a splitter layer.
// We created a splitter with two outputs. That each of those outputs is used by two different activation layers.
Graph graph;
RefWorkloadFactory factory;
std::unique_ptr<SplitterWorkloadType> wlSplitter;
std::unique_ptr<ActivationWorkloadType> wlActiv0_0;
std::unique_ptr<ActivationWorkloadType> wlActiv0_1;
std::unique_ptr<ActivationWorkloadType> wlActiv1_0;
std::unique_ptr<ActivationWorkloadType> wlActiv1_1;
CreateSplitterMultipleInputsOneOutputWorkloadTest<SplitterWorkloadType,
ActivationWorkloadType, DataType>(factory, graph, wlSplitter, wlActiv0_0, wlActiv0_1, wlActiv1_0, wlActiv1_1);
armnn::CpuTensorHandle* sOut0 = dynamic_cast<armnn::CpuTensorHandle*>(wlSplitter->GetData().m_Outputs[0]);
armnn::CpuTensorHandle* sOut1 = dynamic_cast<armnn::CpuTensorHandle*>(wlSplitter->GetData().m_Outputs[1]);
armnn::CpuTensorHandle* activ0_0Im = dynamic_cast<armnn::CpuTensorHandle*>(wlActiv0_0->GetData().m_Inputs[0]);
armnn::CpuTensorHandle* activ0_1Im = dynamic_cast<armnn::CpuTensorHandle*>(wlActiv0_1->GetData().m_Inputs[0]);
armnn::CpuTensorHandle* activ1_0Im = dynamic_cast<armnn::CpuTensorHandle*>(wlActiv1_0->GetData().m_Inputs[0]);
armnn::CpuTensorHandle* activ1_1Im = dynamic_cast<armnn::CpuTensorHandle*>(wlActiv1_1->GetData().m_Inputs[0]);
BOOST_TEST(sOut0);
BOOST_TEST(sOut1);
BOOST_TEST(activ0_0Im);
BOOST_TEST(activ0_1Im);
BOOST_TEST(activ1_0Im);
BOOST_TEST(activ1_1Im);
bool validDataPointers = (sOut0 == activ0_0Im) && (sOut0 == activ0_1Im) &&
(sOut1 == activ1_0Im) && (sOut1 == activ1_1Im);
BOOST_TEST(validDataPointers);
}
BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputsFloat32)
{
RefCreateSingleOutputMultipleInputsTest<RefSplitterFloat32Workload, RefActivationWorkload,
armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateSingleOutputMultipleInputsUint8)
{
RefCreateSingleOutputMultipleInputsTest<RefSplitterUint8Workload, RefActivationWorkload,
armnn::DataType::QuantisedAsymm8>();
}
template <typename ResizeBilinearWorkloadType, armnn::DataType DataType>
static void RefCreateResizeBilinearTest(DataLayout dataLayout)
{
Graph graph;
RefWorkloadFactory factory;
auto workload = CreateResizeBilinearWorkloadTest<ResizeBilinearWorkloadType, DataType>(factory, graph, dataLayout);
TensorShape inputShape;
TensorShape outputShape;
switch (dataLayout)
{
case DataLayout::NHWC:
inputShape = { 2, 4, 4, 3 };
outputShape = { 2, 2, 2, 3 };
break;
case DataLayout::NCHW:
default:
inputShape = { 2, 3, 4, 4 };
outputShape = { 2, 3, 2, 2 };
}
// Checks that outputs and inputs are as we expect them (see definition of CreateResizeBilinearWorkloadTest).
CheckInputOutput(std::move(workload),
TensorInfo(inputShape, DataType),
TensorInfo(outputShape, DataType));
}
BOOST_AUTO_TEST_CASE(CreateResizeBilinearFloat32)
{
RefCreateResizeBilinearTest<RefResizeBilinearFloat32Workload, armnn::DataType::Float32>(DataLayout::NCHW);
}
BOOST_AUTO_TEST_CASE(CreateResizeBilinearUint8)
{
RefCreateResizeBilinearTest<RefResizeBilinearUint8Workload, armnn::DataType::QuantisedAsymm8>(DataLayout::NCHW);
}
BOOST_AUTO_TEST_CASE(CreateResizeBilinearFloat32Nhwc)
{
RefCreateResizeBilinearTest<RefResizeBilinearFloat32Workload, armnn::DataType::Float32>(DataLayout::NHWC);
}
template <typename L2NormalizationWorkloadType, armnn::DataType DataType>
static void RefCreateL2NormalizationTest(DataLayout dataLayout)
{
Graph graph;
RefWorkloadFactory factory;
auto workload =
CreateL2NormalizationWorkloadTest<L2NormalizationWorkloadType, DataType>(factory, graph, dataLayout);
TensorShape inputShape;
TensorShape outputShape;
switch (dataLayout)
{
case DataLayout::NHWC:
inputShape = { 5, 50, 67, 20 };
outputShape = { 5, 50, 67, 20 };
break;
case DataLayout::NCHW:
default:
inputShape = { 5, 20, 50, 67 };
outputShape = { 5, 20, 50, 67 };
break;
}
// Checks that outputs and inputs are as we expect them (see definition of CreateL2NormalizationWorkloadTest).
