blob: a9467fb062a608005b2c4aca0dcbe45028b29409 [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include <boost/test/unit_test.hpp>
#include <Graph.hpp>
#include <SubgraphView.hpp>
#include <SubgraphViewSelector.hpp>
#include <backendsCommon/CpuTensorHandle.hpp>
#include <fstream>
#include <map>
#include <queue>
#include <random>
#include <chrono>
using namespace armnn;
namespace
{
bool AreAnySubgraphLayersPresentInGraph(const SubgraphView::Layers &subgraphLayers, const Graph &graph)
{
for(auto&& layer : subgraphLayers)
{
auto posInGraph = std::find(graph.begin(), graph.end(), layer);
if(posInGraph != graph.end())
{
return true;
}
}
return false;
}
//
// this helper only works if all layers where the inputs connect to are not selected
//
SubgraphView::InputSlots CreateInputsFrom(const std::vector<Layer*>& layers)
{
SubgraphView::InputSlots result;
for (auto&& layer : layers)
{
for (auto&& it = layer->BeginInputSlots(); it != layer->EndInputSlots(); ++it)
{
result.push_back(&(*it));
}
}
return result;
}
//
// this helper only works if all layers where the outputs connect to are not selected
//
SubgraphView::OutputSlots CreateOutputsFrom(const std::vector<Layer*>& layers)
{
SubgraphView::OutputSlots result;
for (auto && layer : layers)
{
for (auto&& it = layer->BeginOutputSlots(); it != layer->EndOutputSlots(); ++it)
{
result.push_back(&(*it));
}
}
return result;
}
//
// this takes the inputs, outputs and layers as a copy and the move these copies into the
// resulting subgraph, so the pass by value is intentional
//
SubgraphViewSelector::SubgraphViewPtr CreateSubgraphViewFrom(SubgraphView::InputSlots&& inputs,
SubgraphView::OutputSlots&& outputs,
SubgraphView::Layers&& layers)
{
return std::make_unique<SubgraphView>(std::move(inputs), std::move(outputs), std::move(layers));
}
template <typename T, typename Iterator>
std::vector<T> ToSortedArray(Iterator begin, Iterator end)
{
std::vector<T> result(begin, end);
std::sort(result.begin(), result.end());
return result;
}
template <typename T>
void CompareVectors(const std::vector<T>& result, const std::vector<T>& expected)
{
BOOST_CHECK_EQUAL_COLLECTIONS(result.begin(), result.end(), expected.begin(), expected.end());
}
void CompareSubgraphViews(SubgraphViewSelector::SubgraphViewPtr& result,
SubgraphViewSelector::SubgraphViewPtr& expected)
{
// expect both to be valid subgraphs
BOOST_TEST((result.get() != nullptr));
BOOST_TEST((expected.get() != nullptr));
if (result.get() != nullptr && expected.get() != nullptr)
{
// try to detect all other obvious errors too, mainly because here
// we can get a nicer error message from boost, the collection test
// also report error for these
BOOST_TEST(result->GetInputSlots().size() == expected->GetInputSlots().size());
BOOST_TEST(result->GetOutputSlots().size() == expected->GetOutputSlots().size());
BOOST_TEST(result->GetLayers().size() == expected->GetLayers().size());
auto resultLayers = ToSortedArray<Layer *>(result->GetLayers().begin(),
result->GetLayers().end());
auto expectedLayers = ToSortedArray<Layer *>(expected->GetLayers().begin(),
expected->GetLayers().end());
CompareVectors(resultLayers, expectedLayers);
auto resultInputs = ToSortedArray<InputSlot *>(result->GetInputSlots().begin(),
result->GetInputSlots().end());
auto expectedInputs = ToSortedArray<InputSlot *>(expected->GetInputSlots().begin(),
expected->GetInputSlots().end());
CompareVectors(resultInputs, expectedInputs);
auto resultOutputs = ToSortedArray<OutputSlot *>(result->GetOutputSlots().begin(),
result->GetOutputSlots().end());
auto expectedOutputs = ToSortedArray<OutputSlot *>(expected->GetOutputSlots().begin(),
expected->GetOutputSlots().end());
CompareVectors(resultOutputs, expectedOutputs);
}
}
} // namespace <anonymous>
BOOST_AUTO_TEST_SUITE(SubgraphSubstitution)
BOOST_AUTO_TEST_CASE(SingleInputSingleOutput)
{
// Construct graph
Graph graph;
Layer* const inputLayer = graph.AddLayer<InputLayer>(0, "input");
Convolution2dDescriptor convDescriptor;
Layer* const convLayer1 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv1");
Layer* const convLayer2 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv2");
Layer* const outputLayer = graph.AddLayer<OutputLayer>(0, "output");
inputLayer->GetOutputSlot(0).Connect(convLayer1->GetInputSlot(0));
convLayer1->GetOutputSlot(0).Connect(convLayer2->GetInputSlot(0));
convLayer2->GetOutputSlot(0).Connect(outputLayer->GetInputSlot(0));
// Construct sub-graph
SubgraphViewSelector::SubgraphViewPtr subgraph = CreateSubgraphViewFrom(CreateInputsFrom({convLayer1}),
CreateOutputsFrom({convLayer2}),
{});
// Save sub-graph connections for comparison after substitution
IOutputSlot* subgraphInputConn = subgraph->GetInputSlot(0)->GetConnection();
IInputSlot* subgraphOutputConn = subgraph->GetOutputSlot(0)->GetConnection(0);
// Construct dummy pre-compiled layer
PreCompiledDescriptor preCompiledDescriptor(1, 1);
Layer* const preCompiledLayer = graph.AddLayer<PreCompiledLayer>(preCompiledDescriptor, "pre-compiled");
// Substitute sub-graph with pre-compiled layer
graph.SubstituteSubgraph(*subgraph, preCompiledLayer);
// Check that connections are correct after substitution
BOOST_CHECK_EQUAL(preCompiledLayer->GetInputSlot(0).GetConnection(), subgraphInputConn);
BOOST_CHECK_EQUAL(preCompiledLayer->GetOutputSlot(0).GetConnection(0), subgraphOutputConn);
}
BOOST_AUTO_TEST_CASE(SingleInputSingleOutputSubstituteGraph)
{
// Construct graph
Graph graph;
Layer* const inputLayer = graph.AddLayer<InputLayer>(0, "input");
Convolution2dDescriptor convDescriptor;
Layer* const convLayer1 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv1");
Layer* const convLayer2 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv2");
Layer* const outputLayer = graph.AddLayer<OutputLayer>(0, "output");
inputLayer->GetOutputSlot(0).Connect(convLayer1->GetInputSlot(0));
convLayer1->GetOutputSlot(0).Connect(convLayer2->GetInputSlot(0));
convLayer2->GetOutputSlot(0).Connect(outputLayer->GetInputSlot(0));
// Construct sub-graph
SubgraphViewSelector::SubgraphViewPtr subgraph = CreateSubgraphViewFrom(CreateInputsFrom({convLayer1}),
CreateOutputsFrom({convLayer2}),
{});
// Save sub-graph connections for comparison after substitution
IOutputSlot* subgraphInputConn = subgraph->GetInputSlot(0)->GetConnection();
IInputSlot* subgraphOutputConn = subgraph->GetOutputSlot(0)->GetConnection(0);
// Construct second graph with a single pre-compiled layer
Graph substituteGraph;
PreCompiledDescriptor preCompiledDescriptor(1, 1);
Layer* const preCompiledLayer = substituteGraph.AddLayer<PreCompiledLayer>(preCompiledDescriptor, "pre-compiled");
