blob: 11d807cd894296975c6bef3fe2c9ba4069c804a3 [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include <array>
#include <functional>
#include <memory>
#include <stdint.h>
#include "BackendId.hpp"
#include "Exceptions.hpp"
#include "Deprecated.hpp"
namespace armnn
{
constexpr unsigned int MaxNumOfTensorDimensions = 5U;
/// The lowest performance data capture interval we support is 10 miliseconds.
constexpr unsigned int LOWEST_CAPTURE_PERIOD = 10000u;
/// @enum Status enumeration
/// @var Status::Successful
/// @var Status::Failure
enum class Status
{
Success = 0,
Failure = 1
};
enum class DataType
{
Float16 = 0,
Float32 = 1,
QAsymmU8 = 2,
Signed32 = 3,
Boolean = 4,
QSymmS16 = 5,
QuantizedSymm8PerAxis ARMNN_DEPRECATED_ENUM_MSG("Per Axis property inferred by number of scales in TensorInfo") = 6,
QSymmS8 = 7,
QAsymmS8 = 8,
BFloat16 = 9,
QuantisedAsymm8 ARMNN_DEPRECATED_ENUM_MSG("Use DataType::QAsymmU8 instead.") = QAsymmU8,
QuantisedSymm16 ARMNN_DEPRECATED_ENUM_MSG("Use DataType::QSymmS16 instead.") = QSymmS16
};
enum class DataLayout
{
NCHW = 1,
NHWC = 2
};
enum class ActivationFunction
{
Sigmoid = 0,
TanH = 1,
Linear = 2,
ReLu = 3,
BoundedReLu = 4, ///< min(a, max(b, input)) ReLu1 & ReLu6.
SoftReLu = 5,
LeakyReLu = 6,
Abs = 7,
Sqrt = 8,
Square = 9,
Elu = 10,
HardSwish = 11
};
enum class ArgMinMaxFunction
{
Min = 0,
Max = 1
};
enum class ComparisonOperation
{
Equal = 0,
Greater = 1,
GreaterOrEqual = 2,
Less = 3,
LessOrEqual = 4,
NotEqual = 5
};
enum class UnaryOperation
{
Abs = 0,
Exp = 1,
Sqrt = 2,
Rsqrt = 3,
Neg = 4
};
enum class PoolingAlgorithm
{
Max = 0,
Average = 1,
L2 = 2
};
enum class ResizeMethod
{
Bilinear = 0,
NearestNeighbor = 1
};
enum class Dimensionality
{
NotSpecified = 0,
Specified = 1,
Scalar = 2
};
///
/// The padding method modifies the output of pooling layers.
/// In both supported methods, the values are ignored (they are
/// not even zeroes, which would make a difference for max pooling
/// a tensor with negative values). The difference between
/// IgnoreValue and Exclude is that the former counts the padding
/// fields in the divisor of Average and L2 pooling, while
/// Exclude does not.
///
enum class PaddingMethod
{
/// The padding fields count, but are ignored
IgnoreValue = 0,
/// The padding fields don't count and are ignored
Exclude = 1
};
enum class NormalizationAlgorithmChannel
{
Across = 0,
Within = 1
};
enum class NormalizationAlgorithmMethod
{
/// Krichevsky 2012: Local Brightness Normalization
LocalBrightness = 0,
/// Jarret 2009: Local Contrast Normalization
LocalContrast = 1
};
enum class OutputShapeRounding
{
Floor = 0,
Ceiling = 1
};
///
/// The ShapeInferenceMethod modify how the output shapes are treated.
/// When ValidateOnly is selected, the output shapes are inferred from the input parameters of the layer
/// and any mismatch is reported.
/// When InferAndValidate is selected 2 actions must be performed: (1)infer output shape from inputs and (2)validate the
/// shapes as in ValidateOnly. This option has been added to work with tensors which rank or dimension sizes are not
/// specified explicitly, however this information can be calculated from the inputs.
///
enum class ShapeInferenceMethod
{
/// Validate all output shapes
ValidateOnly = 0,
/// Infer missing output shapes and validate all output shapes
InferAndValidate = 1
};
/// Each backend should implement an IBackend.
class IBackend
{
protected:
IBackend() {}
virtual ~IBackend() {}
public:
virtual const BackendId& GetId() const = 0;
};
using IBackendSharedPtr = std::shared_ptr<IBackend>;
using IBackendUniquePtr = std::unique_ptr<IBackend, void(*)(IBackend* backend)>;
/// Device specific knowledge to be passed to the optimizer.
class IDeviceSpec
{
protected:
IDeviceSpec() {}
virtual ~IDeviceSpec() {}
public:
virtual const BackendIdSet& GetSupportedBackends() const = 0;
};
/// Type of identifiers for bindable layers (inputs, outputs).
using LayerBindingId = int;
class PermutationVector
{
public:
using ValueType = unsigned int;
using SizeType = unsigned int;
using ArrayType = std::array<ValueType, MaxNumOfTensorDimensions>;
using ConstIterator = typename ArrayType::const_iterator;
/// @param dimMappings - Indicates how to translate tensor elements from a given source into the target destination,
/// when source and target potentially have different memory layouts.
