blob: b06b30c935ba3fb8b76687812ba7e20255c9be70 [file] [log] [blame]
//
// Copyright © 2019 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "QuantizedLstmEndToEndTestImpl.hpp"
#include "CommonTestUtils.hpp"
#include "EndToEndTestImpl.hpp"
#include <ResolveType.hpp>
#include <armnn/INetwork.hpp>
#include <armnn/QuantizedLstmParams.hpp>
#include <test/TensorHelpers.hpp>
#include <boost/test/unit_test.hpp>
#include <type_traits>
namespace
{
using MultiArray = const boost::multi_array<uint8_t, 2>&;
armnn::INetworkPtr CreateQuantizedLstmNetwork(MultiArray input,
MultiArray expectedOutput)
{
auto batchSize = boost::numeric_cast<unsigned int>(input.shape()[0]);
auto inputSize = boost::numeric_cast<unsigned int>(input.shape()[1]);
auto outputSize = boost::numeric_cast<unsigned int>(expectedOutput.shape()[1]);
float inputOutputScale = 0.0078125f;
int32_t inputOutputOffset = 128;
float weightsScale = 0.00408021f;
int32_t weightsOffset = 100;
float biasScale = 3.1876640625e-05f;
int32_t biasOffset = 0;
float cellStateScale = 0.00048828125f;
int32_t cellStateOffset = 0;
armnn::TensorInfo inputWeightsInfo({outputSize, inputSize},
armnn::DataType::QAsymmU8,
weightsScale,
weightsOffset);
armnn::TensorInfo recurrentWeightsInfo({outputSize, outputSize},
armnn::DataType::QAsymmU8,
weightsScale,
weightsOffset);
armnn::TensorInfo biasInfo({outputSize}, armnn::DataType::Signed32, biasScale, biasOffset);
armnn::QuantizedLstmInputParams data;
const std::vector<uint8_t> inputToInputWeightsVector = {146, 250, 235, 171, 10, 218, 171, 108};
armnn::ConstTensor inputToInputWeightsTensor(inputWeightsInfo, inputToInputWeightsVector.data());
const std::vector<uint8_t> inputToForgetWeightsVector = {24, 50, 132, 179, 158, 110, 3, 169};
armnn::ConstTensor inputToForgetWeightsTensor(inputWeightsInfo, inputToForgetWeightsVector.data());
const std::vector<uint8_t> inputToCellWeightsTensorVector = {133, 34, 29, 49, 206, 109, 54, 183};
armnn::ConstTensor inputToCellWeightsTensor(inputWeightsInfo, inputToCellWeightsTensorVector.data());
const std::vector<uint8_t> inputToOutputWeightsTensorVector = {195, 187, 11, 99, 109, 10, 218, 48};
armnn::ConstTensor inputToOutputWeightsTensor(inputWeightsInfo, inputToOutputWeightsTensorVector.data());
const std::vector<uint8_t> recurrentToInputWeightsTensorVector =
{254, 206, 77, 168, 71, 20, 215, 6, 223, 7, 118, 225, 59, 130, 174, 26};
armnn::ConstTensor recurrentToInputWeightsTensor(recurrentWeightsInfo, recurrentToInputWeightsTensorVector.data());
const std::vector<uint8_t> recurrentToForgetWeightsTensorVector =
{137, 240, 103, 52, 68, 51, 237, 112, 0, 220, 89, 23, 69, 4, 207, 253};
armnn::ConstTensor recurrentToForgetWeightsTensor(recurrentWeightsInfo,
recurrentToForgetWeightsTensorVector.data());
const std::vector<uint8_t> recurrentToCellWeightsTensorVector =
{172, 60, 205, 65, 14, 0, 140, 168, 240, 223, 133, 56, 142, 64, 246, 216};
armnn::ConstTensor recurrentToCellWeightsTensor(recurrentWeightsInfo, recurrentToCellWeightsTensorVector.data());
