blob: 1b93aadc5b130d18fb84d90ae28d931cd527f22c [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "TfLiteParser.hpp"
#include <armnn/Descriptors.hpp>
#include <armnn/Exceptions.hpp>
#include <armnn/Logging.hpp>
#include <armnn/TypesUtils.hpp>
#include <armnn/utility/Assert.hpp>
#include <armnn/utility/IgnoreUnused.hpp>
#include <armnn/utility/NumericCast.hpp>
// armnnUtils:
#include <armnnUtils/Permute.hpp>
#include <Filesystem.hpp>
#include <ParserHelper.hpp>
#include <VerificationHelpers.hpp>
// The generated code based on the Tf Lite schema:
#include <schema_generated.h>
#include <flatbuffers/flexbuffers.h>
#include <boost/format.hpp>
#include <boost/numeric/conversion/cast.hpp>
#include <fstream>
#include <algorithm>
#include <limits>
#include <numeric>
#include <sstream>
#define ARMNN_THROW_PARSE_EXCEPTION(msg) \
{ \
throw armnn::ParseException( static_cast<const std::stringstream&>( std::stringstream() << msg \
<< ": " \
<< CHECK_LOCATION().AsString()).str()); \
}
using namespace armnn;
using armnn::CheckLocation;
namespace armnnTfLiteParser
{
namespace
{
const uint32_t VIRTUAL_OPERATOR_ID = std::numeric_limits<uint32_t>::max();
void CheckSubgraph(const TfLiteParser::ModelPtr & model,
size_t subgraphIndex,
const CheckLocation & location)
{
if (model.get() == nullptr)
{
throw ParseException(
boost::str(
boost::format("%1% was called with invalid (null) model. "
"Possible reason is that the model is not yet loaded and Unpack(ed). "
"subgraph:%2% at %3%") %
location.m_Function %
subgraphIndex %
location.FileLine()));
}
else if (subgraphIndex >= model->subgraphs.size())
{
throw ParseException(
boost::str(
boost::format("%1% was called with an invalid subgraph index. "
"subgraph:%2% at %3%") %
location.m_Function %
subgraphIndex %
location.FileLine()));
}
}
#define CHECK_SUBGRAPH(MODEL, SUBGRAPH_INDEX) \
CheckSubgraph(MODEL, SUBGRAPH_INDEX, CHECK_LOCATION())
void CheckModel(const TfLiteParser::ModelPtr & model,
size_t subgraphIndex,
size_t operatorIndex,
const CheckLocation & location)
{
if (model.get() == nullptr)
{
throw ParseException(
boost::str(
boost::format("%1% was called with invalid (null) model. "
"Possible reason is that the model is not yet loaded and Unpack(ed). "
"subgraph:%2% operator:%3% at %4%") %
location.m_Function %
subgraphIndex %
operatorIndex %
location.FileLine()));
}
else if (subgraphIndex >= model->subgraphs.size())
{
throw ParseException(
boost::str(
boost::format("%1% was called with an invalid subgraph index. "
"subgraph:%2% operator:%3% at %4%") %
location.m_Function %
subgraphIndex %
operatorIndex %
location.FileLine()));
}
else if (operatorIndex >= model->subgraphs[subgraphIndex]->operators.size() &&
operatorIndex != VIRTUAL_OPERATOR_ID)
{
throw ParseException(
boost::str(
boost::format("%1% was called with an invalid operator index. "
"subgraph:%2% operator:%3% at %4%") %
location.m_Function %
subgraphIndex %
operatorIndex %
location.FileLine()));
}
}
#define CHECK_MODEL(MODEL, SUBGRAPH_INDEX, OPERATOR_INDEX) \
CheckModel(MODEL, SUBGRAPH_INDEX, OPERATOR_INDEX, CHECK_LOCATION())
void CheckTensor(const TfLiteParser::ModelPtr & model,
size_t subgraphIndex,
size_t tensorIndex,
const CheckLocation & location)
{
// not checking model, because I assume CHECK_MODEL already run
// and checked that. An assert would do.
ARMNN_ASSERT_MSG(model.get() != nullptr, "Expecting a valid model in this function");
// also subgraph index should be checked by CHECK_MODEL so
// I only add an assert here
ARMNN_ASSERT_MSG(subgraphIndex < model->subgraphs.size(), "Expecting a valid subgraph index");
// the tensor index is the only one to check here
if (tensorIndex >= model->subgraphs[subgraphIndex]->tensors.size())
{
throw ParseException(
boost::str(
boost::format("%1% was called with an invalid tensor index. "
"subgraph:%2% tensor:%3% at %4%") %
location.m_Function %
subgraphIndex %
tensorIndex %
location.FileLine()));
}
}
#define CHECK_TENSOR(MODEL, SUBGRAPH_INDEX, TENSOR_INDEX) \
CheckTensor(MODEL, SUBGRAPH_INDEX, TENSOR_INDEX, CHECK_LOCATION())
void CheckTensorPtr(TfLiteParser::TensorRawPtr rawPtr,
const CheckLocation & location)
{
if (rawPtr == nullptr)
{
throw ParseException(
boost::str(
boost::format("%1% was called with a null tensor pointer. "
"at %2%") %
location.m_Function %
location.FileLine()));
}
}
#define CHECK_TENSOR_PTR(TENSOR_PTR) \
CheckTensorPtr(TENSOR_PTR, CHECK_LOCATION())
void CheckBuffer(const TfLiteParser::ModelPtr & model,
size_t bufferIndex,
const CheckLocation & location)
{
if (model.get() == nullptr)
{
throw ParseException(
boost::str(
boost::format("%1% was called with invalid (null) model. "
"Possible reason is that the model is not yet loaded and Unpack(ed). "
"buffer:%2% at %3%") %
location.m_Function %
bufferIndex %
location.FileLine()));
}
else if (bufferIndex >= model->buffers.size())
{
throw ParseException(
boost::str(
boost::format("%1% was called with an invalid buffer index. "
"buffer index:%2% at %3%") %
location.m_Function %
bufferIndex %
location.FileLine()));
}
else if (model->buffers[bufferIndex].get() == nullptr)
{
throw ParseException(
boost::str(
boost::format("The buffer #%1% is null. %3%") %
bufferIndex %
location.AsString()));
}
}
#define CHECK_BUFFER(MODEL, BUFFER_INDEX) \
CheckBuffer(MODEL, BUFFER_INDEX, CHECK_LOCATION())
void CheckBufferSize(TfLiteParser::BufferRawPtr bufferPtr,
const armnn::TensorInfo & tensorInfo,
uint32_t bufferId,
const CheckLocation & location)
{
if (bufferPtr == nullptr)
{
throw ParseException(
boost::str(
boost::format("BufferPtr is null for buffer:%1%. %2%") %
bufferId %
location.AsString()));
}
else if(tensorInfo.GetNumElements() > bufferPtr->data.size() ||
tensorInfo.GetNumBytes() > bufferPtr->data.size())
{
std::stringstream ss;
ss << "Buffer #" << bufferId << " has " << bufferPtr->data.size() << " bytes. "
<< "For tensor: " << tensorInfo.GetShape()
<< " expecting: " << tensorInfo.GetNumBytes() << " bytes and "
<< tensorInfo.GetNumElements() << " elements. " << location.AsString();
throw ParseException(ss.str());
}
}
#define CHECK_BUFFER_SIZE(BUFFER_PTR, TENSOR_INFO, BUFFER_ID) \
CheckBufferSize(BUFFER_PTR, TENSOR_INFO, BUFFER_ID, CHECK_LOCATION())
bool IsActivationSupported(tflite::ActivationFunctionType activationType)
{
switch(activationType)
{
case tflite::ActivationFunctionType_NONE:
case tflite::ActivationFunctionType_RELU:
case tflite::ActivationFunctionType_RELU6:
case tflite::ActivationFunctionType_TANH:
{
return true;
}
default:
{
return false;
}
}
}
#define CHECK_SUPPORTED_FUSED_ACTIVATION(OPTION, SUBGRAPH_INDEX, OPERATOR_INDEX) \
do { \
if (IsActivationSupported(OPTION->fused_activation_function) == false) \
{ \
throw ParseException( \
boost::str( \
boost::format("TfLite parser doesn't suppport fused activation: " \
"%1%/%2% in %3% subgraph:%4% operator:%5% at %6%") % \
OPTION->fused_activation_function % \
tflite::EnumNameActivationFunctionType(\
OPTION->fused_activation_function) % \
__func__ % \
SUBGRAPH_INDEX % \
OPERATOR_INDEX % \
CHECK_LOCATION().FileLine())); \
} \
} while(false)
std::vector<unsigned int> AsUnsignedVector(const std::vector<int32_t> & in)
{
std::vector<unsigned int> result;
result.reserve(in.size());
for (auto & i : in)
{
result.push_back(CHECKED_NON_NEGATIVE(i));
}
return result;
}
void CalcPadding(uint32_t inputSize,
uint32_t filterSize,
uint32_t stride,
uint32_t dilation,
uint32_t& paddingFront,
uint32_t& paddingBack,
tflite::Padding padding)
{
paddingFront = 0;
paddingBack = 0;
if (padding == tflite::Padding_SAME)
{
uint32_t outputSize = (inputSize + stride - 1) / stride;
uint32_t dilatedSize = filterSize + (dilation - 1) * (filterSize - 1);
uint32_t temp = (outputSize - 1) * stride + dilatedSize;
if (temp > inputSize)
{
paddingFront = (temp - inputSize) / 2;
paddingBack = (temp - inputSize) - paddingFront;
}
}
}
armnn::TensorInfo ToTensorInfo(TfLiteParser::TensorRawPtr tensorPtr, const std::vector<unsigned int>& shapes,
const armnn::PermutationVector& dimensionMappings = {0, 1, 2, 3})
{
armnn::DataType type;
CHECK_TENSOR_PTR(tensorPtr);
switch (tensorPtr->type)
{
case tflite::TensorType_UINT8:
type = armnn::DataType::QAsymmU8;
break;
case tflite::TensorType_FLOAT32:
type = armnn::DataType::Float32;
break;
case tflite::TensorType_INT8:
if (tensorPtr->quantization->zero_point.size() == 1)
{
// Per-tensor
type = armnn::DataType::QAsymmS8;
}
else
{
// Per-channel
type = armnn::DataType::QSymmS8;
}
break;
case tflite::TensorType_INT16:
type = armnn::DataType::QSymmS16;
break;
case tflite::TensorType_INT32:
type = armnn::DataType::Signed32;
break;
default:
{
CheckLocation location = CHECK_LOCATION();
throw ParseException(
boost::str(
boost::format("Unsupported data type %1% = %2% for tensor: %3%. %4%") %
tensorPtr->type %
tflite::EnumNameTensorType(tensorPtr->type) %
tensorPtr->name %
location.AsString()));
}
}
std::vector<unsigned int> safeShape = shapes;
if (safeShape.size() == 0)
{
safeShape.push_back(1);
}
float quantizationScale = 0.0f;
int32_t quantizationOffset = 0;
if (tensorPtr->quantization.get())
{
if (tensorPtr->quantization->scale.size() <= 1)
{
CHECK_VALID_SIZE(tensorPtr->quantization->zero_point.size(), 0, 1);
CHECK_VALID_SIZE(tensorPtr->quantization->zero_point.size(), 0, 1);
if (tensorPtr->quantization->scale.size() == 1)
{
quantizationScale = tensorPtr->quantization->scale[0];
}
if (tensorPtr->quantization->zero_point.size() == 1)
{
// NOTE: we lose precision here when converting from 64 bit to 32
// but this is what we support at the moment in ArmNN
quantizationOffset = boost::numeric_cast<int32_t>(tensorPtr->quantization->zero_point[0]);
}
armnn::TensorInfo result(boost::numeric_cast<unsigned int>(safeShape.size()),
safeShape.data(),
type,
quantizationScale,
quantizationOffset);
return result;
}
else
{
std::vector<float> quantizationScales;
std::vector<int32_t> quantizationOffsets;
// Scale
std::copy(tensorPtr->quantization->scale.begin(),
tensorPtr->quantization->scale.end(),
std::back_inserter(quantizationScales));
// QSymmS8 Per-axis
armnn::TensorInfo result(boost::numeric_cast<unsigned int>(safeShape.size()),
safeShape.data(),
type,
quantizationScales,
dimensionMappings[boost::numeric_cast<unsigned int>(
tensorPtr->quantization->quantized_dimension)]);
return result;
}
}
else
{
armnn::TensorInfo result(boost::numeric_cast<unsigned int>(safeShape.size()),
safeShape.data(),
type,
quantizationScale,
quantizationOffset);
return result;
}
}
armnn::TensorInfo ToTensorInfo(TfLiteParser::TensorRawPtr tensorPtr,
const armnn::PermutationVector& dimensionMappings = {0, 1, 2, 3})
{
auto const & dimensions = AsUnsignedVector(tensorPtr->shape);
return ToTensorInfo(tensorPtr, dimensions, dimensionMappings);
}
template<typename T>
std::pair<armnn::ConstTensor, std::unique_ptr<T[]>>
CreateConstTensorImpl(TfLiteParser::BufferRawPtr bufferPtr,
TfLiteParser::TensorRawPtr tensorPtr,
armnn::TensorInfo& tensorInfo,
armnn::Optional<armnn::PermutationVector&> permutationVector)
{
IgnoreUnused(tensorPtr);
ARMNN_ASSERT_MSG(tensorPtr != nullptr, "tensorPtr is null");