SubgraphViewSelector::SubgraphViewPtr substituteSubgraph =
CreateSubgraphViewFrom(CreateInputsFrom({preCompiledLayer}),
CreateOutputsFrom({preCompiledLayer}),
{preCompiledLayer});
// Substitute subgraph with pre-compiled layer
graph.SubstituteSubgraph(*subgraph, *substituteSubgraph);
// Check that connections are correct after substitution
BOOST_CHECK_EQUAL(preCompiledLayer->GetInputSlot(0).GetConnection(), subgraphInputConn);
BOOST_CHECK_EQUAL(preCompiledLayer->GetOutputSlot(0).GetConnection(0), subgraphOutputConn);
}
BOOST_AUTO_TEST_CASE(MultiInputSingleOutput)
{
// Construct graph
Graph graph;
Layer* const inputLayer = graph.AddLayer<InputLayer>(0, "input");
ViewsDescriptor splitterDescriptor(2);
Layer* const splitterLayer = graph.AddLayer<SplitterLayer>(splitterDescriptor, "splitter");
Convolution2dDescriptor convDescriptor;
Layer* const convLayer1 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv1");
Layer* const convLayer2 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv2");
OriginsDescriptor concatDescriptor(2);
Layer* const concatLayer = graph.AddLayer<ConcatLayer>(concatDescriptor, "concat");
Layer* const outputLayer = graph.AddLayer<OutputLayer>(0, "output");
inputLayer->GetOutputSlot(0).Connect(splitterLayer->GetInputSlot(0));
splitterLayer->GetOutputSlot(0).Connect(convLayer1->GetInputSlot(0));
splitterLayer->GetOutputSlot(1).Connect(convLayer2->GetInputSlot(0));
convLayer1->GetOutputSlot(0).Connect(concatLayer->GetInputSlot(0));
convLayer2->GetOutputSlot(0).Connect(concatLayer->GetInputSlot(1));
concatLayer->GetOutputSlot(0).Connect(outputLayer->GetInputSlot(0));
// Construct sub-graph
SubgraphViewSelector::SubgraphViewPtr subgraph = CreateSubgraphViewFrom(CreateInputsFrom({convLayer1, convLayer2}),
CreateOutputsFrom({concatLayer}),
{});
// Save sub-graph connections for comparison after substitution
IOutputSlot* subgraphInputConn1 = subgraph->GetInputSlot(0)->GetConnection();
IOutputSlot* subgraphInputConn2 = subgraph->GetInputSlot(1)->GetConnection();
IInputSlot* subgraphOutputConn = subgraph->GetOutputSlot(0)->GetConnection(0);
// Construct dummy pre-compiled layer
PreCompiledDescriptor preCompiledDescriptor(2, 1);
Layer* const preCompiledLayer = graph.AddLayer<PreCompiledLayer>(preCompiledDescriptor, "pre-compiled");
// Substitute sub-graph with pre-compiled layer
graph.SubstituteSubgraph(*subgraph, preCompiledLayer);
// Check that connections are correct after substitution
BOOST_CHECK_EQUAL(preCompiledLayer->GetInputSlot(0).GetConnection(), subgraphInputConn1);
BOOST_CHECK_EQUAL(preCompiledLayer->GetInputSlot(1).GetConnection(), subgraphInputConn2);
BOOST_CHECK_EQUAL(preCompiledLayer->GetOutputSlot(0).GetConnection(0), subgraphOutputConn);
}
BOOST_AUTO_TEST_CASE(SingleInputMultiOutput)
{
// Construct graph
Graph graph;
Layer* const inputLayer = graph.AddLayer<InputLayer>(0, "input");
Convolution2dDescriptor convDescriptor;
Layer* const convLayer1 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv1");
Layer* const convLayer2 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv2");
OriginsDescriptor concatDescriptor(2);
Layer* const concatLayer = graph.AddLayer<ConcatLayer>(concatDescriptor, "concat");
Layer* const outputLayer = graph.AddLayer<OutputLayer>(0, "output");
ViewsDescriptor splitterDescriptor(2);
Layer* const splitterLayer = graph.AddLayer<SplitterLayer>(splitterDescriptor, "splitter");
inputLayer->GetOutputSlot(0).Connect(splitterLayer->GetInputSlot(0));
splitterLayer->GetOutputSlot(0).Connect(convLayer1->GetInputSlot(0));
splitterLayer->GetOutputSlot(1).Connect(convLayer2->GetInputSlot(0));
convLayer1->GetOutputSlot(0).Connect(concatLayer->GetInputSlot(0));
convLayer2->GetOutputSlot(0).Connect(concatLayer->GetInputSlot(1));
concatLayer->GetOutputSlot(0).Connect(outputLayer->GetInputSlot(0));
// Construct sub-graph
SubgraphViewSelector::SubgraphViewPtr subgraph = CreateSubgraphViewFrom(CreateInputsFrom({splitterLayer}),
CreateOutputsFrom({convLayer1, convLayer2}),
{});
// Save sub-graph connections for comparison after substitution
IOutputSlot* subgraphInputConn1 = subgraph->GetInputSlot(0)->GetConnection();
IInputSlot* subgraphOutputConn1 = subgraph->GetOutputSlot(0)->GetConnection(0);
IInputSlot* subgraphOutputConn2 = subgraph->GetOutputSlot(1)->GetConnection(0);
// Construct dummy pre-compiled layer
PreCompiledDescriptor preCompiledDescriptor(1, 2);
Layer* const preCompiledLayer = graph.AddLayer<PreCompiledLayer>(preCompiledDescriptor, "pre-compiled");
// Substitute sub-graph with pre-compiled layer
graph.SubstituteSubgraph(*subgraph, preCompiledLayer);
// Check that connections are correct after substitution
BOOST_CHECK_EQUAL(preCompiledLayer->GetInputSlot(0).GetConnection(), subgraphInputConn1);
BOOST_CHECK_EQUAL(preCompiledLayer->GetOutputSlot(0).GetConnection(0), subgraphOutputConn1);
BOOST_CHECK_EQUAL(preCompiledLayer->GetOutputSlot(1).GetConnection(0), subgraphOutputConn2);
}
BOOST_AUTO_TEST_CASE(MultiInputMultiOutput)
{
// Construct graph
Graph graph;
Layer* const inputLayer = graph.AddLayer<InputLayer>(0, "input");
ViewsDescriptor splitterDescriptor(2);
Layer* const splitterLayer = graph.AddLayer<SplitterLayer>(splitterDescriptor, "splitter");
Convolution2dDescriptor convDescriptor;
Layer* const convLayer1 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv1");
Layer* const convLayer2 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv2");
OriginsDescriptor concatDescriptor(2);
Layer* const concatLayer = graph.AddLayer<ConcatLayer>(concatDescriptor, "concat");
Layer* const outputLayer = graph.AddLayer<OutputLayer>(0, "output");
inputLayer->GetOutputSlot(0).Connect(splitterLayer->GetInputSlot(0));
splitterLayer->GetOutputSlot(0).Connect(convLayer1->GetInputSlot(0));
splitterLayer->GetOutputSlot(1).Connect(convLayer2->GetInputSlot(0));
convLayer1->GetOutputSlot(0).Connect(concatLayer->GetInputSlot(0));
convLayer2->GetOutputSlot(0).Connect(concatLayer->GetInputSlot(1));
concatLayer->GetOutputSlot(0).Connect(outputLayer->GetInputSlot(0));
// Construct sub-graph
SubgraphViewSelector::SubgraphViewPtr subgraph = CreateSubgraphViewFrom(CreateInputsFrom({convLayer1, convLayer2}),
CreateOutputsFrom({convLayer1, convLayer2}),
{});
// Save sub-graph connections for comparison after substitution
IOutputSlot* subgraphInputConn1 = subgraph->GetInputSlot(0)->GetConnection();
IOutputSlot* subgraphInputConn2 = subgraph->GetInputSlot(1)->GetConnection();
IInputSlot* subgraphOutputConn1 = subgraph->GetOutputSlot(0)->GetConnection(0);
IInputSlot* subgraphOutputConn2 = subgraph->GetOutputSlot(1)->GetConnection(0);