const std::vector<uint8_t> recurrentToOutputWeightsTensorVector =
{106, 214, 67, 23, 59, 158, 45, 3, 119, 132, 49, 205, 129, 218, 11, 98};
armnn::ConstTensor recurrentToOutputWeightsTensor(recurrentWeightsInfo,
recurrentToOutputWeightsTensorVector.data());
const std::vector<int32_t> inputGateBiasTensorVector = {-7876, 13488, -726, 32839};
armnn::ConstTensor inputGateBiasTensor(biasInfo, inputGateBiasTensorVector.data());
const std::vector<int32_t> forgetGateBiasTensorVector = {9206, -46884, -11693, -38724};
armnn::ConstTensor forgetGateBiasTensor(biasInfo, forgetGateBiasTensorVector.data());
const std::vector<int32_t> cellBiasTensorVector = {39481, 48624, 48976, -21419};
armnn::ConstTensor cellBiasTensor(biasInfo, cellBiasTensorVector.data());
const std::vector<int32_t> outputGateBiasTensorVector = {-58999, -17050, -41852, -40538};
armnn::ConstTensor outputGateBiasTensor(biasInfo, outputGateBiasTensorVector.data());
data.m_InputToInputWeights = &inputToInputWeightsTensor;
data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
data.m_InputToCellWeights = &inputToCellWeightsTensor;
data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
data.m_InputGateBias = &inputGateBiasTensor;
data.m_ForgetGateBias = &forgetGateBiasTensor;
data.m_CellBias = &cellBiasTensor;
data.m_OutputGateBias = &outputGateBiasTensor;
armnn::INetworkPtr net(armnn::INetwork::Create());
armnn::IConnectableLayer* const inputLayer = net->AddInputLayer(0);
armnn::IConnectableLayer* const cellStateIn = net->AddInputLayer(1);
armnn::IConnectableLayer* const outputStateIn = net->AddInputLayer(2);
armnn::IConnectableLayer* const quantizedLstmLayer = net->AddQuantizedLstmLayer(data, "quantizedLstm");
armnn::IConnectableLayer* const cellStateOut = net->AddOutputLayer(0);
armnn::IConnectableLayer* const outputStateOut = net->AddOutputLayer(1);
armnn::TensorInfo inputTensorInfo({batchSize , inputSize},
armnn::DataType::QAsymmU8,
inputOutputScale,
inputOutputOffset);
armnn::TensorInfo cellStateInTensorInfo({batchSize , outputSize},
armnn::DataType::QSymmS16,
cellStateScale,
cellStateOffset);
armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize},
armnn::DataType::QAsymmU8,
inputOutputScale,
inputOutputOffset);
armnn::TensorInfo cellStateOutTensorInfo({batchSize, outputSize},
armnn::DataType::QSymmS16,
cellStateScale,
cellStateOffset);
armnn::TensorInfo outputTensorInfo({batchSize, outputSize},
armnn::DataType::QAsymmU8,
inputOutputScale,
inputOutputOffset);
// connect up
// inputs
Connect(inputLayer, quantizedLstmLayer, inputTensorInfo, 0, 0);
Connect(cellStateIn, quantizedLstmLayer, cellStateInTensorInfo, 0, 1);
Connect(outputStateIn, quantizedLstmLayer, outputStateInTensorInfo, 0, 2);
// outputs
Connect(quantizedLstmLayer, cellStateOut, cellStateOutTensorInfo, 0, 0);
Connect(quantizedLstmLayer, outputStateOut, outputTensorInfo, 1, 0);
return net;
}
// Checks if two values of an arithmetic type are close enough to each other
// with regard to a given tolerance value.