ARMNN_ASSERT_MSG(bufferPtr != nullptr,
boost::str(
boost::format("Buffer for buffer:%1% is null") % tensorPtr->buffer).c_str());
std::unique_ptr<T[]> data(new T[tensorInfo.GetNumElements()]);
if (permutationVector.has_value() && permutationVector.value().GetSize() > 0)
{
tensorInfo = armnnUtils::Permuted(tensorInfo, permutationVector.value());
armnnUtils::Permute(tensorInfo.GetShape(), permutationVector.value(),
reinterpret_cast<const T*>(bufferPtr->data.data()), data.get(), sizeof(T));
}
else
{
::memcpy(data.get(), bufferPtr->data.data(), tensorInfo.GetNumBytes());
}
return std::make_pair(ConstTensor(tensorInfo, data.get()), std::move(data));
}
armnn::LayerBindingId GenerateLayerBindingId(size_t subgraphIndex, size_t tensorIndex)
{
// generate the binding id by shifting the tensor id by 8 bit
// and add the subgraph id, which allows 256 subgraphs
return static_cast<armnn::LayerBindingId>((tensorIndex<<8)+subgraphIndex);
}
bool CheckShape(const armnn::TensorShape& actual, const std::vector<int32_t>& expected)
{
const unsigned int actualSize = actual.GetNumDimensions();
if (actualSize != expected.size())
{
return false;
}
for (unsigned int i = 0u; i < actualSize; i++)
{
if (expected[i] < 0 ||
actual[i] != static_cast<unsigned int>(expected[i]))
{
return false;
}
}
return true;
}
} // <anonymous>
TfLiteParser::TfLiteParser(const Optional<ITfLiteParser::TfLiteParserOptions>& options)
: m_Options(options)
, m_Network(nullptr, nullptr)
, m_ParserFunctions(tflite::BuiltinOperator_MAX+1, &TfLiteParser::ParseUnsupportedOperator)
{
// register supported operators
m_ParserFunctions[tflite::BuiltinOperator_ADD] = &TfLiteParser::ParseAdd;
m_ParserFunctions[tflite::BuiltinOperator_AVERAGE_POOL_2D] = &TfLiteParser::ParseAveragePool2D;
m_ParserFunctions[tflite::BuiltinOperator_BATCH_TO_SPACE_ND] = &TfLiteParser::ParseBatchToSpaceND;
m_ParserFunctions[tflite::BuiltinOperator_CONCATENATION] = &TfLiteParser::ParseConcatenation;
m_ParserFunctions[tflite::BuiltinOperator_CONV_2D] = &TfLiteParser::ParseConv2D;
m_ParserFunctions[tflite::BuiltinOperator_CUSTOM] = &TfLiteParser::ParseCustomOperator;
m_ParserFunctions[tflite::BuiltinOperator_DEPTHWISE_CONV_2D] = &TfLiteParser::ParseDepthwiseConv2D;
m_ParserFunctions[tflite::BuiltinOperator_DEQUANTIZE] = &TfLiteParser::ParseDequantize;
m_ParserFunctions[tflite::BuiltinOperator_EXP] = &TfLiteParser::ParseExp;
m_ParserFunctions[tflite::BuiltinOperator_FULLY_CONNECTED] = &TfLiteParser::ParseFullyConnected;
m_ParserFunctions[tflite::BuiltinOperator_LEAKY_RELU] = &TfLiteParser::ParseLeakyRelu;
m_ParserFunctions[tflite::BuiltinOperator_LOGISTIC] = &TfLiteParser::ParseLogistic;
m_ParserFunctions[tflite::BuiltinOperator_L2_NORMALIZATION] = &TfLiteParser::ParseL2Normalization;
m_ParserFunctions[tflite::BuiltinOperator_MAX_POOL_2D] = &TfLiteParser::ParseMaxPool2D;
m_ParserFunctions[tflite::BuiltinOperator_MAXIMUM] = &TfLiteParser::ParseMaximum;
m_ParserFunctions[tflite::BuiltinOperator_MEAN] = &TfLiteParser::ParseMean;
m_ParserFunctions[tflite::BuiltinOperator_MINIMUM] = &TfLiteParser::ParseMinimum;
m_ParserFunctions[tflite::BuiltinOperator_MUL] = &TfLiteParser::ParseMul;
m_ParserFunctions[tflite::BuiltinOperator_NEG] = &TfLiteParser::ParseNeg;
m_ParserFunctions[tflite::BuiltinOperator_PACK] = &TfLiteParser::ParsePack;
m_ParserFunctions[tflite::BuiltinOperator_PAD] = &TfLiteParser::ParsePad;
m_ParserFunctions[tflite::BuiltinOperator_QUANTIZE] = &TfLiteParser::ParseQuantize;
m_ParserFunctions[tflite::BuiltinOperator_RELU] = &TfLiteParser::ParseRelu;
m_ParserFunctions[tflite::BuiltinOperator_RELU6] = &TfLiteParser::ParseRelu6;
m_ParserFunctions[tflite::BuiltinOperator_RESHAPE] = &TfLiteParser::ParseReshape;
m_ParserFunctions[tflite::BuiltinOperator_RESIZE_BILINEAR] = &TfLiteParser::ParseResizeBilinear;
m_ParserFunctions[tflite::BuiltinOperator_RESIZE_NEAREST_NEIGHBOR] = &TfLiteParser::ParseResizeNearestNeighbor;
m_ParserFunctions[tflite::BuiltinOperator_SLICE] = &TfLiteParser::ParseSlice;
m_ParserFunctions[tflite::BuiltinOperator_SOFTMAX] = &TfLiteParser::ParseSoftmax;
m_ParserFunctions[tflite::BuiltinOperator_SPACE_TO_BATCH_ND] = &TfLiteParser::ParseSpaceToBatchND;
m_ParserFunctions[tflite::BuiltinOperator_SPLIT] = &TfLiteParser::ParseSplit;
m_ParserFunctions[tflite::BuiltinOperator_SPLIT_V] = &TfLiteParser::ParseSplitV;
m_ParserFunctions[tflite::BuiltinOperator_SQUEEZE] = &TfLiteParser::ParseSqueeze;
m_ParserFunctions[tflite::BuiltinOperator_STRIDED_SLICE] = &TfLiteParser::ParseStridedSlice;
m_ParserFunctions[tflite::BuiltinOperator_SUB] = &TfLiteParser::ParseSub;
m_ParserFunctions[tflite::BuiltinOperator_TANH] = &TfLiteParser::ParseTanH;
m_ParserFunctions[tflite::BuiltinOperator_TRANSPOSE] = &TfLiteParser::ParseTranspose;
m_ParserFunctions[tflite::BuiltinOperator_TRANSPOSE_CONV] = &TfLiteParser::ParseTransposeConv;
m_ParserFunctions[tflite::BuiltinOperator_UNPACK] = &TfLiteParser::ParseUnpack;
m_ParserFunctions[tflite::BuiltinOperator_DIV] = &TfLiteParser::ParseDiv;
// register supported custom operators
m_CustomParserFunctions["TFLite_Detection_PostProcess"] = &TfLiteParser::ParseDetectionPostProcess;
}
void TfLiteParser::ResetParser()
{
m_Network = armnn::INetworkPtr(nullptr, nullptr);
m_Model = nullptr;
m_SubgraphConnections.clear();
}
void TfLiteParser::AddBroadcastReshapeLayer(size_t subgraphIndex,
size_t operatorIndex,
IConnectableLayer *layer)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
ARMNN_ASSERT(layer != nullptr);
const auto & subgraphPtr = m_Model->subgraphs[subgraphIndex];
const auto & operatorPtr = subgraphPtr->operators[operatorIndex];
ARMNN_ASSERT(operatorPtr->inputs.size() > 1);
uint32_t reshapedInputId = CHECKED_NON_NEGATIVE(operatorPtr->inputs[0]);
TensorRawPtr tensorPtr = subgraphPtr->tensors[reshapedInputId].get();
uint32_t inputId = CHECKED_NON_NEGATIVE(operatorPtr->inputs[1]);
TensorRawPtr tensorPtr1 = subgraphPtr->tensors[inputId].get();
armnn::TensorInfo reshapedTensorInfo = ToTensorInfo(tensorPtr);
armnn::TensorInfo inputTensorInfo = ToTensorInfo(tensorPtr1);
if (inputTensorInfo.GetNumDimensions() < reshapedTensorInfo.GetNumDimensions())
{
uint32_t id = reshapedInputId;
reshapedInputId = inputId;
inputId = id;
reshapedTensorInfo = ToTensorInfo(tensorPtr1);
inputTensorInfo = ToTensorInfo(tensorPtr);
}
uint32_t numDimensions = inputTensorInfo.GetNumDimensions();
std::vector<unsigned> reshapedDim;
for (unsigned int i = 0; i < reshapedTensorInfo.GetNumDimensions(); ++i)
{
reshapedDim.push_back(reshapedTensorInfo.GetShape()[i]);
}
std::vector<unsigned int> reshapedDimensions(numDimensions, 1);
std::copy_backward (reshapedDim.begin(), reshapedDim.end(), reshapedDimensions.end());
reshapedTensorInfo.SetShape(armnn::TensorShape{ numDimensions, reshapedDimensions.data() });
std::string layerName = boost::str(boost::format("Reshape_for:%1%") % layer->GetName());
armnn::ReshapeDescriptor desc;
desc.m_TargetShape = reshapedTensorInfo.GetShape();
armnn::IConnectableLayer* reshapeLayer = m_Network->AddReshapeLayer(desc, layerName.c_str());
reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapedTensorInfo);
reshapeLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
RegisterInputSlots(subgraphIndex, operatorIndex, reshapeLayer, {reshapedInputId});
armnn::IInputSlot* input1Slot = &(layer->GetInputSlot(1));
RegisterConsumerOfTensor(subgraphIndex, inputId, input1Slot);
}
INetworkPtr TfLiteParser::CreateNetworkFromBinaryFile(const char* graphFile)
{
ResetParser();
m_Model = LoadModelFromFile(graphFile);
return CreateNetworkFromModel();
}
INetworkPtr TfLiteParser::CreateNetworkFromBinary(const std::vector<uint8_t> & binaryContent)
{
ResetParser();
m_Model = LoadModelFromBinary(binaryContent.data(), binaryContent.size());
return CreateNetworkFromModel();
}
INetworkPtr TfLiteParser::CreateNetworkFromModel()
{
m_Network = INetwork::Create();
ARMNN_ASSERT(m_Model.get() != nullptr);
if (m_Model->subgraphs.size() != 1)
{
throw ParseException(
boost::str(
boost::format("Current TfLite parser only supports 1 subgraph. Current one has: %1% %2%") %
m_Model->subgraphs.size() %
CHECK_LOCATION().AsString()));
}
size_t subgraphIndex = 0;
size_t operatorIndex = 0;
try
{
for (SubgraphPtr const& subgraph : m_Model->subgraphs)
{
m_SubgraphConnections.emplace_back(subgraph->tensors.size());
for (OperatorPtr const& op : subgraph->operators)
{
auto const& opCodePtr = m_Model->operator_codes[op->opcode_index];
auto builtinCode = opCodePtr->builtin_code;
if (builtinCode > tflite::BuiltinOperator_MAX)
{
throw ParseException(boost::str(boost::format("Operator code %1% is out of range 0-%2%. "
"subgraph:%3% operator idx:%4%. %5%") %
builtinCode % tflite::BuiltinOperator_MAX % subgraphIndex %
operatorIndex % CHECK_LOCATION().AsString()));
}
// lookup and call the parser function
auto& parserFunction = m_ParserFunctions[builtinCode];
(this->*parserFunction)(subgraphIndex, operatorIndex);
++operatorIndex;
}
SetupInputLayers(subgraphIndex);
SetupOutputLayers(subgraphIndex);
SetupConstantLayers(subgraphIndex);
++subgraphIndex;
operatorIndex = 0;
}
}
catch (const ParseException& e)
{
std::stringstream errorString;
errorString << "Failed to parse operator #" << operatorIndex << " within subgraph #"
<< subgraphIndex << " error: " << e.what();
ARMNN_LOG(error) << errorString.str();
std::stringstream errors;
errors << errorString.str() << "\n";
throw ParseException(errors.str());
}
// establish the connections from the layer outputs to the inputs of the subsequent layers
for (subgraphIndex = 0; subgraphIndex < m_SubgraphConnections.size(); ++subgraphIndex)
{
for (size_t tensorIndex = 0; tensorIndex < m_SubgraphConnections[subgraphIndex].size(); ++tensorIndex)
{
if (m_SubgraphConnections[subgraphIndex][tensorIndex].outputSlot != nullptr)
{
for (size_t inputSlotIdx = 0;
inputSlotIdx < m_SubgraphConnections[subgraphIndex][tensorIndex].inputSlots.size();
++inputSlotIdx)
{
m_SubgraphConnections[subgraphIndex][tensorIndex].outputSlot->Connect(
*(m_SubgraphConnections[subgraphIndex][tensorIndex].inputSlots[inputSlotIdx]));
}
}
}
}
return std::move(m_Network);
}
void TfLiteParser::RegisterProducerOfTensor(size_t subgraphIndex,
size_t tensorIndex,
armnn::IOutputSlot* slot)
{
CHECK_TENSOR(m_Model, subgraphIndex, tensorIndex);
ARMNN_ASSERT(m_SubgraphConnections.size() > subgraphIndex);
ARMNN_ASSERT(m_SubgraphConnections[subgraphIndex].size() > tensorIndex);
TensorSlots & tensorSlots = m_SubgraphConnections[subgraphIndex][tensorIndex];
// assuming there is only one producer for that tensor
if (tensorSlots.outputSlot != nullptr)
{
throw ParseException(boost::str(
boost::format("Another layer has already registered itself as the producer of "
"subgraph:%1% tensor:%2% %3%") %
subgraphIndex %
tensorIndex %
CHECK_LOCATION().AsString()));
}
tensorSlots.outputSlot = slot;
}
void TfLiteParser::RegisterConsumerOfTensor(size_t subgraphIndex,
size_t tensorIndex,
armnn::IInputSlot* slot)
{
CHECK_TENSOR(m_Model, subgraphIndex, tensorIndex);
ARMNN_ASSERT(m_SubgraphConnections.size() > subgraphIndex);
ARMNN_ASSERT(m_SubgraphConnections[subgraphIndex].size() > tensorIndex);