// Construct dummy pre-compiled layer
PreCompiledDescriptor preCompiledDescriptor(2, 2);
Layer* const preCompiledLayer = graph.AddLayer<PreCompiledLayer>(preCompiledDescriptor, "pre-compiled");
// Substitute sub-graph with pre-compiled layer
graph.SubstituteSubgraph(*subgraph, preCompiledLayer);
// Check that connections are correct after substitution
BOOST_CHECK_EQUAL(preCompiledLayer->GetInputSlot(0).GetConnection(), subgraphInputConn1);
BOOST_CHECK_EQUAL(preCompiledLayer->GetInputSlot(1).GetConnection(), subgraphInputConn2);
BOOST_CHECK_EQUAL(preCompiledLayer->GetOutputSlot(0).GetConnection(0), subgraphOutputConn1);
BOOST_CHECK_EQUAL(preCompiledLayer->GetOutputSlot(1).GetConnection(0), subgraphOutputConn2);
}
BOOST_AUTO_TEST_CASE(EraseReplacedLayers)
{
// Construct graph
Graph graph;
graph.AddLayer<InputLayer>(0, "input");
ViewsDescriptor splitterDescriptor(2);
Layer* const splitterLayer = graph.AddLayer<SplitterLayer>(splitterDescriptor, "splitter");
Convolution2dDescriptor convDescriptor;
Layer* const convLayer1 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv1");
Layer* const convLayer2 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv2");
OriginsDescriptor concatDescriptor(2);
Layer* const concatLayer = graph.AddLayer<ConcatLayer>(concatDescriptor, "concat");
graph.AddLayer<OutputLayer>(0, "output");
// Construct sub-graph
SubgraphViewSelector::SubgraphViewPtr subgraph = CreateSubgraphViewFrom({},
{},
{splitterLayer,
convLayer1,
convLayer2,
concatLayer});
// Construct dummy pre-compiled layer
PreCompiledDescriptor preCompiledDescriptor(0, 0);
Layer* const preCompiledLayer = graph.AddLayer<PreCompiledLayer>(preCompiledDescriptor, "pre-compiled");
// Save sub-graph layers for later verification
const SubgraphView::Layers subgraphLayers = subgraph->GetLayers();
// Substitute sub-graph with pre-compiled layer
graph.SubstituteSubgraph(*subgraph, preCompiledLayer);
// Check that the layers belonging to the sub-graph have been erased from the graph after substitution
BOOST_CHECK(!AreAnySubgraphLayersPresentInGraph(subgraphLayers, graph));
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE(SubgraphSelection)
BOOST_AUTO_TEST_CASE(SubgraphForEmptyGraph)
{
Graph graph;
SubgraphView subgraph(graph);
BOOST_TEST(subgraph.GetInputSlots().empty());
BOOST_TEST(subgraph.GetOutputSlots().empty());
BOOST_TEST(subgraph.GetLayers().empty());
}
BOOST_AUTO_TEST_CASE(SubgraphForEntireGraph)
{
Graph graph;
auto output = graph.AddLayer<OutputLayer>(0, "output");
auto mid0 = graph.InsertNewLayer<ActivationLayer>(output->GetInputSlot(0),
ActivationDescriptor{},
"mid0");
auto mid1 = graph.InsertNewLayer<ActivationLayer>(mid0->GetInputSlot(0),
ActivationDescriptor{},
"mid1");
graph.InsertNewLayer<InputLayer>(mid1->GetInputSlot(0), 0, "input");
SubgraphView subgraph(graph);
BOOST_TEST(subgraph.GetInputSlots().empty());
BOOST_TEST(subgraph.GetOutputSlots().empty());
BOOST_TEST(subgraph.GetLayers().size() == graph.GetNumLayers());
}
BOOST_AUTO_TEST_CASE(NoSubgraphsForNoMatch)
{
Graph graph;
auto output = graph.AddLayer<OutputLayer>(0, "output");
graph.InsertNewLayer<InputLayer>(output->GetInputSlot(0), 0, "input");
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(graph, [](const Layer &) { return false; });
BOOST_TEST(subgraphs.empty());
}
BOOST_AUTO_TEST_CASE(OneSubgraphsSelectedASingleMatch)
{
Graph graph;
auto output = graph.AddLayer<OutputLayer>(0, "output");
graph.InsertNewLayer<InputLayer>(output->GetInputSlot(0), 0, "input");
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(
graph,
// select the output layer only
[](const Layer & l)
{
bool isOutput = l.GetNameStr().compare("output") == 0;
return isOutput;
});
BOOST_TEST(subgraphs.size() == 1);
if (subgraphs.size() == 1)
{
auto expected = CreateSubgraphViewFrom(CreateInputsFrom({output}),
// outputs of 'output' will be empty
CreateOutputsFrom({output}),
{output});
CompareSubgraphViews(subgraphs[0], expected);
}
}
BOOST_AUTO_TEST_CASE(MultipleLayersSelectedInTheMiddle)
{
Graph graph;
auto output = graph.AddLayer<OutputLayer>(0, "output");
auto mid0 = graph.InsertNewLayer<ActivationLayer>(output->GetInputSlot(0),
ActivationDescriptor{},
"mid0");
auto mid1 = graph.InsertNewLayer<ActivationLayer>(mid0->GetInputSlot(0),
ActivationDescriptor{},
"mid1");
graph.InsertNewLayer<InputLayer>(mid1->GetInputSlot(0), 0, "input");
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(
graph,
// select the middle layers only
[](const Layer & l)
{
bool toSelect = (l.GetType() == LayerType::Activation);
return toSelect;
});
BOOST_TEST(subgraphs.size() == 1);
if (subgraphs.size() == 1)
{
auto expected = CreateSubgraphViewFrom(CreateInputsFrom({mid1}),
CreateOutputsFrom({mid0}),
{mid1, mid0});
CompareSubgraphViews(subgraphs[0], expected);
}
}
BOOST_AUTO_TEST_CASE(DisjointGraphs)
{
// The input graph has two disjoint sections and all layers are selected.
// This should result in two subgraphs being produced.
Graph graph;
// the graph is constructed in reverse order
auto o0 = graph.AddLayer<OutputLayer>(0, "output0");
auto n0 = graph.InsertNewLayer<ActivationLayer>(o0->GetInputSlot(0), ActivationDescriptor{}, "intermediate0");
auto i0 = graph.InsertNewLayer<InputLayer>(n0->GetInputSlot(0), 0, "input0");
auto o1 = graph.AddLayer<OutputLayer>(1, "output1");
auto n1 = graph.InsertNewLayer<ActivationLayer>(o1->GetInputSlot(0), ActivationDescriptor{}, "intermediate1");
auto i1 = graph.InsertNewLayer<InputLayer>(n1->GetInputSlot(0), 1, "input1");
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(graph,
// select the middle layers only
[](const Layer&) {
return true;
});
// expected results to test against
auto expected1 = CreateSubgraphViewFrom({}, {}, { o0, n0, i0 });
auto expected2 = CreateSubgraphViewFrom({}, {}, { o1, n1, i1 });
BOOST_TEST(subgraphs.size() == 2);
if (subgraphs.size() == 2)
{
BOOST_TEST((subgraphs[0] != nullptr));
BOOST_TEST((subgraphs[1] != nullptr));
if (subgraphs[0].get() != nullptr && subgraphs[1].get() != nullptr)
{
if (std::find(subgraphs[0]->GetLayers().begin(), subgraphs[0]->GetLayers().end(), i0) !=
subgraphs[0]->GetLayers().end())
{
CompareSubgraphViews(subgraphs[0], expected1);
CompareSubgraphViews(subgraphs[1], expected2);
}
else
{
CompareSubgraphViews(subgraphs[0], expected2);
CompareSubgraphViews(subgraphs[1], expected1);
}
}
}
}
BOOST_AUTO_TEST_CASE(IslandInTheMiddle)
{
// This case represent the scenario when a non-selected X1 node placed in the middle
// of the selected M* nodes.
// This checks that we don't merge M6 and M3 and create a dependency loop.