template<typename T>
typename std::enable_if<std::is_arithmetic<T>::value, bool>::type
IsCloseEnough(T value1, T value2, T tolerance)
{
if (tolerance < 0)
{
throw armnn::InvalidArgumentException("Tolerance cannot be < 0");
}
T diff = value1 >= value2 ? static_cast<T>(value1 - value2) : static_cast<T>(value2 - value1);
return diff <= tolerance;
}
} // anonymous namespace
void QuantizedLstmEndToEnd(const std::vector<armnn::BackendId>& backends)
{
std::vector<uint8_t> inputVector = {166, 179, 50, 150};
armnn::TensorInfo inputDesc({2, 2}, armnn::DataType::QAsymmU8);
boost::multi_array<uint8_t, 2> input = MakeTensor<uint8_t, 2>(inputDesc, inputVector);
std::vector<int16_t> cellStateInVector = {876, 1034, 955, -909, 761, 1029, 796, -1036};
armnn::TensorInfo cellStateInDesc({2, 4}, armnn::DataType::QSymmS16);
boost::multi_array<int16_t, 2> cellStateIn = MakeTensor<int16_t, 2>(cellStateInDesc, cellStateInVector);
std::vector<uint8_t> outputStateInVector = {136, 150, 140, 115, 135, 152, 138, 112};
armnn::TensorInfo outputStateInDesc({2, 4}, armnn::DataType::QAsymmU8);
boost::multi_array<uint8_t, 2> outputStateIn = MakeTensor<uint8_t, 2>(outputStateInDesc, outputStateInVector);
std::vector<int16_t> cellStateOutVector = {1485, 1177, 1373, -1023, 1019, 1355, 1097, -1235};
armnn::TensorInfo cellStateOutVectorDesc({2, 4}, armnn::DataType::QSymmS16);
boost::multi_array<int16_t, 2> cellStateOut = MakeTensor<int16_t, 2>(cellStateOutVectorDesc, cellStateOutVector);
std::vector<uint8_t> outputStateOutVector = {140, 151, 146, 112, 136, 156, 142, 112};
armnn::TensorInfo outputDesc({2, 4}, armnn::DataType::QAsymmU8);
boost::multi_array<uint8_t, 2> outputStateOut = MakeTensor<uint8_t, 2>(outputDesc, outputStateOutVector);
// Builds up the structure of the network
armnn::INetworkPtr net = CreateQuantizedLstmNetwork(input, outputStateOut);
BOOST_TEST_CHECKPOINT("create a network");
IRuntime::CreationOptions options;
IRuntimePtr runtime(IRuntime::Create(options));
// optimize the network
IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec());
// Loads it into the runtime.
NetworkId netId;
runtime->LoadNetwork(netId, std::move(optNet));
InputTensors inputTensors;
inputTensors.reserve(3);
// input
inputTensors.push_back({0, ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputVector.data())});
inputTensors.push_back({1, ConstTensor(runtime->GetInputTensorInfo(netId, 1), cellStateInVector.data())});
inputTensors.push_back({2, ConstTensor(runtime->GetInputTensorInfo(netId, 2), outputStateInVector.data())});
OutputTensors outputTensors;
outputTensors.reserve(2);
//output
std::vector<int16_t > cellStateOutResult(cellStateOutVector.size());
std::vector<uint8_t > outputStateOutResult(outputStateOutVector.size());
outputTensors.push_back({0, Tensor(runtime->GetOutputTensorInfo(netId, 0), cellStateOutResult.data())});
outputTensors.push_back({1, Tensor(runtime->GetOutputTensorInfo(netId, 1), outputStateOutResult.data())});
// Does the inference.
runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
// Checks the results
constexpr int16_t toleranceInt16 = 2;
for (unsigned int i = 0u; i < cellStateOutResult.size(); ++i)
{
BOOST_CHECK(IsCloseEnough(cellStateOutVector[i], cellStateOutResult[i], toleranceInt16));
}
constexpr uint8_t toleranceUint8 = 1;
for (unsigned int i = 0u; i < outputStateOutResult.size(); ++i)
{
BOOST_TEST(IsCloseEnough(outputStateOutVector[i], outputStateOutResult[i], toleranceUint8));
}
}