TensorSlots & tensorSlots = m_SubgraphConnections[subgraphIndex][tensorIndex];
tensorSlots.inputSlots.push_back(slot);
}
void TfLiteParser::ParseCustomOperator(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
// NOTE: By default we presume the custom operator is not supported
auto customParserFunction = &TfLiteParser::ParseUnsupportedOperator;
// Identify custom code defined for custom operator
const auto& operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto& customCode = m_Model->operator_codes[operatorPtr->opcode_index]->custom_code;
// Find parser function that correspondes to custom code (if any)
auto iterator = m_CustomParserFunctions.find(customCode);
if (iterator != m_CustomParserFunctions.end())
{
customParserFunction = iterator->second;
}
// Run parser function
(this->*customParserFunction)(subgraphIndex, operatorIndex);
}
void TfLiteParser::ParseUnsupportedOperator(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
auto opcodeIndex = operatorPtr->opcode_index;
auto opcode = m_Model->operator_codes[opcodeIndex]->builtin_code;
if (!m_Options || !m_Options.value().m_StandInLayerForUnsupported)
{
// Do not add StandInLayer, throw ParseException instead
throw ParseException(
boost::str(
boost::format("Operator not supported. "
"subgraph:%1% operator:%2% "
"opcode_index:%3% opcode:%4% / %5% %6%") %
subgraphIndex %
operatorIndex %
opcodeIndex %
opcode %
tflite::EnumNameBuiltinOperator(opcode) %
CHECK_LOCATION().AsString()));
}
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
const unsigned int numInputs = boost::numeric_cast<unsigned int>(inputs.size());
const unsigned int numOutputs = boost::numeric_cast<unsigned int>(outputs.size());
StandInDescriptor descriptor(numInputs, numOutputs);
auto layerName = boost::str(boost::format("StandIn:%1%:%2%:%3%") % subgraphIndex % operatorIndex % opcode);
// Add a non-executable StandInLayer as a placeholder for any unsupported operator
IConnectableLayer* layer = m_Network->AddStandInLayer(descriptor, layerName.c_str());
for (unsigned int i = 0u; i < numOutputs; ++i)
{
layer->GetOutputSlot(i).SetTensorInfo(ToTensorInfo(outputs[i]));
}
auto inputTensorIds = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
auto outputTensorIds = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, inputTensorIds);
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, outputTensorIds);
}
void TfLiteParser::ParseConv2D(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsConv2DOptions();
CHECK_SUPPORTED_FUSED_ACTIVATION(options, subgraphIndex, operatorIndex);
Convolution2dDescriptor desc;
desc.m_BiasEnabled = false;
desc.m_StrideX = CHECKED_NON_NEGATIVE(options->stride_w);
desc.m_StrideY = CHECKED_NON_NEGATIVE(options->stride_h);
desc.m_DataLayout = armnn::DataLayout::NHWC;
desc.m_DilationX = CHECKED_NON_NEGATIVE(options->dilation_w_factor);
desc.m_DilationY = CHECKED_NON_NEGATIVE(options->dilation_h_factor);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 2, 3);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
armnn::TensorInfo filterTensorInfo = ToTensorInfo(inputs[1]);
// assuming input is NHWC
unsigned int inputHeight = inputTensorInfo.GetShape()[1];
unsigned int inputWidth = inputTensorInfo.GetShape()[2];
// assuming the filter is OHWI : Output, H, W, Input
// which is essentially the same as NHWC
unsigned int filterHeight = filterTensorInfo.GetShape()[1];
unsigned int filterWidth = filterTensorInfo.GetShape()[2];
CalcPadding(inputHeight, filterHeight, desc.m_StrideY,
desc.m_DilationY, desc.m_PadTop, desc.m_PadBottom, options->padding);
CalcPadding(inputWidth, filterWidth, desc.m_StrideX,
desc.m_DilationX, desc.m_PadLeft, desc.m_PadRight, options->padding);
auto filterTensorAndData = CreateConstTensor(inputs[1],
filterTensorInfo,
armnn::Optional<armnn::PermutationVector&>());
armnn::IConnectableLayer* layer = nullptr;
auto layerName = boost::str(boost::format("Conv2D:%1%:%2%") % subgraphIndex % operatorIndex);
if (inputs.size() == 3)
{
desc.m_BiasEnabled = true;
armnn::TensorInfo biasTensorInfo = ToTensorInfo(inputs[2]);
auto biasTensorAndData = CreateConstTensor(inputs[2],
biasTensorInfo,
armnn::Optional<armnn::PermutationVector&>());
layer = m_Network->AddConvolution2dLayer(desc,
filterTensorAndData.first,
Optional<ConstTensor>(biasTensorAndData.first),
layerName.c_str());
}
else
{
layer = m_Network->AddConvolution2dLayer(desc,
filterTensorAndData.first,
EmptyOptional(),
layerName.c_str());
}
ARMNN_ASSERT(layer != nullptr);
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
// register the input connection slots for the layer, connections are made after all layers have been created
// only the tensors for the inputs are relevant, exclude the const tensors
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
layer = AddFusedActivationLayer(layer, 0, options->fused_activation_function);
// register the output connection slots for the layer, connections are made after all layers have been created
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseDepthwiseConv2D(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsDepthwiseConv2DOptions();
CHECK_SUPPORTED_FUSED_ACTIVATION(options, subgraphIndex, operatorIndex);
DepthwiseConvolution2dDescriptor desc;
desc.m_BiasEnabled = false;
desc.m_StrideX = CHECKED_NON_NEGATIVE(options->stride_w);
desc.m_StrideY = CHECKED_NON_NEGATIVE(options->stride_h);
desc.m_DataLayout = armnn::DataLayout::NHWC;
CHECKED_NON_NEGATIVE(options->depth_multiplier);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 2, 3);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
desc.m_DilationX = CHECKED_NON_NEGATIVE(options->dilation_w_factor);
desc.m_DilationY = CHECKED_NON_NEGATIVE(options->dilation_h_factor);
// Mappings from TensorflowLite filter tensors to the ArmNN filter tensors (ArmNN weights have to be [M, I, H, W])
PermutationVector permutationVector{ 2, 3, 1, 0 }; // [H, W, I, M] -> [M, I, H, W]
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
armnn::TensorInfo filterTensorInfo = ToTensorInfo(inputs[1], permutationVector);
// Assuming input is NHWC
unsigned int inputHeight = inputTensorInfo.GetShape()[1];
unsigned int inputWidth = inputTensorInfo.GetShape()[2];
// TensorflowLite weights come in the format [1, H, W, I * M]
unsigned int filterHeight = filterTensorInfo.GetShape()[1];
unsigned int filterWidth = filterTensorInfo.GetShape()[2];
// Reshape weights as [ H, W, I, M ]
filterTensorInfo.SetShape({ filterHeight,
filterWidth,
inputTensorInfo.GetShape()[3],
filterTensorInfo.GetShape()[3] / inputTensorInfo.GetShape()[3] });
CalcPadding(inputHeight, filterHeight, desc.m_StrideY,
desc.m_DilationY, desc.m_PadTop, desc.m_PadBottom, options->padding);
CalcPadding(inputWidth, filterWidth, desc.m_StrideX,
desc.m_DilationX, desc.m_PadLeft, desc.m_PadRight, options->padding);
auto filterTensorAndData = CreateConstTensor(inputs[1], filterTensorInfo, permutationVector);
armnn::IConnectableLayer* layer = nullptr;
auto layerName = boost::str(boost::format("DepthwiseConv2D:%1%:%2%") % subgraphIndex % operatorIndex);
if (inputs.size() == 3)
{
desc.m_BiasEnabled = true;
TensorInfo biasTensorInfo = ToTensorInfo(inputs[2]);
auto biasTensorAndData = CreateConstTensor(inputs[2],
biasTensorInfo,
armnn::Optional<armnn::PermutationVector&>());
layer = m_Network->AddDepthwiseConvolution2dLayer(desc,
filterTensorAndData.first,
Optional<ConstTensor>(biasTensorAndData.first),
layerName.c_str());
}
else
{
layer = m_Network->AddDepthwiseConvolution2dLayer(desc,
filterTensorAndData.first,
EmptyOptional(),
layerName.c_str());
}
ARMNN_ASSERT(layer != nullptr);
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
// register the input connection slots for the layer, connections are made after all layers have been created
// only the tensors for the inputs are relevant, exclude the const tensors
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
layer = AddFusedActivationLayer(layer, 0, options->fused_activation_function);
// register the output connection slots for the layer, connections are made after all layers have been created
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseDequantize(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 1);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
auto layerName = boost::str(boost::format("Dequantize:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddDequantizeLayer(layerName.c_str());
ARMNN_ASSERT(layer != nullptr);
TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, outputTensorIndexes);
}
void TfLiteParser::ParseExp(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 1);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
auto layerName = boost::str(boost::format("Exp:%1%:%2%") % subgraphIndex % operatorIndex);
ElementwiseUnaryDescriptor desc;
desc.m_Operation = UnaryOperation::Exp;
IConnectableLayer* layer = m_Network->AddElementwiseUnaryLayer(desc, layerName.c_str());
ARMNN_ASSERT(layer != nullptr);
TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, outputTensorIndexes);
}
void TfLiteParser::ParseTranspose(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 1, 2);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
armnn::IConnectableLayer* layer = nullptr;
auto layerName = boost::str(boost::format("Transpose:%1%:%2%") % subgraphIndex % operatorIndex);
TransposeDescriptor desc;
if (inputs.size() == 2)
{
armnn::TensorInfo permuteTensorInfo = ToTensorInfo(inputs[1]);
BufferRawPtr permuteBufferPtr = GetBuffer(m_Model, inputs[1]->buffer);
auto numPermVecElements = permuteTensorInfo.GetNumElements();
std::vector<unsigned int> permuteShape(numPermVecElements);
::memcpy(permuteShape.data(), permuteBufferPtr->data.data(), permuteTensorInfo.GetNumBytes());
PermutationVector permutationVector(permuteShape.data(), permuteTensorInfo.GetNumElements());
desc = TransposeDescriptor(permutationVector);
}
layer = m_Network->AddTransposeLayer(desc, layerName.c_str());
ARMNN_ASSERT(layer != nullptr);
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseTransposeConv(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsTransposeConvOptions();
TransposeConvolution2dDescriptor desc;
desc.m_BiasEnabled = false;
desc.m_StrideX = CHECKED_NON_NEGATIVE(options->stride_w);
desc.m_StrideY = CHECKED_NON_NEGATIVE(options->stride_h);
desc.m_DataLayout = armnn::DataLayout::NHWC;
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 3);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
if (inputs[0])
{
armnn::TensorInfo tensorInfo = ToTensorInfo(inputs[0]);
std::vector<int> output_shape(tensorInfo.GetNumElements());
if (tensorInfo.GetDataType() == DataType::Signed32)
{
::memcpy(output_shape.data(), GetBuffer(m_Model, inputs[0]->buffer)->data.data(), tensorInfo.GetNumBytes());
}
if (tensorInfo.GetDataType() == DataType::QAsymmU8)
{
for(unsigned int i=0; i < tensorInfo.GetNumElements(); i++)
{
output_shape[i] = GetBuffer(m_Model, inputs[0]->buffer)->data.data()[i];
}
}
// Change from signed to unsigned int to store in TransposeConvolution2dDescriptor.