/*
M0
/ \
M1 M4
| |
M2 X1 < the island in the middle !
| |
M3 M5
\ /
M6
*/
Graph graph;
OriginsDescriptor concatDescriptor(2);
auto m6 = graph.AddLayer<ConcatLayer>(concatDescriptor, "m6");
auto m3 = graph.InsertNewLayer<ActivationLayer>(m6->GetInputSlot(0),
ActivationDescriptor{},
"m3");
auto m2 = graph.InsertNewLayer<ActivationLayer>(m3->GetInputSlot(0),
ActivationDescriptor{},
"m2");
auto m1 = graph.InsertNewLayer<ActivationLayer>(m2->GetInputSlot(0),
ActivationDescriptor{},
"m1");
auto m0 = graph.InsertNewLayer<InputLayer>(m1->GetInputSlot(0), 0, "m0");
auto m5 = graph.InsertNewLayer<ActivationLayer>(m6->GetInputSlot(1),
ActivationDescriptor{},
"m5");
auto x1 = graph.InsertNewLayer<ActivationLayer>(m5->GetInputSlot(0),
ActivationDescriptor{},
"x1");
auto m4 = graph.InsertNewLayer<ActivationLayer>(x1->GetInputSlot(0),
ActivationDescriptor{},
"m4");
// Connect the other branch to the input layer
m0->GetOutputSlot(0).Connect(m4->GetInputSlot(0));
// All selected 'M*' layers will be of Activation type
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(
graph,
// select the middle layers only
[](const Layer& l)
{
bool toSelect = std::string(l.GetName())[0] == 'm';
return toSelect;
});
// expected results to test against
auto largerSubgraph = CreateSubgraphViewFrom(CreateInputsFrom({ m0 }),
CreateOutputsFrom({ m3, m4 }),
{ m0, m1, m2, m3, m4 });
auto smallerSubgraph =
CreateSubgraphViewFrom(std::vector<InputSlot*>{ &m5->GetInputSlot(0), & m6->GetInputSlot(0) },
std::vector<OutputSlot*>{},
{ m5, m6 });
BOOST_TEST(subgraphs.size() == 2);
if (subgraphs.size() == 2)
{
// we need to have valid subgraph pointers here
BOOST_TEST((subgraphs[0] != nullptr));
BOOST_TEST((subgraphs[1] != nullptr));
if (subgraphs[0].get() != nullptr && subgraphs[1].get() != nullptr)
{
// sort the subgraphs by layer size, so it is simpler to test
std::sort(subgraphs.begin(), subgraphs.end(),
[](SubgraphViewSelector::SubgraphViewPtr& lhs, SubgraphViewSelector::SubgraphViewPtr& rhs)
{
return (lhs->GetLayers().size() < rhs->GetLayers().size());
}
);
BOOST_TEST(subgraphs[0]->GetLayers().size() == 2);
BOOST_TEST(subgraphs[1]->GetLayers().size() == 5);
CompareSubgraphViews(subgraphs[0], smallerSubgraph);
CompareSubgraphViews(subgraphs[1], largerSubgraph);
}
}
}
BOOST_AUTO_TEST_CASE(MultipleSimpleSubgraphs)
{
// This test case represents the scenario when we have two distinct subgraphs
// in a simple linear network. The selected nodes are the M* and the
// non-selected ones are the X*
//
// X1 -> M1 -> M2 -> X2 -> M3 -> X3
//
// The expected results is two subgraphs, one with {M1, M2} and another one
// with {M3}
//
Graph graph;
// the graph is constructed in reverse order
auto x3 = graph.AddLayer<OutputLayer>(0, "output");
auto m3 = graph.InsertNewLayer<ActivationLayer>(x3->GetInputSlot(0),
ActivationDescriptor{},
"m3");
auto x2 = graph.InsertNewLayer<Convolution2dLayer>(m3->GetInputSlot(0),
Convolution2dDescriptor{},
"x2");
auto m2 = graph.InsertNewLayer<ActivationLayer>(x2->GetInputSlot(0),
ActivationDescriptor{},
"m2");
auto m1 = graph.InsertNewLayer<ActivationLayer>(m2->GetInputSlot(0),
ActivationDescriptor{},
"m1");
graph.InsertNewLayer<InputLayer>(m1->GetInputSlot(0), 0, "x1");
// All selected 'M*' layers will be of Activation type
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(
graph,
// select the middle layers only
[](const Layer & l)
{
bool toSelect = (l.GetType() == LayerType::Activation);
return toSelect;
});
// expected results to test against
auto largerSubgraph = CreateSubgraphViewFrom(CreateInputsFrom({m1}),
CreateOutputsFrom({m2}),
{m1, m2});
auto smallerSubgraph = CreateSubgraphViewFrom(CreateInputsFrom({m3}),
CreateOutputsFrom({m3}),
{m3});
BOOST_TEST(subgraphs.size() == 2);
if (subgraphs.size() == 2)
{
// we need to have valid subgraph pointers here
BOOST_TEST((subgraphs[0] != nullptr));
BOOST_TEST((subgraphs[1] != nullptr));
if (subgraphs[0].get() != nullptr && subgraphs[1].get() != nullptr)
{
// sort the subgraphs by layer size, so it is simpler to test
std::sort(subgraphs.begin(), subgraphs.end(),
[](SubgraphViewSelector::SubgraphViewPtr & lhs, SubgraphViewSelector::SubgraphViewPtr & rhs)
{
return (lhs->GetLayers().size() < rhs->GetLayers().size());
}
);
BOOST_TEST(subgraphs[0]->GetLayers().size() == 1);
BOOST_TEST(subgraphs[1]->GetLayers().size() == 2);
CompareSubgraphViews(subgraphs[0], smallerSubgraph);
CompareSubgraphViews(subgraphs[1], largerSubgraph);
}
}
}
BOOST_AUTO_TEST_CASE(SimpleLinearTest)
{
//X1 -> M1 -> M2 -> X2
//Where the input slots of M1 and the output slots of M2 are to be the sub graph boundaries.
Graph graph;
ActivationDescriptor activationDefaults;
auto layerX1 = graph.AddLayer<InputLayer>(0, "layerX1");
auto layerX2 = graph.AddLayer<OutputLayer>(0, "layerX2");
auto layerM1 = graph.AddLayer<ActivationLayer>(activationDefaults, "layerM1");
auto layerM2 = graph.AddLayer<ActivationLayer>(activationDefaults, "layerM2");
// X1
// |
// M1
// |
// M2
// |
// X2
layerX1->GetOutputSlot(0).Connect(layerM1->GetInputSlot(0));
layerM1->GetOutputSlot(0).Connect(layerM2->GetInputSlot(0));
layerM2->GetOutputSlot(0).Connect(layerX2->GetInputSlot(0));
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(
graph,
// select the activation layers M1 and M2
[](const Layer & l)
{
bool toSelect = (l.GetType() == LayerType::Activation);
return toSelect;
});
BOOST_CHECK(subgraphs.size() == 1);
if(subgraphs.size() == 1)
{
auto expected = CreateSubgraphViewFrom(CreateInputsFrom({layerM1}),
CreateOutputsFrom({layerM2}),
{layerM1, layerM2});
CompareSubgraphViews(subgraphs[0], expected);
}
}
BOOST_AUTO_TEST_CASE(MultiInputSingleOutput)
{
//X1 -> M1 -> M3 -> X3
//X2 -> M2 -> M3 -> X3
//Where the input slots of {M1, M2} and the output slots of M3 are to be the subgraph boundaries.
