blob: db6bcc3ecb51a74863adc1903049cf7ad8da0c94 [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "NeonDepthwiseConvolutionWorkload.hpp"
#include "NeonWorkloadUtils.hpp"
#include <armnnUtils/DataLayoutIndexed.hpp>
#include <aclCommon/ArmComputeTensorUtils.hpp>
#include <aclCommon/ArmComputeUtils.hpp>
#include <neon/NeonLayerSupport.hpp>
#include <backendsCommon/CpuTensorHandle.hpp>
#include <backendsCommon/WorkloadUtils.hpp>
#include <arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h>
using namespace armnnUtils;
namespace armnn
{
using namespace armcomputetensorutils;
arm_compute::Status NeonDepthwiseConvolutionWorkloadValidate(const TensorInfo& input,
const TensorInfo& output,
const DepthwiseConvolution2dDescriptor& descriptor,
const TensorInfo& weights,
const Optional<TensorInfo>& biases,
const ActivationDescriptor* activationDescriptor)
{
const arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
// ArmNN's weight format is [ M, I, H, W ]
const unsigned int aclDepthMultiplier = weights.GetShape()[0];
// Convert the weight format from ArmNN's [ M, I, H, W ] (does NOT depend on the data layout) to either
// [ 1, H, W, I * M ] (if NHWC) or [ 1, I * M, H, W ] (if NCHW), as required by the compute library
TensorInfo weightsPermuted = ConvertWeightTensorInfoFromArmnnToAcl(weights, descriptor.m_DataLayout);
// Convert the weights into the compute library format
const arm_compute::TensorInfo aclWeightsInfo = BuildArmComputeTensorInfo(weightsPermuted, descriptor.m_DataLayout);
arm_compute::TensorInfo aclBiasesInfo;
arm_compute::TensorInfo *optionalAclBiasesInfo = nullptr;
if (descriptor.m_BiasEnabled)
{
ARMNN_ASSERT(biases.has_value());
aclBiasesInfo = BuildArmComputeTensorInfo(biases.value(), descriptor.m_DataLayout);
optionalAclBiasesInfo = &aclBiasesInfo;
}
arm_compute::PadStrideInfo aclPadStrideInfo = BuildArmComputePadStrideInfo(descriptor);
const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(
descriptor.m_DilationX,descriptor.m_DilationY);
const arm_compute::ActivationLayerInfo activationInfo = ConvertActivationDescriptorToAclActivationLayerInfo(
activationDescriptor);
return arm_compute::NEDepthwiseConvolutionLayer::validate(&aclInputInfo,
&aclWeightsInfo,
optionalAclBiasesInfo,
&aclOutputInfo,
aclPadStrideInfo,
aclDepthMultiplier,
activationInfo,
aclDilationInfo);
}
NeonDepthwiseConvolutionWorkload::NeonDepthwiseConvolutionWorkload(
const DepthwiseConvolution2dQueueDescriptor& descriptor,
const WorkloadInfo& info)
: BaseWorkload<DepthwiseConvolution2dQueueDescriptor>(descriptor, info)
{
// ArmNN's weight format is [ M, I, H, W ]
auto& weightInfo = m_Data.m_Weight->GetTensorInfo();
// Allocate a buffer for the swizzling of the weight tensor
std::unique_ptr<unsigned char[]> permuteBuffer(new unsigned char[m_Data.m_Weight->GetTensorInfo().GetNumBytes()]);
// Convert the weight format from ArmNN's [ M, I, H, W ] (does NOT depend on the data layout) to either
// [ 1, H, W, I * M ] (if NHWC) or [ 1, I * M, H, W ] (if NCHW), as required by the compute library
ConstTensor weightPermuted = ConvertWeightTensorFromArmnnToAcl(m_Data.m_Weight,
m_Data.m_Parameters.m_DataLayout,
permuteBuffer.get());
// Convert the weights into the compute library format
m_KernelTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_KernelTensor, weightPermuted.GetInfo(), m_Data.m_Parameters.m_DataLayout);
if (m_Data.m_Parameters.m_BiasEnabled)
{
m_BiasTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_BiasTensor, m_Data.m_Bias->GetTensorInfo(), m_Data.m_Parameters.m_DataLayout);
}
const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(
m_Data.m_Parameters.m_DilationX, m_Data.m_Parameters.m_DilationY);
m_Data.ValidateInputsOutputs("NeonDepthwiseConvolutionWorkload", 1, 1);
IAclTensorHandle* inputTensorHandle = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0]);
IAclTensorHandle* outputTensorHandle = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[0]);
arm_compute::ITensor& input = inputTensorHandle->GetTensor();
arm_compute::ITensor& output = outputTensorHandle->GetTensor();
arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
input.info()->set_data_layout(aclDataLayout);
output.info()->set_data_layout(aclDataLayout);
// Get the depth multiplier
const unsigned int depthMultiplier = weightInfo.GetShape()[0];
arm_compute::PadStrideInfo padStrideInfo = BuildArmComputePadStrideInfo(m_Data.m_Parameters);
const arm_compute::ActivationLayerInfo activationInfo = ConvertAdditionalInfoToAclActivationLayerInfo(descriptor);
m_pDepthwiseConvolutionLayer = std::make_unique<arm_compute::NEDepthwiseConvolutionLayer>();
static_cast<arm_compute::NEDepthwiseConvolutionLayer*>(
m_pDepthwiseConvolutionLayer.get())->configure(&input,
m_KernelTensor.get(),
m_BiasTensor.get(),
&output,
padStrideInfo,
depthMultiplier,
activationInfo,
aclDilationInfo);
ARMNN_ASSERT(m_pDepthwiseConvolutionLayer);
ScopedCpuTensorHandle weightsPermutedHandle(weightPermuted);
InitializeArmComputeTensorData(*m_KernelTensor, &weightsPermutedHandle);
if (m_Data.m_Parameters.m_BiasEnabled)
{
InitializeArmComputeTensorData(*m_BiasTensor, m_Data.m_Bias);
}
m_pDepthwiseConvolutionLayer->prepare();
FreeUnusedTensors();
}
void NeonDepthwiseConvolutionWorkload::Execute() const
{
ARMNN_SCOPED_PROFILING_EVENT_NEON("NeonDepthwiseConvolutionWorkload_Execute");
ARMNN_ASSERT(m_pDepthwiseConvolutionLayer);
m_pDepthwiseConvolutionLayer->run();
}
void NeonDepthwiseConvolutionWorkload::FreeUnusedTensors()
{
FreeTensorIfUnused(m_KernelTensor);
FreeTensorIfUnused(m_BiasTensor);
}
} //namespace armnn