for (int dimension : output_shape)
{
desc.m_OutputShape.push_back(static_cast<unsigned int>(dimension));
}
desc.m_OutputShapeEnabled = true;
}
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[2]);
armnn::TensorInfo filterTensorInfo = ToTensorInfo(inputs[1]);
// TfLite uses NHWC tensors
const unsigned int inputHeight = inputTensorInfo.GetShape()[1];
const unsigned int inputWidth = inputTensorInfo.GetShape()[2];
const unsigned int filterHeight = filterTensorInfo.GetShape()[1];
const unsigned int filterWidth = filterTensorInfo.GetShape()[2];
CalcPadding(inputHeight,
filterHeight,
desc.m_StrideY,
1, // DilationY
desc.m_PadTop,
desc.m_PadBottom,
options->padding);
CalcPadding(inputWidth,
filterWidth,
desc.m_StrideX,
1, // DilationX
desc.m_PadLeft,
desc.m_PadRight,
options->padding);
auto filterTensorAndData = CreateConstTensor(inputs[1],
filterTensorInfo,
armnn::Optional<armnn::PermutationVector&>());
armnn::IConnectableLayer* layer = nullptr;
auto layerName = boost::str(boost::format("TransposeConv:%1%:%2%") % subgraphIndex % operatorIndex);
layer = m_Network->AddTransposeConvolution2dLayer(desc,
filterTensorAndData.first,
EmptyOptional(),
layerName.c_str());
ARMNN_ASSERT(layer != nullptr);
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
// only the tensors for the inputs are relevant, exclude the const (filter) tensor
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[2]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseAveragePool2D(size_t subgraphIndex, size_t operatorIndex)
{
ParsePool(subgraphIndex, operatorIndex, PoolingAlgorithm::Average);
}
void TfLiteParser::ParseBatchToSpaceND(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 3);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
armnn::TensorInfo blockShapeTensorInfo = ToTensorInfo(inputs[1]);
BufferRawPtr blockShapeBufferPtr = GetBuffer(m_Model, inputs[1]->buffer);
armnn::TensorInfo cropsTensorInfo = ToTensorInfo(inputs[2]);
BufferRawPtr cropsBufferPtr = GetBuffer(m_Model, inputs[2]->buffer);
std::vector<unsigned int> blockShape(blockShapeTensorInfo.GetNumElements());
::memcpy(blockShape.data(), blockShapeBufferPtr->data.data(), blockShapeTensorInfo.GetNumBytes());
std::vector<unsigned int> cropsVector(cropsTensorInfo.GetNumElements());
::memcpy(cropsVector.data(), cropsBufferPtr->data.data(), cropsTensorInfo.GetNumBytes());
size_t step = 2;
std::vector<std::pair<unsigned int, unsigned int>> crops;
for (unsigned int i = 0; i < cropsTensorInfo.GetNumElements() / step; ++i)
{
crops.emplace_back(cropsVector[i * step], cropsVector[i * step + 1]);
}
armnn::BatchToSpaceNdDescriptor desc;
desc.m_BlockShape = blockShape;
desc.m_Crops = crops;
desc.m_DataLayout = armnn::DataLayout::NHWC;
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
auto layerName = boost::str(boost::format("BatchToSpaceND:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddBatchToSpaceNdLayer(desc, layerName.c_str());
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseL2Normalization(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 1);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
L2NormalizationDescriptor desc;
desc.m_DataLayout = armnn::DataLayout::NHWC;
auto layerName = boost::str(boost::format("L2Normalization:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddL2NormalizationLayer(desc, layerName.c_str());
ARMNN_ASSERT(layer != nullptr);
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseMaxPool2D(size_t subgraphIndex, size_t operatorIndex)
{
ParsePool(subgraphIndex, operatorIndex, PoolingAlgorithm::Max);
}
void TfLiteParser::ParseMaximum(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 2);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
armnn::TensorInfo input1TensorInfo = ToTensorInfo(inputs[1]);
auto layerName = boost::str(boost::format("Maximum:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddMaximumLayer(layerName.c_str());
TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
if (inputTensorInfo.GetNumDimensions() != input1TensorInfo.GetNumDimensions())
{
AddBroadcastReshapeLayer(subgraphIndex, operatorIndex, layer);
}
else
{
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0], inputTensorIndexes[1]});
}
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseMinimum(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 2);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
armnn::TensorInfo input1TensorInfo = ToTensorInfo(inputs[1]);
auto layerName = boost::str(boost::format("Minimum:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddMinimumLayer(layerName.c_str());
TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
if (inputTensorInfo.GetNumDimensions() != input1TensorInfo.GetNumDimensions())
{
AddBroadcastReshapeLayer(subgraphIndex, operatorIndex, layer);
}
else
{
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0], inputTensorIndexes[1]});
}
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParsePool(size_t subgraphIndex,
size_t operatorIndex,
PoolingAlgorithm algorithm)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsPool2DOptions();
CHECK_SUPPORTED_FUSED_ACTIVATION(options, subgraphIndex, operatorIndex);
std::string layerName;
switch (algorithm)
{
case PoolingAlgorithm::Average:
layerName =
boost::str(boost::format("AveragePool2D:%1%:%2%") % subgraphIndex % operatorIndex);
break;
case PoolingAlgorithm::Max:
layerName =
boost::str(boost::format("MaxPool2D:%1%:%2%") % subgraphIndex % operatorIndex);
break;
default:
ARMNN_ASSERT_MSG(false, "Unsupported Pooling Algorithm");
}
Pooling2dDescriptor desc;
desc.m_PoolType = algorithm;
desc.m_StrideX = CHECKED_NON_NEGATIVE(options->stride_w);
desc.m_StrideY = CHECKED_NON_NEGATIVE(options->stride_h);
desc.m_PoolWidth = CHECKED_NON_NEGATIVE(options->filter_width);
desc.m_PoolHeight = CHECKED_NON_NEGATIVE(options->filter_height);
desc.m_PaddingMethod = PaddingMethod::Exclude;
desc.m_OutputShapeRounding = OutputShapeRounding::Floor;
desc.m_DataLayout = armnn::DataLayout::NHWC;
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 1);
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
// assuming input is NHWC
unsigned int inputHeight = inputTensorInfo.GetShape()[1];
unsigned int inputWidth = inputTensorInfo.GetShape()[2];
CalcPadding(inputHeight, desc.m_PoolHeight, desc.m_StrideY, 1u,
desc.m_PadTop, desc.m_PadBottom, options->padding);
CalcPadding(inputWidth, desc.m_PoolWidth, desc.m_StrideX, 1u,
desc.m_PadLeft, desc.m_PadRight, options->padding);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
IConnectableLayer* layer = m_Network->AddPooling2dLayer(desc, layerName.c_str());
ARMNN_ASSERT(layer != nullptr);
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
// register the input connection slots for the layer, connections are made after all layers have been created
// only the tensors for the inputs are relevant, exclude the const tensors
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
layer = AddFusedActivationLayer(layer, 0, options->fused_activation_function);
// register the output connection slots for the layer, connections are made after all layers have been created
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseSlice(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 3);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
SliceDescriptor desc;
// set begin tensor info for slice descriptor
armnn::TensorInfo beginTensorInfo = ToTensorInfo(inputs[1]);
BufferRawPtr beginBufferPtr = GetBuffer(m_Model, inputs[1]->buffer);
std::vector<unsigned int> begin(beginTensorInfo.GetNumElements());
::memcpy(begin.data(), beginBufferPtr->data.data(), beginTensorInfo.GetNumBytes());
// set size tensor info for slice descriptor
armnn::TensorInfo sizeTensorInfo = ToTensorInfo(inputs[2]);
BufferRawPtr sizeBufferPtr = GetBuffer(m_Model, inputs[2]->buffer);
std::vector<unsigned int> size(sizeTensorInfo.GetNumElements());
::memcpy(size.data(), sizeBufferPtr->data.data(), sizeTensorInfo.GetNumBytes());
desc = SliceDescriptor(begin, size);
auto layerName = boost::str(boost::format("Slice:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* const layer = m_Network->AddSliceLayer(desc, layerName.c_str());
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
// register the input connection slots for the layer, connections are made after all layers have been created
// only the tensors for the inputs are relevant, exclude the const tensors
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
// register the output connection slots for the layer, connections are made after all layers have been created
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseSoftmax(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsSoftmaxOptions();
SoftmaxDescriptor desc;
desc.m_Beta = options->beta;
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 1);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
auto layerName = boost::str(boost::format("Softmax:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* const layer = m_Network->AddSoftmaxLayer(desc, layerName.c_str());
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
// register the input connection slots for the layer, connections are made after all layers have been created
// only the tensors for the inputs are relevant, exclude the const tensors
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
// register the output connection slots for the layer, connections are made after all layers have been created
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseSpaceToBatchND(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 3);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
armnn::TensorInfo blockShapeTensorInfo = ToTensorInfo(inputs[1]);
BufferRawPtr blockShapeBufferPtr = GetBuffer(m_Model, inputs[1]->buffer);
armnn::TensorInfo padListTensorInfo = ToTensorInfo(inputs[2]);
BufferRawPtr padListBufferPtr = GetBuffer(m_Model, inputs[2]->buffer);
std::vector<unsigned int> blockShape(blockShapeTensorInfo.GetNumElements());
::memcpy(blockShape.data(), blockShapeBufferPtr->data.data(), blockShapeTensorInfo.GetNumBytes());
std::vector<unsigned int> padListVector(padListTensorInfo.GetNumElements());
::memcpy(padListVector.data(), padListBufferPtr->data.data(), padListTensorInfo.GetNumBytes());
size_t step = 2;
std::vector<std::pair<unsigned int, unsigned int>> padList;
for (unsigned int i = 0; i < padListTensorInfo.GetNumElements() / step; ++i)
{
padList.emplace_back(padListVector[i * step], padListVector[i * step + 1]);
}
armnn::SpaceToBatchNdDescriptor desc;
desc.m_BlockShape = blockShape;
desc.m_PadList = padList;
desc.m_DataLayout = armnn::DataLayout::NHWC;
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
auto layerName = boost::str(boost::format("SpaceToBatchND:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddSpaceToBatchNdLayer(desc, layerName.c_str());
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
armnn::TensorInfo TfLiteParser::OutputShapeOfSqueeze(const std::vector<uint32_t> & squeezeDimsIn,
const armnn::TensorInfo & inputTensorInfo)
{
CHECK_VALID_SIZE(squeezeDimsIn.size(), 0, 1, 2, 3, 4);
std::vector<uint32_t> squeezeDims = squeezeDimsIn;
static const uint32_t dimensionSequence[] = { 0, 1, 2, 3 };
if (inputTensorInfo.GetNumDimensions() > 4)
{
std::stringstream ss;
ss << "Input tensor has unexpected number of dimensions:" << inputTensorInfo.GetNumDimensions()
<< " shape:" << inputTensorInfo.GetShape() << " "
<< CHECK_LOCATION().AsString();
throw ParseException(ss.str());
}
if (squeezeDims.empty())
{
squeezeDims.assign(dimensionSequence,
dimensionSequence+inputTensorInfo.GetNumDimensions());
}
std::vector<uint32_t> outputDims;
for(unsigned int i = 0; i < inputTensorInfo.GetNumDimensions(); i++)
{
bool skipSqueeze = (std::find(squeezeDims.begin(), squeezeDims.end(), i) == squeezeDims.end());
auto currentDimension = inputTensorInfo.GetShape()[i];
if (skipSqueeze || currentDimension != 1)
{
outputDims.push_back(currentDimension);
}
}
if (outputDims.size() > 4)
{
std::stringstream ss;
ss << "Output tensor has unexpected number of dimensions:" << inputTensorInfo.GetNumDimensions()
<< " shape:" << inputTensorInfo.GetShape() << " "
<< CHECK_LOCATION().AsString();
throw ParseException(ss.str());
}
TensorShape outShape = TensorShape(static_cast<unsigned int>(outputDims.size()),
outputDims.data());
// we need to preserve the tensor type and the quantization data as well
TensorInfo outTensorInfo = inputTensorInfo;
outTensorInfo.SetShape(outShape);
return outTensorInfo;
}
void TfLiteParser::ParseSqueeze(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 1);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsSqueezeOptions();
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
armnn::TensorInfo outputTensorInfo =
TfLiteParser::OutputShapeOfSqueeze(AsUnsignedVector(options->squeeze_dims),
inputTensorInfo);
ReshapeDescriptor reshapeDesc;
reshapeDesc.m_TargetShape = outputTensorInfo.GetShape();
auto layerName = boost::str(boost::format("Squeeze:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddReshapeLayer(reshapeDesc, layerName.c_str());
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseStridedSlice(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 4);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsStridedSliceOptions();
StridedSliceDescriptor desc;
desc.m_BeginMask = options->begin_mask;
desc.m_EllipsisMask = options->ellipsis_mask;
desc.m_EndMask = options->end_mask;
desc.m_NewAxisMask = options->new_axis_mask;
desc.m_ShrinkAxisMask = options->shrink_axis_mask;
desc.m_DataLayout = armnn::DataLayout::NHWC;
armnn::TensorInfo beginTensorInfo = ToTensorInfo(inputs[1]);
BufferRawPtr beginBufferPtr = GetBuffer(m_Model, inputs[1]->buffer);
std::vector<int> begin(beginTensorInfo.GetNumElements());
::memcpy(begin.data(), beginBufferPtr->data.data(), beginTensorInfo.GetNumBytes());
armnn::TensorInfo endTensorInfo = ToTensorInfo(inputs[2]);
BufferRawPtr endBufferPtr = GetBuffer(m_Model, inputs[2]->buffer);
std::vector<int> end(endTensorInfo.GetNumElements());
::memcpy(end.data(), endBufferPtr->data.data(), endTensorInfo.GetNumBytes());
armnn::TensorInfo strideTensorInfo = ToTensorInfo(inputs[3]);
BufferRawPtr strideBufferPtr = GetBuffer(m_Model, inputs[3]->buffer);
std::vector<int> stride(strideTensorInfo.GetNumElements());
::memcpy(stride.data(), strideBufferPtr->data.data(), strideTensorInfo.GetNumBytes());
desc.m_Begin = begin;
desc.m_End = end;
desc.m_Stride = stride;
auto layerName = boost::str(boost::format("StridedSlice:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddStridedSliceLayer(desc, layerName.c_str());
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseSub(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsSubOptions();
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 2);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
armnn::TensorInfo input1TensorInfo = ToTensorInfo(inputs[1]);
auto layerName = boost::str(boost::format("Sub:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddSubtractionLayer(layerName.c_str());
TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
if (inputTensorInfo.GetNumDimensions() != input1TensorInfo.GetNumDimensions())
{
AddBroadcastReshapeLayer(subgraphIndex, operatorIndex, layer);
}
else
{
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0], inputTensorIndexes[1]});
}
layer = AddFusedActivationLayer(layer, 0, options->fused_activation_function);
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseDiv(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsDivOptions();
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 2);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
armnn::TensorInfo input1TensorInfo = ToTensorInfo(inputs[1]);
auto layerName = boost::str(boost::format("Div:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddDivisionLayer(layerName.c_str());
TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
if (inputTensorInfo.GetNumDimensions() != input1TensorInfo.GetNumDimensions())
{
AddBroadcastReshapeLayer(subgraphIndex, operatorIndex, layer);
}
else
{
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0], inputTensorIndexes[1]});
}
layer = AddFusedActivationLayer(layer, 0, options->fused_activation_function);
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseAdd(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsAddOptions();
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 2);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
armnn::TensorInfo input1TensorInfo = ToTensorInfo(inputs[1]);
auto layerName = boost::str(boost::format("Add:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddAdditionLayer(layerName.c_str());
TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
if (inputTensorInfo.GetNumDimensions() != input1TensorInfo.GetNumDimensions())
{
AddBroadcastReshapeLayer(subgraphIndex, operatorIndex, layer);
}
else
{
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0], inputTensorIndexes[1]});
}
layer = AddFusedActivationLayer(layer, 0, options->fused_activation_function);
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseMul(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsMulOptions();
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 2);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
armnn::TensorInfo input1TensorInfo = ToTensorInfo(inputs[1]);
auto layerName = boost::str(boost::format("Mul:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddMultiplicationLayer(layerName.c_str());
TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
if (inputTensorInfo.GetNumDimensions() != input1TensorInfo.GetNumDimensions())
{
AddBroadcastReshapeLayer(subgraphIndex, operatorIndex, layer);
}
else
{
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0], inputTensorIndexes[1]});
}
layer = AddFusedActivationLayer(layer, 0, options->fused_activation_function);
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseMean(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
armnn::TensorInfo dimTensorInfo = ToTensorInfo(inputs[1]);
BufferRawPtr bufferPtr = GetBuffer(m_Model, inputs[1]->buffer);
armnn::MeanDescriptor desc;
std::vector<unsigned int> axis(dimTensorInfo.GetNumElements());
::memcpy(axis.data(), bufferPtr->data.data(), dimTensorInfo.GetNumBytes());
desc.m_Axis = axis;
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
desc.m_KeepDims =
inputTensorInfo.GetNumDimensions() == outputTensorInfo.GetNumDimensions() ?