Graph graph;
ActivationDescriptor activationDefaults;
auto layerX1 = graph.AddLayer<InputLayer>(0, "layerX1");
auto layerX2 = graph.AddLayer<InputLayer>(1, "layerX2");
auto layerM1 = graph.AddLayer<ActivationLayer>(activationDefaults, "layerM1");
auto layerM2 = graph.AddLayer<ActivationLayer>(activationDefaults, "layerM2");
auto layerM3 = graph.AddLayer<AdditionLayer>("layerM3");
auto layerX3 = graph.AddLayer<OutputLayer>(0, "layerX3");
// X1 X2
// | |
// M1 M2
// \ |
// \ |
// \|
// M3
// |
// |
// X3
layerX1->GetOutputSlot(0).Connect(layerM1->GetInputSlot(0));
layerX2->GetOutputSlot(0).Connect(layerM2->GetInputSlot(0));
layerM1->GetOutputSlot(0).Connect(layerM3->GetInputSlot(0));
layerM2->GetOutputSlot(0).Connect(layerM3->GetInputSlot(1));
layerM3->GetOutputSlot(0).Connect(layerX3->GetInputSlot(0));
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(
graph,
// select Activation and Addition Layers M1, M2 and M3
[](const Layer & l)
{
bool toSelect = (l.GetType() == LayerType::Activation
|| l.GetType() == LayerType::Addition);
return toSelect;
});
BOOST_CHECK(subgraphs.size() == 1);
if (subgraphs.size() == 1)
{
auto expected = CreateSubgraphViewFrom(CreateInputsFrom({layerM1, layerM2}),
CreateOutputsFrom({layerM3}),
{layerM1, layerM2, layerM3});
CompareSubgraphViews(subgraphs[0], expected);
}
}
BOOST_AUTO_TEST_CASE(SingleInputMultiOutput)
{
//X1 -> M1 -> M2 -> X2
//X1 -> M1 -> M3 -> X3
//Where the input slots of M1 and the output slots of {M2, M3} are to be the subgraph boundaries.
Graph graph;
ActivationDescriptor activationDefaults;
ViewsDescriptor viewDefaults(2,4);
Layer* layerX1 = graph.AddLayer<InputLayer>(0, "layerX1");
Layer* layerM1 = graph.AddLayer<SplitterLayer>(viewDefaults, "layerM1");
Layer* layerM2 = graph.AddLayer<ActivationLayer>(activationDefaults, "layerM2");
Layer* layerM3 = graph.AddLayer<ActivationLayer>(activationDefaults, "layerM3");
Layer* layerX2 = graph.AddLayer<OutputLayer>(0, "layerX2");
Layer* layerX3 = graph.AddLayer<OutputLayer>(1, "layerX3");
// X1
// |
// M1
// /|
// / |
// / |
// M2 M3
// | |
// | |
// X2 X3
layerX1->GetOutputSlot(0).Connect(layerM1->GetInputSlot(0));
layerM1->GetOutputSlot(0).Connect(layerM2->GetInputSlot(0));
layerM1->GetOutputSlot(1).Connect(layerM3->GetInputSlot(0));
layerM2->GetOutputSlot(0).Connect(layerX2->GetInputSlot(0));
layerM3->GetOutputSlot(0).Connect(layerX3->GetInputSlot(0));
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(
graph,
// select Activation and Splitter Layers M1, M2 and M3
[](const Layer & l)
{
bool toSelect = (l.GetType() == LayerType::Activation
|| l.GetType() == LayerType::Splitter);
return toSelect;
});
BOOST_CHECK(subgraphs.size() == 1);
if(subgraphs.size() == 1)
{
auto expected = CreateSubgraphViewFrom(CreateInputsFrom({layerM1}),
CreateOutputsFrom({layerM2, layerM3}),
{layerM1, layerM2, layerM3});
CompareSubgraphViews(subgraphs[0], expected);
}
}
BOOST_AUTO_TEST_CASE(MultiInputMultiOutput)
{
// This case represents the scenario with multiple inputs and multiple outputs
//
// X1 -> M1 -> M3 -> M4 -> X3
// X2 -> M2 -> M3 -> M5 -> X4
//
// Where the input slots of {M1, M2} and the output slots of {M4, M5} are to be the subgraph
// boundaries.
Graph graph;
ActivationDescriptor activationDefaults;
OriginsDescriptor concatDescriptor(2);
auto x1 = graph.AddLayer<InputLayer>(0, "x1");
auto x2 = graph.AddLayer<InputLayer>(1, "x2");
auto m1 = graph.AddLayer<ActivationLayer>(activationDefaults, "m1");
auto m2 = graph.AddLayer<ActivationLayer>(activationDefaults, "m2");
auto m3 = graph.AddLayer<ConcatLayer>(concatDescriptor, "m3");
auto m4 = graph.AddLayer<ActivationLayer>(activationDefaults, "m4");
auto m5 = graph.AddLayer<ActivationLayer>(activationDefaults, "m5");
auto x3 = graph.AddLayer<OutputLayer>(0, "x3");
auto x4 = graph.AddLayer<OutputLayer>(1, "x4");
x1->GetOutputSlot(0).Connect(m1->GetInputSlot(0));
x2->GetOutputSlot(0).Connect(m2->GetInputSlot(0));
m1->GetOutputSlot(0).Connect(m3->GetInputSlot(0));
m2->GetOutputSlot(0).Connect(m3->GetInputSlot(1));
m3->GetOutputSlot(0).Connect(m4->GetInputSlot(0));
m3->GetOutputSlot(0).Connect(m5->GetInputSlot(0));
m4->GetOutputSlot(0).Connect(x3->GetInputSlot(0));
m5->GetOutputSlot(0).Connect(x4->GetInputSlot(0));
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(
graph,
// select Activation and Concat Layers M1, M2, M3, M4, M5
[](const Layer & l)
{
bool toSelect = (l.GetType() == LayerType::Activation
|| l.GetType() == LayerType::Concat);
return toSelect;
});
BOOST_CHECK(subgraphs.size() == 1);
if (subgraphs.size() == 1)
{
auto expected = CreateSubgraphViewFrom(CreateInputsFrom({m1, m2}),
CreateOutputsFrom({m4, m5}),
{m1, m2, m3, m4, m5});
CompareSubgraphViews(subgraphs[0], expected);
}
}
BOOST_AUTO_TEST_CASE(ValidMerge)
{
// Checks that a node that has multiple choices for merge candidates (M3 in this case) correctly merges with the
// one that it can (M0), and doesn't merge with the ones it can't (X2 and M2).
//
// X1
// |
// M1
// / \'
// X2 M2 M0
// \ | /
// M3
//
Graph graph;
ActivationDescriptor activationDefaults;
OriginsDescriptor concatDescriptor(3);
auto x1 = graph.AddLayer<InputLayer>(0, "x1");
auto x2 = graph.AddLayer<ActivationLayer>(activationDefaults, "x2");
auto m0 = graph.AddLayer<InputLayer>(1, "m0");
auto m1 = graph.AddLayer<ActivationLayer>(activationDefaults, "m1");
auto m2 = graph.AddLayer<ActivationLayer>(activationDefaults, "m2");
auto m3 = graph.AddLayer<ConcatLayer>(concatDescriptor, "m3");
x1->GetOutputSlot(0).Connect(m1->GetInputSlot(0));
m1->GetOutputSlot(0).Connect(x2->GetInputSlot(0));
m1->GetOutputSlot(0).Connect(m2->GetInputSlot(0));
x2->GetOutputSlot(0).Connect(m3->GetInputSlot(0));
m2->GetOutputSlot(0).Connect(m3->GetInputSlot(1));
m0->GetOutputSlot(0).Connect(m3->GetInputSlot(2));
SubgraphViewSelector::Subgraphs subgraphs = SubgraphViewSelector::SelectSubgraphs(
graph,
[](const Layer& l) {
return std::string(l.GetName())[0] == 'm';
});
// expected results to test against
auto expectedSubgraph0 =
CreateSubgraphViewFrom(
CreateInputsFrom({ m1 }),
std::vector<OutputSlot*>{ &m1->GetOutputSlot(0), &m2->GetOutputSlot(0) },
{ m1, m2 });
auto expectedSubgraph1 = CreateSubgraphViewFrom(
std::vector<InputSlot*>{ &m3->GetInputSlot(0), & m3->GetInputSlot(1) },
CreateOutputsFrom({ }),
{ m0, m3 });
BOOST_TEST(subgraphs.size() == 2);
if (subgraphs.size() == 2)
{
// we need to have valid subgraph pointers here
BOOST_TEST((subgraphs[0] != nullptr));
BOOST_TEST((subgraphs[1] != nullptr));
if (subgraphs[0].get() != nullptr && subgraphs[1].get() != nullptr)
{
if (subgraphs[0]->GetInputSlots().size() == 1)
{
CompareSubgraphViews(subgraphs[0], expectedSubgraph0);
CompareSubgraphViews(subgraphs[1], expectedSubgraph1);
}
else
{
CompareSubgraphViews(subgraphs[0], expectedSubgraph1);
CompareSubgraphViews(subgraphs[1], expectedSubgraph0);
}
}
}
}
BOOST_AUTO_TEST_CASE(PropagatedDependencies)
{
// Version of IslandInTheMiddle with longer chain
// to make sure antecedents are propagated.