///
/// E.g. For a 4-d tensor laid out in a memory with the format (Batch Element, Height, Width, Channels),
/// which is to be passed as an input to ArmNN, each source dimension is mapped to the corresponding
/// ArmNN dimension. The Batch dimension remains the same (0 -> 0). The source Height dimension is mapped
/// to the location of the ArmNN Height dimension (1 -> 2). Similar arguments are made for the Width and
/// Channels (2 -> 3 and 3 -> 1). This will lead to @ref m_DimMappings pointing to the following array:
/// [ 0, 2, 3, 1 ].
///
/// Note that the mapping should be reversed if considering the case of ArmNN 4-d outputs (Batch Element,
/// Channels, Height, Width) being written to a destination with the format mentioned above. We now have
/// 0 -> 0, 2 -> 1, 3 -> 2, 1 -> 3, which, when reordered, lead to the following @ref m_DimMappings contents:
/// [ 0, 3, 1, 2 ].
///
PermutationVector(const ValueType *dimMappings, SizeType numDimMappings);
PermutationVector(std::initializer_list<ValueType> dimMappings);
ValueType operator[](SizeType i) const { return m_DimMappings.at(i); }
SizeType GetSize() const { return m_NumDimMappings; }
ConstIterator begin() const { return m_DimMappings.begin(); }
ConstIterator end() const { return m_DimMappings.end(); }
bool IsEqual(const PermutationVector& other) const
{
if (m_NumDimMappings != other.m_NumDimMappings) return false;
for (unsigned int i = 0; i < m_NumDimMappings; ++i)
{
if (m_DimMappings[i] != other.m_DimMappings[i]) return false;
}
return true;
}
bool IsInverse(const PermutationVector& other) const
{
bool isInverse = (GetSize() == other.GetSize());
for (SizeType i = 0; isInverse && (i < GetSize()); ++i)
{
isInverse = (m_DimMappings[other.m_DimMappings[i]] == i);
}
return isInverse;
}
private:
ArrayType m_DimMappings;
/// Number of valid entries in @ref m_DimMappings
SizeType m_NumDimMappings;
};
namespace profiling { class ProfilingGuid; }
/// Define LayerGuid type.
using LayerGuid = profiling::ProfilingGuid;
class ITensorHandle;
/// Define the type of callback for the Debug layer to call
/// @param guid - guid of layer connected to the input of the Debug layer
/// @param slotIndex - index of the output slot connected to the input of the Debug layer
/// @param tensorHandle - TensorHandle for the input tensor to the Debug layer
using DebugCallbackFunction = std::function<void(LayerGuid guid, unsigned int slotIndex, ITensorHandle* tensorHandle)>;
namespace profiling
{
static constexpr uint64_t MIN_STATIC_GUID = 1llu << 63;
class ProfilingGuid
{
public:
ProfilingGuid() : m_Guid(0) {}
ProfilingGuid(uint64_t guid) : m_Guid(guid) {}
operator uint64_t() const { return m_Guid; }
bool operator==(const ProfilingGuid& other) const
{
return m_Guid == other.m_Guid;
}
bool operator!=(const ProfilingGuid& other) const
{
return m_Guid != other.m_Guid;
}
bool operator<(const ProfilingGuid& other) const
{
return m_Guid < other.m_Guid;
}
bool operator<=(const ProfilingGuid& other) const
{
return m_Guid <= other.m_Guid;
}
bool operator>(const ProfilingGuid& other) const
{
return m_Guid > other.m_Guid;
}
bool operator>=(const ProfilingGuid& other) const
{
return m_Guid >= other.m_Guid;
}
protected:
uint64_t m_Guid;
};
/// Strongly typed guids to distinguish between those generated at runtime, and those that are statically defined.
struct ProfilingDynamicGuid : public ProfilingGuid
{
using ProfilingGuid::ProfilingGuid;
};
struct ProfilingStaticGuid : public ProfilingGuid
{
using ProfilingGuid::ProfilingGuid;
};
} // namespace profiling
} // namespace armnn
namespace std
{
/// make ProfilingGuid hashable
template<>
struct hash<armnn::profiling::ProfilingGuid>
{
std::size_t operator()(armnn::profiling::ProfilingGuid const& guid) const noexcept
{
return hash<uint64_t>()(uint64_t(guid));
}
};
/// make ProfilingDynamicGuid hashable
template<>
struct hash<armnn::profiling::ProfilingDynamicGuid>
{
std::size_t operator()(armnn::profiling::ProfilingDynamicGuid const& guid) const noexcept
{
return hash<uint64_t>()(uint64_t(guid));
}
};
/// make ProfilingStaticGuid hashable
template<>
struct hash<armnn::profiling::ProfilingStaticGuid>
{
std::size_t operator()(armnn::profiling::ProfilingStaticGuid const& guid) const noexcept
{
return hash<uint64_t>()(uint64_t(guid));
}
};
} // namespace std