true : false;
auto layerName = boost::str(boost::format("Mean:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddMeanLayer(desc, layerName.c_str());
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseNeg(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 1);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
auto layerName = boost::str(boost::format("Neg:%1%:%2%") % subgraphIndex % operatorIndex);
armnn::ElementwiseUnaryDescriptor descriptor(armnn::UnaryOperation::Neg);
IConnectableLayer* layer = m_Network->AddElementwiseUnaryLayer(descriptor, layerName.c_str());
ARMNN_ASSERT(layer != nullptr);
TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, outputTensorIndexes);
}
void TfLiteParser::ParsePad(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
TfLiteParser::TensorRawPtrVector inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
TfLiteParser::TensorRawPtrVector outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
armnn::TensorInfo padTensorInfo = ToTensorInfo(inputs[1]);
BufferRawPtr bufferPtr = GetBuffer(m_Model, inputs[1]->buffer);
std::vector<unsigned int> padBuffer(padTensorInfo.GetNumElements());
::memcpy(padBuffer.data(), bufferPtr->data.data(), padTensorInfo.GetNumBytes());
size_t step = 2;
armnn::PadDescriptor desc;
for (unsigned int i = 0; i < padTensorInfo.GetNumElements() / step; ++i)
{
desc.m_PadList.emplace_back(padBuffer[i * step], padBuffer[i * step + 1]);
}
auto layerName = boost::str(boost::format("Pad:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddPadLayer(desc, layerName.c_str());
TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseQuantize(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 1);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
auto layerName = boost::str(boost::format("Quantize:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddQuantizeLayer(layerName.c_str());
ARMNN_ASSERT(layer != nullptr);
TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, outputTensorIndexes);
}
void TfLiteParser::ParseRelu(size_t subgraphIndex, size_t operatorIndex)
{
ParseActivation(subgraphIndex,operatorIndex, ActivationFunction::ReLu);
}
void TfLiteParser::ParseRelu6(size_t subgraphIndex, size_t operatorIndex)
{
ParseActivation(subgraphIndex,operatorIndex, ActivationFunction::BoundedReLu);
}
void TfLiteParser::ParseLeakyRelu(size_t subgraphIndex, size_t operatorIndex)
{
ParseActivation(subgraphIndex,operatorIndex, ActivationFunction::LeakyReLu);
}
void TfLiteParser::ParseLogistic(size_t subgraphIndex, size_t operatorIndex)
{
ParseActivation(subgraphIndex,operatorIndex,ActivationFunction::Sigmoid);
}
void TfLiteParser::ParseTanH(size_t subgraphIndex, size_t operatorIndex)
{
ParseActivation(subgraphIndex,operatorIndex,ActivationFunction::TanH);
}
void TfLiteParser::ParseActivation(size_t subgraphIndex, size_t operatorIndex, ActivationFunction activationType)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
IgnoreUnused(operatorPtr);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 1);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
auto layerName = str(boost::format("Activation:"));
ActivationDescriptor activationDesc;
activationDesc.m_Function = activationType;
switch (activationType)
{
case ActivationFunction::ReLu:
{
layerName += str(boost::format("RELU:%1%:%2%") % subgraphIndex % operatorIndex);
break;
}
case ActivationFunction::BoundedReLu:
{
layerName += str(boost::format("RELU6:%1%:%2%") % subgraphIndex % operatorIndex);
activationDesc.m_A = 6.0f;
activationDesc.m_B = 0.0f;
break;
}
case ActivationFunction::Sigmoid:
{
layerName += str(boost::format("SIGMOID:%1%:%2%") % subgraphIndex % operatorIndex);
break;
}
case ActivationFunction::TanH:
{
layerName += str(boost::format("TANH:%1%:%2%") % subgraphIndex % operatorIndex);
activationDesc.m_A = 1.0f;
activationDesc.m_B = 1.0f;
break;
}
case ActivationFunction::LeakyReLu:
{
layerName += str(boost::format("LEAKYRELU:%1%:%2%") % subgraphIndex % operatorIndex);
const auto * options = operatorPtr->builtin_options.AsLeakyReluOptions();
activationDesc.m_A = options->alpha;
break;
}
default:
{
throw ParseException(
boost::str(boost::format("Unexpected ActivationFunction[%1%] when creating layerName "
" %2% ") %static_cast<int>(activationType)% CHECK_LOCATION().AsString()));
}
}
IConnectableLayer* const layer = m_Network->AddActivationLayer(activationDesc, layerName.c_str());
TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
// register the input connection slots for the layer, connections are made after all layers have been created
// only the tensors for the inputs are relevant, exclude the const tensors
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
// register the output connection slots for the layer, connections are made after all layers have been created
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
armnn::TensorInfo TfLiteParser::OutputShapeOfReshape(const armnn::TensorInfo & inputTensorInfo,
const std::vector<int32_t> & targetDimsIn)
{
std::vector<unsigned int> outputDims(targetDimsIn.begin(), targetDimsIn.end());
const auto stretchDim = std::find(targetDimsIn.begin(), targetDimsIn.end(), -1);
if (stretchDim != targetDimsIn.end())
{
if (std::find(std::next(stretchDim), targetDimsIn.end(), -1) != targetDimsIn.end())
{
throw ParseException(
boost::str(
boost::format("At most one component of shape can be -1 %1%") % CHECK_LOCATION().AsString()));
}
auto targetNumElements =
boost::numeric_cast<unsigned int>(
std::accumulate(targetDimsIn.begin(), targetDimsIn.end(), -1, std::multiplies<int32_t>()));
auto stretchIndex = static_cast<size_t>(std::distance(targetDimsIn.begin(), stretchDim));
outputDims[stretchIndex] = inputTensorInfo.GetNumElements() / targetNumElements;
}
TensorShape outputShape = TensorShape(static_cast<unsigned int>(outputDims.size()), outputDims.data());
TensorInfo reshapeInfo = inputTensorInfo;
reshapeInfo.SetShape(outputShape);
return reshapeInfo;
}
void TfLiteParser::ParseReshape(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsReshapeOptions();
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
armnn::TensorInfo actualOutputTensorInfo = ToTensorInfo(outputs[0]);
std::vector<int32_t> targetShape;
if (inputs.size() > 1 && inputs[1] != nullptr)
{
if (inputs[1]->is_variable)
{
ARMNN_THROW_PARSE_EXCEPTION( "Target shapes defined in non-const input tensors is not supported");
}
if (inputs[1]->shape.size() != 1)
{
ARMNN_THROW_PARSE_EXCEPTION("Target 'shape' input is not a 1D tensor");
}
if (inputs[1]->type != tflite::TensorType_INT32)
{
ARMNN_THROW_PARSE_EXCEPTION("Target 'shape' input is not an int32 type");
}
auto bufferPtr = GetBuffer(m_Model, inputs[1]->buffer);
auto vals = reinterpret_cast<const int32_t*>(bufferPtr->data.data());
for (int i=0; i < inputs[1]->shape[0]; i++)
{
targetShape.push_back(vals[i]);
}
if (options != nullptr &&
options->new_shape.empty() == false &&
options->new_shape != targetShape)
{
ARMNN_THROW_PARSE_EXCEPTION("Target shape defined in reshape parameters and as input tensor but "
"the values do not match");
}
}
else
{
if (options == nullptr)
{
ARMNN_THROW_PARSE_EXCEPTION("Target shape not defined in reshape parameters or input tensor. "
"At least one method required");
}
targetShape = options->new_shape;
}
armnn::TensorInfo reshapeOutputTensorInfo =
TfLiteParser::OutputShapeOfReshape(inputTensorInfo, targetShape);
// Check for valid input size and that reshape parameters equal output shape
const armnn::TensorShape& reshapeOutputTensorShape = reshapeOutputTensorInfo.GetShape();
if (inputs.size() > 1 && !CheckShape(reshapeOutputTensorShape, outputs[0]->shape))
{
std::stringstream ss;
ss << "New shape defined in reshape parameters "
<< reshapeOutputTensorShape
<< " does not equal output shape "
<< actualOutputTensorInfo.GetShape()
<< ": "
<< CHECK_LOCATION().AsString();
throw ParseException(ss.str());
}
ReshapeDescriptor reshapeDesc;
reshapeDesc.m_TargetShape = reshapeOutputTensorInfo.GetShape();
auto layerName = boost::str(boost::format("Reshape:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddReshapeLayer(reshapeDesc, layerName.c_str());
layer->GetOutputSlot(0).SetTensorInfo(reshapeOutputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseResizeBilinear(size_t subgraphIndex, size_t operatorIndex)
{
ParseResize(subgraphIndex, operatorIndex, ResizeMethod::Bilinear);
}
void TfLiteParser::ParseResizeNearestNeighbor(size_t subgraphIndex, size_t operatorIndex)
{
ParseResize(subgraphIndex, operatorIndex, ResizeMethod::NearestNeighbor);
}
void TfLiteParser::ParseResize(size_t subgraphIndex, size_t operatorIndex, ResizeMethod resizeMethod)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 2);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
armnn::TensorInfo sizeTensorInfo = ToTensorInfo(inputs[1]);
// Data for the parsed tensor args (size) must be stored locally.