/*
M0
/ \
M1 M4
| |
M2 X1 < the island in the middle !
| |
| M10
| |
| X2 < another island in the middle !
| |
M3 M5
\ /
M6
*/
Graph graph;
OriginsDescriptor concatDescriptor(2);
auto m6 = graph.AddLayer<ConcatLayer>(concatDescriptor, "m6");
auto m3 = graph.InsertNewLayer<ActivationLayer>(m6->GetInputSlot(0),
ActivationDescriptor{},
"m3");
auto m2 = graph.InsertNewLayer<ActivationLayer>(m3->GetInputSlot(0),
ActivationDescriptor{},
"m2");
auto m1 = graph.InsertNewLayer<ActivationLayer>(m2->GetInputSlot(0),
ActivationDescriptor{},
"m1");
auto m0 = graph.InsertNewLayer<InputLayer>(m1->GetInputSlot(0), 0, "m0");
auto m5 = graph.InsertNewLayer<ActivationLayer>(m6->GetInputSlot(1),
ActivationDescriptor{},
"m5");
auto x2 = graph.InsertNewLayer<ActivationLayer>(m5->GetInputSlot(0), ActivationDescriptor{}, "x2");
auto m10 = graph.InsertNewLayer<ActivationLayer>(x2->GetInputSlot(0), ActivationDescriptor{}, "m10");
auto x1 = graph.InsertNewLayer<ActivationLayer>(m10->GetInputSlot(0),
ActivationDescriptor{},
"x1");
auto m4 = graph.InsertNewLayer<ActivationLayer>(x1->GetInputSlot(0),
ActivationDescriptor{},
"m4");
// Connect the other branch to the input layer
m0->GetOutputSlot(0).Connect(m4->GetInputSlot(0));
// All selected 'M*' layers will be of Activation type
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(
graph,
// select the middle layers only
[](const Layer& l)
{
bool toSelect = std::string(l.GetName())[0] == 'm';
return toSelect;
});
// expected results to test against
auto largerSubgraph = CreateSubgraphViewFrom(CreateInputsFrom({ m0 }),
CreateOutputsFrom({ m3, m4 }),
{ m0, m1, m2, m3, m4 });
auto mediumSubgraph = CreateSubgraphViewFrom(std::vector<InputSlot*>{ &m5->GetInputSlot(0), &m6->GetInputSlot(0) },
std::vector<OutputSlot*>{}, { m5, m6 });
auto smallerSubgraph =
CreateSubgraphViewFrom(CreateInputsFrom({ m10 }), CreateOutputsFrom({ m10 }), { m10 });
BOOST_TEST(subgraphs.size() == 3);
if (subgraphs.size() == 3)
{
// we need to have valid subgraph pointers here
BOOST_TEST((subgraphs[0] != nullptr));
BOOST_TEST((subgraphs[1] != nullptr));
BOOST_TEST((subgraphs[2] != nullptr));
if (subgraphs[0].get() != nullptr && subgraphs[1].get() != nullptr && subgraphs[2].get() != nullptr)
{
// sort the subgraphs by layer size, so it is simpler to test
std::sort(subgraphs.begin(), subgraphs.end(),
[](SubgraphViewSelector::SubgraphViewPtr& lhs, SubgraphViewSelector::SubgraphViewPtr& rhs)
{
return (lhs->GetLayers().size() < rhs->GetLayers().size());
}
);
CompareSubgraphViews(subgraphs[0], smallerSubgraph);
CompareSubgraphViews(subgraphs[1], mediumSubgraph);
CompareSubgraphViews(subgraphs[2], largerSubgraph);
}
}
}
BOOST_AUTO_TEST_CASE(Random)
{
// Creates random networks, splits them into subgraphs and checks the resulting subgraphs obey the required
// dependency rules. We can easily generate very large networks which helps cover corner cases the other
// small, manually crafted tests have missed. We can also use this to measure performance on large networks.
constexpr bool debug = false; // Enable this to dump dot files and performance timings.
std::mt19937 randomGenerator;
// Helper function to get a random number in [0, maxExclusive)
auto GetRandom = [&randomGenerator](auto maxExclusive) {
// Note we could use uniform_int_distribution here, but that gives inconsistent results across platforms
// which makes it harder to reproduce results.
// It appears that uniform_real_distribution is consistent across MSVC and gcc so we use that and round it.
std::uniform_real_distribution<float> uniform(0.0f, 1.0f);
return static_cast<decltype(maxExclusive)>(uniform(randomGenerator) * static_cast<float>(maxExclusive));
};
// Helper function to get a bool that has probability 'trueProb' of being true.
auto GetRandomFlag = [&randomGenerator](float trueProb) {
std::uniform_real_distribution<float> uniform(0.0f, 1.0f);
return uniform(randomGenerator) < trueProb;
};
constexpr uint32_t numTests = 100;
for (uint32_t testIdx = 0; testIdx < numTests; ++testIdx)
{
randomGenerator.seed(testIdx); // Set a deterministic seed for reproducibility.
// Create random graph
Graph graph;
{
// First add the layers, without any connections. The following random constants determine the number of
// each layer to add, along with the chance that each layer will be 'supported' (i.e. selected for
// inclusion in the resulting subgraphs).
uint32_t numInputs = 1 + GetRandom(4u);
uint32_t numConstants = 1 + GetRandom(4u);
uint32_t numOutputs = 1 + GetRandom(4u);
uint32_t numConcats = 0 + GetRandom(500u);
uint32_t numSplits = 0 + GetRandom(500u);
float supportedProb = 0.7f;
for (uint32_t i = 0; i < numInputs; ++i)
{
std::string name = "input" + std::to_string(i) + (GetRandomFlag(supportedProb) ? "S" : "N");
graph.AddLayer<InputLayer>(static_cast<LayerBindingId>(i), name.c_str());
}
for (uint32_t i = 0; i < numConstants; ++i)
{
std::string name = "constant" + std::to_string(i) + (GetRandomFlag(supportedProb) ? "S" : "N");
graph.AddLayer<ConstantLayer>(name.c_str());
}
for (uint32_t i = 0; i < numOutputs; ++i)
{
std::string name = "output" + std::to_string(i) + (GetRandomFlag(supportedProb) ? "S" : "N");
graph.AddLayer<OutputLayer>(static_cast<LayerBindingId>(i), name.c_str());
}
for (uint32_t i = 0; i < numConcats; ++i)
{
std::string name = "concat" + std::to_string(i) + (GetRandomFlag(supportedProb) ? "S" : "N");
uint32_t numInputs = 1 + GetRandom(3u);
OriginsDescriptor concatDesc(numInputs);
graph.AddLayer<ConcatLayer>(concatDesc, name.c_str());
}
for (uint32_t i = 0; i < numSplits; ++i)
{
std::string name = "split" + std::to_string(i) + (GetRandomFlag(supportedProb) ? "S" : "N");
uint32_t numOutputs = 1 + GetRandom(3u);
ViewsDescriptor splitDesc(numOutputs);
graph.AddLayer<SplitterLayer>(splitDesc, name.c_str());
}
// Associate each layer with a "depth" parameter. This is used when creating connections to ensure
// that we don't have any loops, by only connecting to layers with a lower "depth".
// This can be thought of as distance from the "top" of the graph (assuming the graph flows top-to-bottom).