CheckInputOutput(std::move(workload), TensorInfo(inputShape, DataType), TensorInfo(outputShape, DataType));
}
BOOST_AUTO_TEST_CASE(CreateL2NormalizationFloat32)
{
RefCreateL2NormalizationTest<RefL2NormalizationFloat32Workload, armnn::DataType::Float32>(DataLayout::NCHW);
}
BOOST_AUTO_TEST_CASE(CreateL2NormalizationFloat32Nhwc)
{
RefCreateL2NormalizationTest<RefL2NormalizationFloat32Workload, armnn::DataType::Float32>(DataLayout::NHWC);
}
template <typename ReshapeWorkloadType, armnn::DataType DataType>
static void RefCreateReshapeWorkloadTest()
{
Graph graph;
RefWorkloadFactory factory;
auto workload = CreateReshapeWorkloadTest<ReshapeWorkloadType, DataType>(factory, graph);
// Checks that outputs and inputs are as we expect them (see definition of CreateReshapeWorkloadTest).
CheckInputOutput(
std::move(workload),
TensorInfo({ 4, 1 }, DataType),
TensorInfo({ 1, 4 }, DataType));
}
BOOST_AUTO_TEST_CASE(CreateReshapeFloat32Workload)
{
RefCreateReshapeWorkloadTest<RefReshapeWorkload, armnn::DataType::Float32>();
}
BOOST_AUTO_TEST_CASE(CreateReshapeUint8Workload)
{
RefCreateReshapeWorkloadTest<RefReshapeWorkload, armnn::DataType::QuantisedAsymm8>();
}
template <typename MergerWorkloadType, armnn::DataType DataType>
static void RefCreateMergerWorkloadTest(const armnn::TensorShape& outputShape,
unsigned int concatAxis)
{
Graph graph;
RefWorkloadFactory factory;
auto workload = CreateMergerWorkloadTest<MergerWorkloadType, DataType>(factory, graph, outputShape, concatAxis);
CheckInputsOutput(std::move(workload),
TensorInfo({ 2, 3, 2, 5 }, DataType),
TensorInfo({ 2, 3, 2, 5 }, DataType),
TensorInfo(outputShape, DataType));
}
BOOST_AUTO_TEST_CASE(CreateMergerDim0Float32Workload)
{
RefCreateMergerWorkloadTest<RefConcatWorkload, armnn::DataType::Float32>({ 4, 3, 2, 5 }, 0);
}
BOOST_AUTO_TEST_CASE(CreateMergerDim0Uint8Workload)
{
RefCreateMergerWorkloadTest<RefConcatWorkload, armnn::DataType::QuantisedAsymm8>({ 4, 3, 2, 5 }, 0);
}
BOOST_AUTO_TEST_CASE(CreateMergerDim0Uint16Workload)
{
RefCreateMergerWorkloadTest<RefConcatWorkload, armnn::DataType::QuantisedSymm16>({ 4, 3, 2, 5 }, 0);
}
BOOST_AUTO_TEST_CASE(CreateMergerDim1Float32Workload)
{
RefCreateMergerWorkloadTest<RefConcatWorkload, armnn::DataType::Float32>({ 2, 6, 2, 5 }, 1);
}
BOOST_AUTO_TEST_CASE(CreateMergerDim1Uint8Workload)
{
RefCreateMergerWorkloadTest<RefConcatWorkload, armnn::DataType::QuantisedAsymm8>({ 2, 6, 2, 5 }, 1);
}
BOOST_AUTO_TEST_CASE(CreateMergerDim2Float32Workload)
{
RefCreateMergerWorkloadTest<RefConcatWorkload, armnn::DataType::Float32>({ 2, 3, 4, 5 }, 2);
}
BOOST_AUTO_TEST_CASE(CreateMergerDim2Uint8Workload)
{
RefCreateMergerWorkloadTest<RefConcatWorkload, armnn::DataType::QuantisedAsymm8>({ 2, 3, 4, 5 }, 2);
}
BOOST_AUTO_TEST_CASE(CreateMergerDim3Float32Workload)
{
RefCreateMergerWorkloadTest<RefConcatWorkload, armnn::DataType::Float32>({ 2, 3, 2, 10 }, 3);
}
BOOST_AUTO_TEST_CASE(CreateMergerDim3Uint8Workload)
{
RefCreateMergerWorkloadTest<RefConcatWorkload, armnn::DataType::QuantisedAsymm8>({ 2, 3, 2, 10 }, 3);
}
template <typename ConstantWorkloadType, armnn::DataType DataType>
static void RefCreateConstantWorkloadTest(const armnn::TensorShape& outputShape)
{
armnn::Graph graph;
RefWorkloadFactory factory;
auto workload = CreateConstantWorkloadTest<ConstantWorkloadType, DataType>(factory, graph, outputShape);
// Check output is as expected
auto queueDescriptor = workload->GetData();
auto outputHandle = boost::polymorphic_downcast<CpuTensorHandle*>(queueDescriptor.m_Outputs[0]);
BOOST_TEST((outputHandle->GetTensorInfo() == TensorInfo(outputShape, DataType)));
}
BOOST_AUTO_TEST_CASE(CreateConstantUint8Workload)
{
RefCreateConstantWorkloadTest<RefConstantWorkload, armnn::DataType::QuantisedAsymm8>({ 2, 3, 2, 10 });
}
BOOST_AUTO_TEST_CASE(CreateConstantInt16Workload)
{
RefCreateConstantWorkloadTest<RefConstantWorkload, armnn::DataType::QuantisedSymm16>({ 2, 3, 2, 10 });
}
BOOST_AUTO_TEST_CASE(CreateConstantFloat32Workload)
{
RefCreateConstantWorkloadTest<RefConstantWorkload, armnn::DataType::Float32>({ 2, 3, 2, 10 });
}
BOOST_AUTO_TEST_CASE(CreateConstantSigned32Workload)
{
RefCreateConstantWorkloadTest<RefConstantWorkload, armnn::DataType::Signed32>({ 2, 3, 2, 10 });
}
BOOST_AUTO_TEST_SUITE_END()