std::vector<int32_t> sizeTensorData(sizeTensorInfo.GetNumElements());
BufferRawPtr sizeBufferPtr = GetBuffer(m_Model, inputs[1]->buffer);
::memcpy(sizeTensorData.data(), sizeBufferPtr->data.data(), sizeTensorInfo.GetNumBytes());
ResizeDescriptor desc;
desc.m_Method = resizeMethod;
desc.m_TargetHeight = static_cast<uint32_t> (sizeTensorData[0]);
desc.m_TargetWidth = static_cast<uint32_t> (sizeTensorData[1]);
desc.m_DataLayout = armnn::DataLayout::NHWC;
auto layerName = str(boost::format("Resize:"));
switch (resizeMethod)
{
case ResizeMethod::Bilinear:
{
layerName += str(boost::format("BILINEAR:%1%:%2%") % subgraphIndex % operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsResizeBilinearOptions();
desc.m_AlignCorners = options->align_corners;
break;
}
case ResizeMethod::NearestNeighbor:
{
layerName += str(boost::format("NEARESTNEIGHBOR:%1%:%2%") % subgraphIndex % operatorIndex);
break;
}
default:
{
throw ParseException(
boost::str(boost::format("Unexpected ResizeMethod[%1%] when creating layerName "
" %2% ") %static_cast<int>(resizeMethod)% CHECK_LOCATION().AsString()));
}
}
IConnectableLayer* layer = m_Network->AddResizeLayer(desc, layerName.c_str());
TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, outputTensorIndexes);
}
void TfLiteParser::ParseConcatenation(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsConcatenationOptions();
CHECK_SUPPORTED_FUSED_ACTIVATION(options, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
unsigned int numConcatView = static_cast<unsigned int>(inputs.size());
uint32_t inputRank = ToTensorInfo(inputs[0]).GetNumDimensions();
const unsigned int concatDimInput = static_cast<unsigned int>(
(static_cast<int>(inputRank) + options->axis) % static_cast<int>(inputRank));
OriginsDescriptor concatDescriptor(static_cast<uint32_t>(numConcatView), inputRank);
concatDescriptor.SetConcatAxis(concatDimInput);
unsigned int mergeDimOrigin = 0;
for (unsigned int viewIndex = 0; viewIndex < numConcatView; ++viewIndex)
{
TensorInfo inputTensorInfo = ToTensorInfo(inputs[viewIndex]);
// This set up concatDescriptor view origin
armnnUtils::ProcessConcatInputTensorInfo(
inputTensorInfo, concatDescriptor, concatDimInput, viewIndex, mergeDimOrigin);
}
auto layerName = boost::str(boost::format("Concatenation:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddConcatLayer(concatDescriptor, layerName.c_str());
ARMNN_ASSERT(layer != nullptr);
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes});
// add fused activation layer
layer = AddFusedActivationLayer(layer, 0, options->fused_activation_function);
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseFullyConnected(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorRfr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto options = operatorRfr->builtin_options.AsFullyConnectedOptions();
CHECK_SUPPORTED_FUSED_ACTIVATION(options, subgraphIndex, operatorIndex);
FullyConnectedDescriptor desc;
desc.m_BiasEnabled = false;
desc.m_TransposeWeightMatrix = true;
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
armnn::TensorInfo filterTensorInfo = ToTensorInfo(inputs[1]);
// Fully Connected Layer accepts two dimensional weights input
int32_t weightsDimension = static_cast<int32_t>(filterTensorInfo.GetNumDimensions());
if (weightsDimension != 2)
{
throw ParseException(
boost::str(
boost::format(
"Dimension %1% for Fully Connected weights is not supported by Armnn. "
"Node %2%")
% weightsDimension
% CHECK_LOCATION().AsString()));
}
auto filterTensorAndData = CreateConstTensor(inputs[1],
filterTensorInfo,
armnn::Optional<armnn::PermutationVector&>());
armnn::IConnectableLayer* layer = nullptr;
auto layerName = boost::str(boost::format("FullyConnected:%1%:%2%") % subgraphIndex % operatorIndex);
if (inputs.size() == 3)
{
desc.m_BiasEnabled = true;
TensorInfo biasTensorInfo = ToTensorInfo(inputs[2]);
auto biasTensorAndData = CreateConstTensor(inputs[2],
biasTensorInfo,
armnn::Optional<armnn::PermutationVector&>());
layer = m_Network->AddFullyConnectedLayer(desc,
filterTensorAndData.first,
Optional<ConstTensor>(biasTensorAndData.first),
layerName.c_str());
}
else
{
layer = m_Network->AddFullyConnectedLayer(desc,
filterTensorAndData.first,
EmptyOptional(),
layerName.c_str());
}
ARMNN_ASSERT(layer != nullptr);
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
if (inputTensorInfo.GetNumDimensions() > 2)
{
// Add reshape to flatten to 2D [batch_size, input_size],
// where "input_size" corresponds to the number of inputs to the layer,
// matching the second dimension of weights,
// and "batch_size" is calculated by dividing the number of elements by "input_size".
std::vector<unsigned int> reshapedDimensions(2);
reshapedDimensions[1] = filterTensorInfo.GetShape()[1];
reshapedDimensions[0] = inputTensorInfo.GetNumElements() / reshapedDimensions[1];
if (inputTensorInfo.GetNumElements() % reshapedDimensions[1] != 0)
{
throw ParseException(
boost::str(
boost::format(
"Failed to deduce input tensor shape from filter size %1%")
% reshapedDimensions[1]
% CHECK_LOCATION().AsString()));
}
armnn::TensorInfo reshapedTensorInfo = ToTensorInfo(inputs[0]);
reshapedTensorInfo.SetShape(armnn::TensorShape{ 2, reshapedDimensions.data() });
std::string reshapeLayerName = boost::str(boost::format("Reshape_for:%1%") % layer->GetName());
armnn::ReshapeDescriptor desc;
desc.m_TargetShape = reshapedTensorInfo.GetShape();
armnn::IConnectableLayer* reshapeLayer = m_Network->AddReshapeLayer(desc, layerName.c_str());
reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapedTensorInfo);
reshapeLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
RegisterInputSlots(subgraphIndex, operatorIndex, reshapeLayer, {inputTensorIndexes[0]});
}
else
{
// register the input connection slot for the layer
// only the tensors for the inputs are relevant, exclude the const tensors
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
}
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
// we need to add the activation layer and fortunately we don't need to care about the data layout
armnn::IConnectableLayer* fusedActivationLayer = AddFusedActivationLayer(layer, 0,
options->fused_activation_function);
// register the output connection slots for the layer, connections are made after all layers have been created
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, fusedActivationLayer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseDetectionPostProcess(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 4);
// Obtain custom options from flexbuffers
auto custom_options = operatorPtr->custom_options;
const flexbuffers::Map& m = flexbuffers::GetRoot(custom_options.data(), custom_options.size()).AsMap();
// Obtain descriptor information from tf lite
DetectionPostProcessDescriptor desc;
desc.m_MaxDetections = m["max_detections"].AsUInt32();
desc.m_MaxClassesPerDetection = m["max_classes_per_detection"].AsUInt32();
desc.m_NmsScoreThreshold = m["nms_score_threshold"].AsFloat();
desc.m_NmsIouThreshold = m["nms_iou_threshold"].AsFloat();
desc.m_NumClasses = m["num_classes"].AsUInt32();
desc.m_ScaleH = m["h_scale"].AsFloat();
desc.m_ScaleW = m["w_scale"].AsFloat();
desc.m_ScaleX = m["x_scale"].AsFloat();
desc.m_ScaleY = m["y_scale"].AsFloat();
if (!(m["use_regular_nms"].IsNull()))
{
desc.m_UseRegularNms = m["use_regular_nms"].AsBool();
}
if (!(m["detections_per_class"].IsNull()))
{
desc.m_DetectionsPerClass = m["detections_per_class"].AsUInt32();
}
if (desc.m_NmsIouThreshold <= 0.0f || desc.m_NmsIouThreshold > 1.0f)
{
throw InvalidArgumentException("DetectionPostProcessTFLiteParser: Intersection over union threshold "
"must be positive and less than or equal to 1.");
}
armnn::TensorInfo anchorTensorInfo = ToTensorInfo(inputs[2]);
auto anchorTensorAndData = CreateConstTensor(inputs[2], anchorTensorInfo,
armnn::Optional<armnn::PermutationVector&>());
auto layerName = boost::str(boost::format("DetectionPostProcess:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddDetectionPostProcessLayer(desc, anchorTensorAndData.first,
layerName.c_str());
ARMNN_ASSERT(layer != nullptr);
// The model does not specify the output shapes.
// The output shapes are calculated from the max_detection and max_classes_per_detection.
unsigned int numDetectedBox = desc.m_MaxDetections * desc.m_MaxClassesPerDetection;
m_OverridenOutputShapes.push_back({ 1, numDetectedBox, 4 });
m_OverridenOutputShapes.push_back({ 1, numDetectedBox });
m_OverridenOutputShapes.push_back({ 1, numDetectedBox });
m_OverridenOutputShapes.push_back({ 1 });
for (unsigned int i = 0 ; i < outputs.size() ; ++i)
{
armnn::TensorInfo detectionBoxOutputTensorInfo = ToTensorInfo(outputs[i], m_OverridenOutputShapes[i]);
layer->GetOutputSlot(i).SetTensorInfo(detectionBoxOutputTensorInfo);
}
// Register the input connection slots for the layer, connections are made after all layers have been created
// only the tensors for the inputs are relevant, exclude the const tensors
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0], inputTensorIndexes[1]});
// Register the output connection slots for the layer, connections are made after all layers have been created
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0],
outputTensorIndexes[1],
outputTensorIndexes[2],
outputTensorIndexes[3]});
}
/// The TfLite Pack operator is equivalent to the ArmNN Stack operator
void TfLiteParser::ParsePack(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), 1);
if (inputs.size() < 1)
{
throw ParseException("Pack must have at least one input.");
}
const auto& operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto* options = operatorPtr->builtin_options.AsPackOptions();
StackDescriptor desc;
desc.m_Axis = static_cast<uint32_t>(options->axis);
desc.m_NumInputs = static_cast<uint32_t>(inputs.size());
// Use the tensor shape of the first input as the "correct" input shape in the descriptor
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
desc.m_InputShape = inputTensorInfo.GetShape();
auto layerName = boost::str(boost::format("Pack:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddStackLayer(desc, layerName.c_str());
ARMNN_ASSERT(layer != nullptr);
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[0]);
layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes});
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0]});
}
void TfLiteParser::ParseUnpack(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsUnpackOptions();
// This unpackAxis indicates the axis to unpack
const unsigned int unpackAxis = CHECKED_NON_NEGATIVE(options->axis);
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 1);
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[0]);
if (unpackAxis >= inputTensorInfo.GetNumDimensions())
{
throw ParseException(
boost::str(
boost::format(
"The unpack axis: %1% cannot be greater than or equal to "
"the number of input dimension %2% %3%")
% unpackAxis
% inputTensorInfo.GetNumDimensions()
% CHECK_LOCATION().AsString()));
}
unsigned int unpackNum = CHECKED_NON_NEGATIVE(options->num);
// If num is not defined, automatically infer from the length of the dimension axis.
if(unpackNum == 0)
{
unpackNum = inputTensorInfo.GetShape()[unpackAxis];
}
// If unpack number cannot be inferred and is still zero, throw ParseException.
if(unpackNum == 0)
{
throw ParseException("Number to unpack must greater than zero.");
}
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), unpackNum);
auto inputDimSize = inputTensorInfo.GetNumDimensions();
std::vector<unsigned int> unpackDimSizes(inputDimSize);
// Add current input shape to unpackDimSizes
for (unsigned int i = 0; i < inputDimSize; ++i)
{
unpackDimSizes[i] = inputTensorInfo.GetShape()[i];
}
if (unpackDimSizes[unpackAxis] != unpackNum)
{
throw ParseException("Number to unpack must be the same as length of the dimension to "
"unpack along.");
}
unpackDimSizes[unpackAxis] /= unpackNum;
SplitterDescriptor splitDesc(unpackNum, static_cast<unsigned int>(unpackDimSizes.size()));
for (unsigned int j = 0; j < unpackNum; ++j)
{
// Set the size of the views.
for (unsigned int dimIdx = 0; dimIdx < unpackDimSizes.size(); ++dimIdx)
{
splitDesc.SetViewSize(j, dimIdx, unpackDimSizes[dimIdx]);
}
splitDesc.SetViewOriginCoord(j, unpackAxis, unpackDimSizes[unpackAxis] * j);
}
auto layerName = boost::str(boost::format("Unpack:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddSplitterLayer(splitDesc, layerName.c_str());
TensorShape splitOutShape = TensorShape(static_cast<unsigned int>(unpackDimSizes.size()),
unpackDimSizes.data());
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
// Create reshape to remove the unpacked dimension for unpack operator of each output from Splitter.
for (unsigned int k = 0; k < layer->GetNumOutputSlots(); ++k)
{
armnn::TensorInfo outputTensorInfo = ToTensorInfo(outputs[k]);
std::string reshapeLayerName = boost::str(boost::format("Reshape_for:%1%") % layer->GetName());
armnn::ReshapeDescriptor desc;
desc.m_TargetShape = outputTensorInfo.GetShape();
armnn::IConnectableLayer* reshapeLayer = m_Network->AddReshapeLayer(desc, layerName.c_str());
layer->GetOutputSlot(k).SetTensorInfo(armnn::TensorInfo(splitOutShape,
outputTensorInfo.GetDataType(),
outputTensorInfo.GetQuantizationScale(),
outputTensorInfo.GetQuantizationOffset()));
layer->GetOutputSlot(k).Connect(reshapeLayer->GetInputSlot(0));
reshapeLayer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
uint32_t reshapedOutputId = CHECKED_NON_NEGATIVE(operatorPtr->outputs[k]);
armnn::IOutputSlot* slot = &(reshapeLayer->GetOutputSlot(0));
RegisterProducerOfTensor(subgraphIndex, reshapedOutputId, slot);
}
}
void TfLiteParser::ParseSplit(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsSplitOptions();
const unsigned int numSplits = CHECKED_NON_NEGATIVE(options->num_splits);
// If number of splits cannot be inferred and is zero, throw ParseException.