// Unfortunately this approach ends up producing very "wide" graphs,
// which probably isn't very representative of 'real' networks.
uint32_t maxLayerDepth = 5 + GetRandom(2000u);
std::map<Layer*, uint32_t> layerDepths;
std::map<uint32_t, std::vector<Layer*>> layersAtDepth;
for (Layer* layer : graph)
{
uint32_t depth;
if (layer->GetType() == LayerType::Input || layer->GetType() == LayerType::Constant)
{
// There needs to be at least one input-like layer above everything else, otherwise would be
// nothing for them to connect to!
depth = 0;
}
else
{
// Other layers are randomly assigned to later depths.
depth = 1 + GetRandom(maxLayerDepth);
}
layerDepths[layer] = depth;
layersAtDepth[depth].push_back(layer);
}
// Connect layers to each other. Every input slot of every layer must be connected, but it doesn't
// matter if an output slot goes unused.
for (Layer* layer : graph)
{
for (uint32_t inputSlotIdx = 0; inputSlotIdx < layer->GetNumInputSlots(); ++inputSlotIdx)
{
InputSlot& inputSlot = layer->GetInputSlot(inputSlotIdx);
uint32_t maxLayerDepthToConnectTo = layerDepths[layer]; // This prevents a connection causing a loop
// Finding a layer to connect to may take multiple attempts, so keep trying until it works.
while (inputSlot.GetConnectedOutputSlot() == nullptr)
{
uint32_t layerDepth = GetRandom(maxLayerDepthToConnectTo);
const std::vector<Layer*>& layersToChooseFrom = layersAtDepth[layerDepth];
if (layersToChooseFrom.size() == 0)
{
continue;
}
Layer* layerToConnectWith = layersToChooseFrom[GetRandom(layersToChooseFrom.size())];
if (layerToConnectWith->GetNumOutputSlots() == 0)
{
continue;
}
uint32_t outputSlotIdx = GetRandom(layerToConnectWith->GetNumOutputSlots());
layerToConnectWith->GetOutputSlot(outputSlotIdx).Connect(inputSlot);
}
}
}
}
if (debug)
{
std::ofstream f("INPUT_" + std::to_string(testIdx) + ".dot");
graph.SerializeToDot(f);
}
// Run the splitting algorithm, selecting all nodes ending in an 'S' (as randomly assigned above).
auto startTime = std::chrono::high_resolution_clock::now();
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(graph,
[](const Layer& l) { return std::string(l.GetName()).back() == 'S'; });
auto endTime = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(endTime - startTime);
if (debug)
{
std::cout << "Test " << testIdx << ": " << duration.count() << " microseconds" << std::endl;
}
// Build a map of which subgraph is assigned to each layer.
// This helps some of the following code.
std::map<Layer*, SubgraphView*> layerToSubgraph;
for (Layer* layer : graph)
{
size_t i = 0;
for (std::unique_ptr<SubgraphView>& subgraph : subgraphs)
{
std::string name = std::to_string(i++);
if (std::find(subgraph->begin(), subgraph->end(), layer) != subgraph->end())
{
layerToSubgraph[layer] = subgraph.get();
break;
}
}
}
if (debug)
{
// Before dumping the dot file, set each Layer's BackendId property so that the dot file
// shows the resulting subgraph assignments.
for (Layer* layer : graph)
{
std::string name = "NotAssigned";
auto subgraphIt = layerToSubgraph.find(layer);
if (subgraphIt != layerToSubgraph.end())
{
auto subgraphIdx = std::distance(subgraphs.begin(),
std::find_if(subgraphs.begin(), subgraphs.end(),
[&](auto& s) { return s.get() == subgraphIt->second; }));
name = std::to_string(subgraphIdx);
}
layer->SetBackendId(armnn::BackendId(name));
}
std::ofstream f("GRAPH_" + std::to_string(testIdx) + ".dot");
graph.SerializeToDot(f);
}
// Check the dependencies between subgraphs to make sure that the algorithm has produced a valid result.
// Starting from each of the input slots of each subgraph, recurse up the graph and ensure that we never
// encounter a layer that belongs to the subgraph that we started from.
for (std::unique_ptr<SubgraphView>& subgraph : subgraphs)
{
for (InputSlot* inputSlot : subgraph->GetInputSlots())
{
std::queue<Layer*> toProcess;
toProcess.push(&inputSlot->GetConnectedOutputSlot()->GetOwningLayer());
while (toProcess.size() > 0)
{
Layer* l = toProcess.front();
toProcess.pop();
BOOST_CHECK(layerToSubgraph[l] != subgraph.get());
for (const InputSlot& is : l->GetInputSlots())
{
toProcess.push(&is.GetConnectedOutputSlot()->GetOwningLayer());
}
}
}
}
}
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE(IntegrationTests)
BOOST_AUTO_TEST_CASE(SingleSubgraph)
{
// This test case represents the scenario when we have one subgraph
// in which two layers have GpuAcc backend assigned
//Construct graph
Graph graph;
Layer* const inputLayer = graph.AddLayer<InputLayer>(0, "input");
Convolution2dDescriptor convDescriptor;
Layer* const convLayer1 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv1");
convLayer1->SetBackendId(Compute::GpuAcc);
Layer* const convLayer2 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv2");
convLayer2->SetBackendId(Compute::GpuAcc);
Layer* const outputLayer = graph.AddLayer<OutputLayer>(0, "output");
inputLayer->GetOutputSlot(0).Connect(convLayer1->GetInputSlot(0));
convLayer1->GetOutputSlot(0).Connect(convLayer2->GetInputSlot(0));
convLayer2->GetOutputSlot(0).Connect(outputLayer->GetInputSlot(0));
// GpuAcc sub graph selector
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(
graph,
// select the GpuAcc layers only
[](const Layer & l){
bool toSelect = (l.GetBackendId() == Compute::GpuAcc);
return toSelect;
});
BOOST_TEST(subgraphs.size() == 1);
if(subgraphs.size() == 1)
{
BOOST_TEST((subgraphs[0] != nullptr));
if (subgraphs[0].get() != nullptr)
{
unsigned int numInputSlots = boost::numeric_cast<unsigned int>(subgraphs[0]->GetInputSlots().size());
unsigned int numOutputSlots = boost::numeric_cast<unsigned int>(subgraphs[0]->GetOutputSlots().size());
BOOST_TEST((numInputSlots == 1));
BOOST_TEST((numOutputSlots == 1));
// Save sub-graph connections for comparison after substitution
IOutputSlot* subgraphInputConn1 = subgraphs[0]->GetInputSlot(0)->GetConnection();
IInputSlot* subgraphOutputConn1 = subgraphs[0]->GetOutputSlot(0)->GetConnection(0);
// Construct dummy pre-compiled layer
PreCompiledDescriptor preCompiledDescriptor(numInputSlots, numOutputSlots);
Layer* const preCompiledLayer = graph.AddLayer<PreCompiledLayer>(preCompiledDescriptor, "pre-compiled");
// Substitute sub-graph with pre-compiled layer
graph.SubstituteSubgraph(*subgraphs[0], preCompiledLayer);
// Check that connections are correct after substitution
BOOST_CHECK_EQUAL(preCompiledLayer->GetInputSlot(0).GetConnection(), subgraphInputConn1);
BOOST_CHECK_EQUAL(preCompiledLayer->GetOutputSlot(0).GetConnection(0), subgraphOutputConn1);
}
}
}
BOOST_AUTO_TEST_CASE(MultipleSubgraphs)
{
// This test case represents the scenario when we have two subgraphs
// in which two layers have CpuAcc backend assigned
//Construct graph
Graph graph;
Layer* const inputLayer = graph.AddLayer<InputLayer>(0, "input");
ViewsDescriptor splitterDescriptor(2);
Layer* const splitterLayer = graph.AddLayer<SplitterLayer>(splitterDescriptor, "splitter");
splitterLayer->SetBackendId(Compute::CpuAcc);
Convolution2dDescriptor convDescriptor;
Layer* const convLayer1 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv1");
Layer* const convLayer2 = graph.AddLayer<Convolution2dLayer>(convDescriptor, "conv2");
OriginsDescriptor concatDescriptor(2);
Layer* const pConcatLayer = graph.AddLayer<ConcatLayer>(concatDescriptor, "concat");
pConcatLayer->SetBackendId(Compute::CpuAcc);
Layer* const outputLayer = graph.AddLayer<OutputLayer>(0, "output");
inputLayer->GetOutputSlot(0).Connect(splitterLayer->GetInputSlot(0));
splitterLayer->GetOutputSlot(0).Connect(convLayer1->GetInputSlot(0));
splitterLayer->GetOutputSlot(1).Connect(convLayer2->GetInputSlot(0));
convLayer1->GetOutputSlot(0).Connect(pConcatLayer->GetInputSlot(0));
convLayer2->GetOutputSlot(0).Connect(pConcatLayer->GetInputSlot(1));
pConcatLayer->GetOutputSlot(0).Connect(outputLayer->GetInputSlot(0));
// CpuAcc sub graph selector
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(
graph,
// select the CpuAcc layers only
[](const Layer & l){
bool toSelect = (l.GetBackendId() == Compute::CpuAcc);
return toSelect;
});
BOOST_TEST(subgraphs.size() == 2);
if(subgraphs.size() == 2)
{
BOOST_TEST((subgraphs[0] != nullptr));
BOOST_TEST((subgraphs[1] != nullptr));
if (subgraphs[0].get() != nullptr && subgraphs[1].get() != nullptr)
{
//Sort subgraphs by their inputSlot size.