if(numSplits == 0)
{
throw ParseException("Number to splits must greater than zero.");
}
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 2);
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), numSplits);
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputs[1]);
armnn::TensorInfo axisTensorInfo = ToTensorInfo(inputs[0]);
BufferRawPtr axisBufferPtr = GetBuffer(m_Model, inputs[0]->buffer);
std::vector<unsigned int> axisData(axisTensorInfo.GetNumElements());
::memcpy(axisData.data(), axisBufferPtr->data.data(), axisTensorInfo.GetNumBytes());
ARMNN_ASSERT(axisTensorInfo.GetNumElements() == 1);
const unsigned int splitDim = axisData[0];
auto inputDimSize = inputTensorInfo.GetNumDimensions();
if (inputDimSize > MaxNumOfTensorDimensions)
{
throw ParseException(
boost::str(
boost::format(
"The number of dimensions: %1% for input tensors of the "
"split op cannot be greater than %2% %3%")
% inputTensorInfo.GetNumDimensions()
% MaxNumOfTensorDimensions
% CHECK_LOCATION().AsString()));
}
std::vector<unsigned int> splitterDimSizes(inputDimSize);
// Add current input shape to splitterDimSizes
for (unsigned int i = 0; i < inputDimSize; ++i)
{
splitterDimSizes[i] = inputTensorInfo.GetShape()[i];
}
if (splitterDimSizes[splitDim] % numSplits != 0)
{
throw ParseException("Number of splits must evenly divide the dimension");
}
splitterDimSizes[splitDim] /= numSplits;
SplitterDescriptor splitDesc(numSplits, inputDimSize);
for (unsigned int j = 0; j < numSplits; ++j)
{
// Set the size of the views.
for (unsigned int dimIdx = 0; dimIdx < splitterDimSizes.size(); ++dimIdx)
{
splitDesc.SetViewSize(j, dimIdx, splitterDimSizes[dimIdx]);
}
splitDesc.SetViewOriginCoord(j, splitDim, splitterDimSizes[splitDim] * j);
}
auto layerName = boost::str(boost::format("Split:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddSplitterLayer(splitDesc, layerName.c_str());
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[1]});
for (unsigned int k = 0; k < layer->GetNumOutputSlots(); ++k)
{
armnn::TensorInfo tensorInfo = ToTensorInfo(outputs[k]);
layer->GetOutputSlot(k).SetTensorInfo(tensorInfo);
}
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, outputTensorIndexes);
}
unsigned int ComputeWrappedIndex(int idx, unsigned int numDimsIn)
{
int numDims = armnn::numeric_cast<int>(numDimsIn);
int v = idx < 0 ? numDims + idx : idx;
ARMNN_ASSERT(v >= 0);
ARMNN_ASSERT(v < numDims);
return static_cast<unsigned int>(v);
}
void TfLiteParser::ParseSplitV(size_t subgraphIndex, size_t operatorIndex)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
const auto * options = operatorPtr->builtin_options.AsSplitVOptions();
auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(inputs.size(), 3);
auto& inputTensor = inputs[0];
auto& splitsTensor = inputs[1];
auto& axisTensor = inputs[2];
armnn::TensorInfo inputTensorInfo = ToTensorInfo(inputTensor);
armnn::TensorInfo splitsInfo = ToTensorInfo(splitsTensor);
armnn::TensorInfo axisTensorInfo = ToTensorInfo(axisTensor);
ARMNN_ASSERT(axisTensorInfo.GetNumElements() == 1);
// Inputs
auto inputDimSize = inputTensorInfo.GetNumDimensions();
if (inputDimSize > MaxNumOfTensorDimensions)
{
throw ParseException(
boost::str(
boost::format(
"The number of dimensions: %1% for input tensors of the "
"SplitV op cannot be greater than %2% %3%")
% inputTensorInfo.GetNumDimensions()
% MaxNumOfTensorDimensions
% CHECK_LOCATION().AsString()));
}
// Get split axis
BufferRawPtr axisBufferPtr = GetBuffer(m_Model, axisTensor->buffer);
std::vector<int> axisData(axisTensorInfo.GetNumElements());
::memcpy(axisData.data(), axisBufferPtr->data.data(), axisTensorInfo.GetNumBytes());
const unsigned int splitDim = ComputeWrappedIndex(axisData[0], inputTensorInfo.GetNumDimensions());
// Set split sizes
CHECK_VALID_SIZE(splitsInfo.GetNumDimensions(), 1);
unsigned int numSplits{0};
if(options)
{
numSplits = CHECKED_NON_NEGATIVE(options->num_splits);
}
else
{
numSplits = splitsInfo.GetNumElements();
}
if (numSplits <=0)
{
throw ParseException("SplitV has invalid number of splits");
}
std::vector<int> splitsData(numSplits);
BufferRawPtr splitsBufferPtr = GetBuffer(m_Model, splitsTensor->buffer);
::memcpy(splitsData.data(), splitsBufferPtr->data.data(), splitsInfo.GetNumBytes());
unsigned int idx = 0;
int numInferred{0};
unsigned int inferIdx{0};
int splitSum{0};
for (auto split : splitsData)
{
if (split < 0)
{
numInferred++;
inferIdx = idx;
}
else
{
splitSum += split;
}
idx++;
}
// Check for inferred Axis
if (numInferred == 0)
{
if (splitSum != numeric_cast<int>(inputTensorInfo.GetShape()[splitDim]))
{
throw ParseException("SplitV split_sizes does not sum to the dimension of value along split_dim.");
}
}
else if (numInferred == 1)
{
splitsData[inferIdx] = numeric_cast<int>(inputTensorInfo.GetShape()[splitDim]) - splitSum;
}
else
{
throw ParseException("Cannot infer split size for more than one split");
}
//Ouput size validation
auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
CHECK_VALID_SIZE(outputs.size(), numSplits);
// Setup Armnn descriptor
SplitterDescriptor splitDesc(numSplits, inputDimSize);
unsigned int accumSplit = 0;
for (unsigned int j = 0; j < numSplits; ++j)
{
unsigned int splitSize = numeric_cast<unsigned int>(splitsData[j]);
// Set the size of the views.
for (unsigned int dimIdx = 0; dimIdx < inputTensorInfo.GetNumDimensions(); ++dimIdx)
{
unsigned int dimSize = inputTensorInfo.GetShape()[dimIdx];
if (dimIdx == splitDim)
{
dimSize = splitSize;
}
splitDesc.SetViewSize(j, dimIdx, dimSize);
}
splitDesc.SetViewOriginCoord(j, splitDim, accumSplit);
accumSplit += splitSize;
}
auto layerName = boost::str(boost::format("SplitV:%1%:%2%") % subgraphIndex % operatorIndex);
IConnectableLayer* layer = m_Network->AddSplitterLayer(splitDesc, layerName.c_str());
auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0]});
for (unsigned int k = 0; k < layer->GetNumOutputSlots(); ++k)
{
armnn::TensorInfo tensorInfo = ToTensorInfo(outputs[k]);
layer->GetOutputSlot(k).SetTensorInfo(tensorInfo);
}
auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
RegisterOutputSlots(subgraphIndex, operatorIndex, layer, outputTensorIndexes);
}
armnn::IConnectableLayer* TfLiteParser::AddFusedActivationLayer(armnn::IConnectableLayer* prevLayer,
unsigned int outputSlot,
tflite::ActivationFunctionType activationType)
{
ActivationDescriptor activationDesc;
std::string layerName = prevLayer->GetName();
switch(activationType)
{
case tflite::ActivationFunctionType_NONE:
{
// this is a no-op: return previous layer
return prevLayer;
}
case tflite::ActivationFunctionType_RELU:
{
activationDesc.m_Function = ActivationFunction::ReLu;
layerName += ":RELU";
break;
}
case tflite::ActivationFunctionType_RELU6:
{
activationDesc.m_Function = ActivationFunction::BoundedReLu;
activationDesc.m_A = 6.0f;
activationDesc.m_B = 0.0f;
layerName += ":RELU6";
break;
}
case tflite::ActivationFunctionType_TANH:
{
activationDesc.m_Function = ActivationFunction::TanH;
activationDesc.m_A = 1.0f;
activationDesc.m_B = 1.0f;
layerName += ":TANH";
break;
}
// I only put these here as a reminder what others we could support
case tflite::ActivationFunctionType_RELU_N1_TO_1:
case tflite::ActivationFunctionType_SIGN_BIT:
default:
{
throw ParseException(
boost::str(
boost::format("TfLite parser doesn't suppport fused activation: "
"%1%/%2% %3% ") %
activationType %
tflite::EnumNameActivationFunctionType(activationType) %
CHECK_LOCATION().AsString()));
}
}
IConnectableLayer* activationLayer =
m_Network->AddActivationLayer(activationDesc, layerName.c_str());
auto & prevOutputSlot = prevLayer->GetOutputSlot(outputSlot);
prevOutputSlot.Connect(activationLayer->GetInputSlot(0));
activationLayer->GetOutputSlot(0).SetTensorInfo(prevOutputSlot.GetTensorInfo());
return activationLayer;
}
TfLiteParser::ModelPtr TfLiteParser::LoadModelFromFile(const char * fileName)
{
if (fileName == nullptr)
{
throw InvalidArgumentException(boost::str(boost::format("Invalid (null) file name %1%") %
CHECK_LOCATION().AsString()));
}
std::error_code errorCode;
fs::path pathToFile(fileName);
if (!fs::exists(pathToFile, errorCode))
{
std::string locationString = CHECK_LOCATION().AsString();
std::string msg = boost::str(boost::format("Cannot find the file (%1%) errorCode: %2% %3%") %
fileName %
errorCode %
locationString);
throw FileNotFoundException(msg);
}
std::ifstream file(fileName, std::ios::binary);
std::string fileContent((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
return LoadModelFromBinary(reinterpret_cast<const uint8_t *>(fileContent.c_str()),
fileContent.size());
}
TfLiteParser::ModelPtr TfLiteParser::LoadModelFromBinary(const uint8_t * binaryContent, size_t len)
{
if (binaryContent == nullptr)
{
throw InvalidArgumentException(boost::str(boost::format("Invalid (null) binary content %1%") %
CHECK_LOCATION().AsString()));
}
flatbuffers::Verifier verifier(binaryContent, len);
if (verifier.VerifyBuffer<tflite::Model>() == false)
{
throw ParseException(
boost::str(boost::format("Buffer doesn't conform to the expected Tensorflow Lite "
"flatbuffers format. size:%1% %2%") %
len %
CHECK_LOCATION().AsString()));
}
return tflite::UnPackModel(binaryContent);
}
TfLiteParser::TensorRawPtrVector TfLiteParser::GetInputs(const ModelPtr & model,
size_t subgraphIndex,
size_t operatorIndex)
{
CHECK_MODEL(model, subgraphIndex, operatorIndex);
const auto & subgraphPtr = model->subgraphs[subgraphIndex];
const auto & operatorPtr = subgraphPtr->operators[operatorIndex];
size_t inputCount = operatorPtr->inputs.size();
TensorRawPtrVector result(inputCount);
for (size_t i=0; i<inputCount; ++i)
{
uint32_t inputId = CHECKED_NON_NEGATIVE(operatorPtr->inputs[i]);
result[i] = subgraphPtr->tensors[inputId].get();
}
return result;
}
TfLiteParser::TensorRawPtrVector TfLiteParser::GetOutputs(const ModelPtr & model,
size_t subgraphIndex,
size_t operatorIndex)
{
CHECK_MODEL(model, subgraphIndex, operatorIndex);
const auto & subgraphPtr = model->subgraphs[subgraphIndex];
const auto & operatorPtr = subgraphPtr->operators[operatorIndex];
size_t outputCount = operatorPtr->outputs.size();
TensorRawPtrVector result(outputCount);
for (size_t i=0; i<outputCount; ++i)
{
uint32_t outputId = CHECKED_NON_NEGATIVE(operatorPtr->outputs[i]);
CHECK_TENSOR(model, subgraphIndex, outputId);
result[i] = subgraphPtr->tensors[outputId].get();
}
return result;
}
TfLiteParser::TensorIdRawPtrVector TfLiteParser::GetSubgraphInputs(const ModelPtr & model,
size_t subgraphIndex)
{
CHECK_SUBGRAPH(model, subgraphIndex);
const auto & subgraphPtr = model->subgraphs[subgraphIndex];
size_t inputCount = subgraphPtr->inputs.size();
TensorIdRawPtrVector result(inputCount);
for (size_t i=0; i<inputCount; ++i)
{
uint32_t inputId = CHECKED_NON_NEGATIVE(subgraphPtr->inputs[i]);
CHECK_TENSOR(model, subgraphIndex, inputId);
result[i] = std::make_pair(inputId, subgraphPtr->tensors[inputId].get());
}
return result;
}
TfLiteParser::TensorIdRawPtrVector TfLiteParser::GetSubgraphOutputs(const ModelPtr & model,
size_t subgraphIndex)
{
CHECK_SUBGRAPH(model, subgraphIndex);
const auto & subgraphPtr = model->subgraphs[subgraphIndex];
size_t outputCount = subgraphPtr->outputs.size();
TensorIdRawPtrVector result(outputCount);
for (size_t i=0; i<outputCount; ++i)
{
uint32_t outputId = CHECKED_NON_NEGATIVE(subgraphPtr->outputs[i]);
result[i] = std::make_pair(outputId, subgraphPtr->tensors[outputId].get());
}
return result;
}
std::vector<int32_t>& TfLiteParser::GetInputTensorIds(const ModelPtr& model,
size_t subgraphIndex,
size_t operatorIndex)
{
CHECK_MODEL(model, subgraphIndex, operatorIndex);
const auto & subgraphPtr = model->subgraphs[subgraphIndex];
const auto & operatorPtr = subgraphPtr->operators[operatorIndex];
return operatorPtr->inputs;
}
std::vector<int32_t>& TfLiteParser::GetOutputTensorIds(const ModelPtr& model,
size_t subgraphIndex,
size_t operatorIndex)
{
CHECK_MODEL(model, subgraphIndex, operatorIndex);
const auto & subgraphPtr = model->subgraphs[subgraphIndex];
const auto & operatorPtr = subgraphPtr->operators[operatorIndex];
return operatorPtr->outputs;
}
void TfLiteParser::RegisterInputSlots(size_t subgraphIndex,
size_t operatorIndex,
IConnectableLayer* layer,
const std::vector<unsigned int>& tensorIndexes)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
ARMNN_ASSERT(layer != nullptr);
if (tensorIndexes.size() != layer->GetNumInputSlots())
{
throw ParseException(
boost::str(boost::format("The number of tensor inputs (%1%) does not match the number expected (%2%)"
" for subgraph:%3% operator index:%4% %5%") %
tensorIndexes.size() %
layer->GetNumInputSlots() %
subgraphIndex %
operatorIndex %
CHECK_LOCATION().AsString()));
}
for (unsigned int slotIndex = 0; slotIndex < layer->GetNumInputSlots(); ++slotIndex)
{
unsigned int tensorIndex = tensorIndexes[slotIndex];
armnn::IInputSlot* slot = &(layer->GetInputSlot(slotIndex));
RegisterConsumerOfTensor(subgraphIndex, tensorIndex, slot);
}
}
void TfLiteParser::RegisterOutputSlots(size_t subgraphIndex,
size_t operatorIndex,
IConnectableLayer* layer,
const std::vector<unsigned int>& tensorIndexes)
{
CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
ARMNN_ASSERT(layer != nullptr);
if (tensorIndexes.size() != layer->GetNumOutputSlots())
{
throw ParseException(
boost::str(boost::format("The number of tensor outputs (%1%) does not match the number expected (%2%)"
" for subgraph:%3% operator index:%4% %5%") %
tensorIndexes.size() %
layer->GetNumOutputSlots() %
subgraphIndex %
operatorIndex %
CHECK_LOCATION().AsString()));
}
for (unsigned int slotIndex = 0; slotIndex < layer->GetNumOutputSlots(); ++slotIndex)
{
unsigned int tensorIndex = tensorIndexes[slotIndex];
armnn::IOutputSlot* slot = &(layer->GetOutputSlot(slotIndex));
RegisterProducerOfTensor(subgraphIndex, tensorIndex, slot);
}
}
void TfLiteParser::SetupInputLayers(size_t subgraphIndex)
{
CHECK_SUBGRAPH(m_Model, subgraphIndex);
auto inputs = GetSubgraphInputs(m_Model, subgraphIndex);
for (auto const & tensorIdAndPtr : inputs)
{
auto bindingId = GenerateLayerBindingId(subgraphIndex, tensorIdAndPtr.first);
IConnectableLayer* layer =
m_Network->AddInputLayer(bindingId, tensorIdAndPtr.second->name.c_str());
auto tensorInfo = ToTensorInfo(tensorIdAndPtr.second);
layer->GetOutputSlot(0).SetTensorInfo(tensorInfo);
RegisterOutputSlots(subgraphIndex,
VIRTUAL_OPERATOR_ID,
layer,
{ static_cast<uint32_t>(tensorIdAndPtr.first) });
}
}
void TfLiteParser::SetupOutputLayers(size_t subgraphIndex)
{
CHECK_SUBGRAPH(m_Model, subgraphIndex);
auto outputs = GetSubgraphOutputs(m_Model, subgraphIndex);
for (auto const & tensorIdAndPtr : outputs)
{
auto bindingId = GenerateLayerBindingId(subgraphIndex, tensorIdAndPtr.first);
IConnectableLayer* layer =
m_Network->AddOutputLayer(bindingId, tensorIdAndPtr.second->name.c_str());
RegisterInputSlots(subgraphIndex,
VIRTUAL_OPERATOR_ID,
layer,
{ static_cast<uint32_t>(tensorIdAndPtr.first) });
}
}
void TfLiteParser::SetupConstantLayers(size_t subgraphIndex)
{
CHECK_SUBGRAPH(m_Model, subgraphIndex);
const auto & subgraphPtr = m_Model->subgraphs[subgraphIndex];
for (unsigned int subgraphIndex = 0; subgraphIndex < m_SubgraphConnections.size(); ++subgraphIndex)
{
for (unsigned int tensorIndex = 0; tensorIndex < m_SubgraphConnections[subgraphIndex].size(); ++tensorIndex)
{
if (m_SubgraphConnections[subgraphIndex][tensorIndex].outputSlot == nullptr &&
m_SubgraphConnections[subgraphIndex][tensorIndex].inputSlots.size() > 0)
{
TensorRawPtr tensorPtr = subgraphPtr->tensors[tensorIndex].get();
armnn::TensorInfo tensorInfo = ToTensorInfo(tensorPtr);
auto tensorAndData = CreateConstTensor(tensorPtr,
tensorInfo,
armnn::Optional<armnn::PermutationVector&>());
std::string layerName = boost::str(boost::format("Constant:%1%") % tensorPtr->name);
IConnectableLayer *layer =
m_Network->AddConstantLayer(tensorAndData.first, layerName.c_str());
layer->GetOutputSlot(0).SetTensorInfo(tensorInfo);
RegisterOutputSlots(subgraphIndex,
VIRTUAL_OPERATOR_ID,
layer,
{ tensorIndex });
}
}
}
}
// example usage: BufferRawPtr bufferPtr = GetBuffer(m_Model, inputs[0]->buffer);
TfLiteParser::BufferRawPtr TfLiteParser::GetBuffer(const ModelPtr& model, size_t bufferIndex)
{
CHECK_BUFFER(model, bufferIndex);
return model->buffers[bufferIndex].get();
}
template<typename T>
std::pair<armnn::ConstTensor, TfLiteParser::SupportedDataStorage>
TfLiteParser::CreateConstTensorAndStoreData(TfLiteParser::BufferRawPtr bufferPtr,
TfLiteParser::TensorRawPtr tensorPtr,
armnn::TensorInfo& tensorInfo,
armnn::Optional<armnn::PermutationVector&> permutationVector)
{
auto constData = CreateConstTensorImpl<T>(bufferPtr,
tensorPtr,
tensorInfo,
permutationVector);
TfLiteParser::SupportedDataStorage storage(std::move(constData.second));
return std::make_pair(constData.first, std::move(storage));
}
std::pair<armnn::ConstTensor, TfLiteParser::SupportedDataStorage>
TfLiteParser::CreateConstTensor(TensorRawPtr tensorPtr,
armnn::TensorInfo& tensorInfo,
armnn::Optional<armnn::PermutationVector&> permutationVector)
{
CHECK_TENSOR_PTR(tensorPtr);
auto bufferPtr = GetBuffer(m_Model, tensorPtr->buffer);
CHECK_BUFFER_SIZE(bufferPtr, tensorInfo, tensorPtr->buffer);
switch (tensorInfo.GetDataType())
{
case armnn::DataType::Float32:
return CreateConstTensorAndStoreData<float>(bufferPtr,
tensorPtr,
tensorInfo,
permutationVector);
case armnn::DataType::QAsymmU8:
return CreateConstTensorAndStoreData<uint8_t>(bufferPtr,
tensorPtr,
tensorInfo,
permutationVector);
case armnn::DataType::QSymmS8:
return CreateConstTensorAndStoreData<int8_t>(bufferPtr,
tensorPtr,
tensorInfo,
permutationVector);
case armnn::DataType::QAsymmS8:
return CreateConstTensorAndStoreData<int8_t>(bufferPtr,
tensorPtr,
tensorInfo,
permutationVector);
case armnn::DataType::Signed32:
return CreateConstTensorAndStoreData<int32_t>(bufferPtr,
tensorPtr,
tensorInfo,
permutationVector);
default:
{
std::stringstream errString;
errString << "Unexpected datatype when creating const tensor: "
<< armnn::GetDataTypeName(tensorInfo.GetDataType())
<< " shape:" << tensorInfo.GetShape()
<< CHECK_LOCATION().AsString();
throw ParseException(errString.str());
}
}
}
BindingPointInfo TfLiteParser::GetNetworkInputBindingInfo(size_t subgraphId,
const std::string& name) const
{
CHECK_SUBGRAPH(m_Model, subgraphId);
auto inputs = GetSubgraphInputs(m_Model, subgraphId);
for (auto const & input : inputs)
{
if (input.second->name == name)
{
auto bindingId = GenerateLayerBindingId(subgraphId, input.first);
return std::make_pair(bindingId, ToTensorInfo(input.second));
}
}
std::stringstream bindings;
for (auto const & input : inputs)
{
bindings << "'" << input.second->name << "' ";
}
throw ParseException(
boost::str(
boost::format("No input binding found for subgraph:%1% and name:%2%. "
"Possible inputs are: [%3%] %4%") %
subgraphId %
name %
bindings.str() %
CHECK_LOCATION().AsString()));
}
BindingPointInfo TfLiteParser::GetNetworkOutputBindingInfo(size_t subgraphId,
const std::string& name) const
{
CHECK_SUBGRAPH(m_Model, subgraphId);
auto outputs = GetSubgraphOutputs(m_Model, subgraphId);
for (unsigned int i = 0; i < outputs.size(); ++i)
{
auto const output = outputs[i];
if (output.second->name == name)
{
auto bindingId = GenerateLayerBindingId(subgraphId, output.first);
std::vector<unsigned int> shape = m_OverridenOutputShapes.size() > 0 ?
m_OverridenOutputShapes[i] : AsUnsignedVector(output.second->shape);
return std::make_pair(bindingId, ToTensorInfo(output.second, shape));
}
}
std::stringstream bindings;
for (auto const & output : outputs)
{
bindings << "'" << output.second->name << "' ";
}
throw ParseException(
boost::str(
boost::format("No output binding found for subgraph:%1% and name:%2%. "
"Possible outputs are: [%3%] %4%") %
subgraphId %
name %
bindings.str() %
CHECK_LOCATION().AsString()));
}
size_t TfLiteParser::GetSubgraphCount() const
{
return m_Model->subgraphs.size();
}
std::vector<std::string> TfLiteParser::GetSubgraphInputTensorNames(size_t subgraphId) const
{
CHECK_SUBGRAPH(m_Model, subgraphId);
auto inputs = GetSubgraphInputs(m_Model, subgraphId);
std::vector<std::string> result;
result.reserve(inputs.size());
for (auto const & input : inputs)
{
result.push_back(input.second->name);
}
return result;
}
std::vector<std::string> TfLiteParser::GetSubgraphOutputTensorNames(size_t subgraphId) const
{
CHECK_SUBGRAPH(m_Model, subgraphId);
auto outputs = GetSubgraphOutputs(m_Model, subgraphId);
std::vector<std::string> result;
result.reserve(outputs.size());
for (auto const & output : outputs)
{
result.push_back(output.second->name);
}
return result;
}
ITfLiteParser* ITfLiteParser::CreateRaw(const Optional<ITfLiteParser::TfLiteParserOptions>& options)
{
return new TfLiteParser(options);
}
ITfLiteParserPtr ITfLiteParser::Create(const Optional<ITfLiteParser::TfLiteParserOptions>& options)
{
return ITfLiteParserPtr(CreateRaw(options), &ITfLiteParser::Destroy);
}
void ITfLiteParser::Destroy(ITfLiteParser* parser)
{
delete parser;
}
TfLiteParser::SupportedDataStorage::SupportedDataStorage(std::unique_ptr<float[]> && data)
: m_FloatData(std::move(data))
, m_Uint8Data(nullptr)
, m_Int8Data(nullptr)
, m_Int32Data(nullptr)
{
}
TfLiteParser::SupportedDataStorage::SupportedDataStorage(std::unique_ptr<uint8_t[]> && data)
: m_FloatData(nullptr)
, m_Uint8Data(std::move(data))
, m_Int8Data(nullptr)
, m_Int32Data(nullptr)
{
}
TfLiteParser::SupportedDataStorage::SupportedDataStorage(std::unique_ptr<int8_t[]> && data)
: m_FloatData(nullptr)
, m_Uint8Data(nullptr)
, m_Int8Data(std::move(data))
, m_Int32Data(nullptr)
{
}
TfLiteParser::SupportedDataStorage::SupportedDataStorage(std::unique_ptr<int32_t[]> && data)
: m_FloatData(nullptr)
, m_Uint8Data(nullptr)
, m_Int8Data(nullptr)
, m_Int32Data(std::move(data))
{
}
} // armnnTfLiteParser