std::sort(subgraphs.begin(), subgraphs.end(),
[](SubgraphViewSelector::SubgraphViewPtr & lhs, SubgraphViewSelector::SubgraphViewPtr & rhs)
{
return (lhs->GetInputSlots().size() < rhs->GetInputSlots().size());
}
);
unsigned int numInputSlots1 = boost::numeric_cast<unsigned int>(subgraphs[0]->GetInputSlots().size());
unsigned int numOutputSlots1 = boost::numeric_cast<unsigned int>(subgraphs[0]->GetOutputSlots().size());
unsigned int numInputSlots2 = boost::numeric_cast<unsigned int>(subgraphs[1]->GetInputSlots().size());
unsigned int numOutputSlots2 = boost::numeric_cast<unsigned int>(subgraphs[1]->GetOutputSlots().size());
// Save sub-graph connections for comparison after substitution
IOutputSlot* subgraph1InputConn = subgraphs[0]->GetInputSlot(0)->GetConnection();
IInputSlot* subgraph1OutputConn1 = subgraphs[0]->GetOutputSlot(0)->GetConnection(0);
IInputSlot* subgraph1OutputConn2 = subgraphs[0]->GetOutputSlot(1)->GetConnection(0);
// Save sub-graph connections for comparison after substitution
IOutputSlot* subgraph2InputConn1 = subgraphs[1]->GetInputSlot(0)->GetConnection();
IOutputSlot* subgraph2InputConn2 = subgraphs[1]->GetInputSlot(1)->GetConnection();
IInputSlot* subgraph2OutputConn = subgraphs[1]->GetOutputSlot(0)->GetConnection(0);
PreCompiledDescriptor preCompiledDescriptor1(numInputSlots1, numOutputSlots1);
Layer* const preCompiledLayer1 = graph.AddLayer<PreCompiledLayer>(preCompiledDescriptor1, "pre-compiled1");
PreCompiledDescriptor preCompiledDescriptor2(numInputSlots2, numOutputSlots2);
Layer* const preCompiledLayer2 = graph.AddLayer<PreCompiledLayer>(preCompiledDescriptor2, "pre-compiled2");
// Substitute sub-graph with pre-compiled layer
graph.SubstituteSubgraph(*subgraphs[0], preCompiledLayer1);
graph.SubstituteSubgraph(*subgraphs[1], preCompiledLayer2);
// Check that connections are correct after substitution
BOOST_CHECK_EQUAL(preCompiledLayer1->GetInputSlot(0).GetConnection(), subgraph1InputConn);
BOOST_CHECK_EQUAL(preCompiledLayer1->GetOutputSlot(0).GetConnection(0), subgraph1OutputConn1);
BOOST_CHECK_EQUAL(preCompiledLayer1->GetOutputSlot(1).GetConnection(0), subgraph1OutputConn2);
BOOST_CHECK_EQUAL(preCompiledLayer2->GetInputSlot(0).GetConnection(), subgraph2InputConn1);
BOOST_CHECK_EQUAL(preCompiledLayer2->GetInputSlot(1).GetConnection(), subgraph2InputConn2);
BOOST_CHECK_EQUAL(preCompiledLayer2->GetOutputSlot(0).GetConnection(0), subgraph2OutputConn);
}
}
}
BOOST_AUTO_TEST_CASE(SubgraphCycles)
{
// This case represent the scenario when a naive split could lead to a cyclic dependency between two subgraphs
//
// X0 -> M0 -> X1 -> M2 -> X2
// X0 -> M0 -> M1 -> M2 -> X2
//
/*
X0
|
|
M0
/ |
/ |
X1 M1
\ /
M2
|
X2
*/
// The expected result for this is that M0,M1 will be part of one subgraph and M2 in another and the
// input and output slots in the subgraphs will be set accordingly.
//
Graph graph;
OriginsDescriptor originsDescriptor(2);
auto x0 = graph.AddLayer<InputLayer>(0, "x0");
auto m0 = graph.AddLayer<ActivationLayer>(ActivationDescriptor{}, "m0");
auto x1 = graph.AddLayer<ActivationLayer>(ActivationDescriptor{}, "x1");
auto m1 = graph.AddLayer<ActivationLayer>(ActivationDescriptor{}, "m1");
auto m2 = graph.AddLayer<AdditionLayer>("m2");
auto x2 = graph.AddLayer<ActivationLayer>(ActivationDescriptor{}, "x2");
x0->GetOutputSlot(0).Connect(m0->GetInputSlot(0));
m0->GetOutputSlot(0).Connect(x1->GetInputSlot(0));
m0->GetOutputSlot(0).Connect(m1->GetInputSlot(0));
x1->GetOutputSlot(0).Connect(m2->GetInputSlot(0));
m1->GetOutputSlot(0).Connect(m2->GetInputSlot(1));
m2->GetOutputSlot(0).Connect(x2->GetInputSlot(0));
// All selected 'M*' layers will be have 'm' in the name
SubgraphViewSelector::Subgraphs subgraphs =
SubgraphViewSelector::SelectSubgraphs(
graph,
// select the middle layers only
[](const Layer & l)
{
bool toSelect = (l.GetNameStr().find('m') != std::string::npos);
return toSelect;
});
// expected results to test against
auto inputSubgraph = CreateSubgraphViewFrom(CreateInputsFrom({m0}),
CreateOutputsFrom({m0, m1}),
{m0, m1});
auto outputSubgraph = CreateSubgraphViewFrom(CreateInputsFrom({m2}),
CreateOutputsFrom({m2}),
{m2});
BOOST_TEST(subgraphs.size() == 2);
if (subgraphs.size() == 2)
{
// we need to have valid subgraph pointers here
BOOST_TEST((subgraphs[0] != nullptr));
BOOST_TEST((subgraphs[1] != nullptr));
if (subgraphs[0].get() != nullptr && subgraphs[1].get() != nullptr)
{
// sort the subgraphs by layer size, so it is simpler to test
std::sort(subgraphs.begin(), subgraphs.end(),
[](SubgraphViewSelector::SubgraphViewPtr & lhs, SubgraphViewSelector::SubgraphViewPtr & rhs)
{
return (lhs->GetLayers().size() < rhs->GetLayers().size());
}
);
// one subgraph needs to be size=1 and the other one is 4
BOOST_TEST(subgraphs[0]->GetLayers().size() == 1);
BOOST_TEST(subgraphs[1]->GetLayers().size() == 2);
CompareSubgraphViews(subgraphs[0], outputSubgraph);
CompareSubgraphViews(subgraphs[1], inputSubgraph);
}
}
}
BOOST_AUTO_TEST_SUITE_END()