blob: 8b3869cdea0ea6f8f3e58acebb776f6cf9136858 [file] [log] [blame]
/*
* Single-precision vector tan(x) function.
*
* Copyright (c) 2021-2022, Arm Limited.
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
*/
#include "v_math.h"
#include "estrinf.h"
#if V_SUPPORTED
/* Constants. */
#define NegPio2_1 (v_f32 (-0x1.921fb6p+0f))
#define NegPio2_2 (v_f32 (0x1.777a5cp-25f))
#define NegPio2_3 (v_f32 (0x1.ee59dap-50f))
#define InvPio2 (v_f32 (0x1.45f306p-1f))
#define RangeVal (0x48000000) /* asuint32(0x1p17f). */
#define TinyBound (0x30000000) /* asuint32 (0x1p-31). */
#define Shift (v_f32 (0x1.8p+23f))
#define AbsMask (v_u32 (0x7fffffff))
#define poly(i) v_f32 (__tanf_poly_data.poly_tan[i])
/* Special cases (fall back to scalar calls). */
VPCS_ATTR
NOINLINE static v_f32_t
specialcase (v_f32_t x, v_f32_t y, v_u32_t cmp)
{
return v_call_f32 (tanf, x, y, cmp);
}
/* Use a full Estrin scheme to evaluate polynomial. */
static inline v_f32_t
eval_poly (v_f32_t z)
{
v_f32_t z2 = z * z;
#if WANT_ERRNO
/* Tiny z (<= 0x1p-31) will underflow when calculating z^4. If errno is to be
set correctly, sidestep this by fixing such lanes to 0. */
v_u32_t will_uflow = v_cond_u32 ((v_as_u32_f32 (z) & AbsMask) <= TinyBound);
if (unlikely (v_any_u32 (will_uflow)))
z2 = v_sel_f32 (will_uflow, v_f32 (0), z2);
#endif
v_f32_t z4 = z2 * z2;
return ESTRIN_6 (z, z2, z4, poly);
}
/* Fast implementation of Neon tanf.
Maximum measured error: 3.121ulps.
vtanq_f32(0x1.ff3df8p+16) got -0x1.fbb7b8p-1
want -0x1.fbb7b2p-1. */
VPCS_ATTR
v_f32_t V_NAME (tanf) (v_f32_t x)
{
v_f32_t special_arg = x;
v_u32_t ix = v_as_u32_f32 (x);
v_u32_t iax = ix & AbsMask;
/* iax >= RangeVal means x, if not inf or NaN, is too large to perform fast
regression. */
#if WANT_ERRNO
/* If errno is to be set correctly, also special-case tiny input, as this will
load to overflow later. Fix any special lanes to 1 to prevent any
exceptions being triggered. */
v_u32_t special = v_cond_u32 (iax - TinyBound >= RangeVal - TinyBound);
if (unlikely (v_any_u32 (special)))
x = v_sel_f32 (special, v_f32 (1.0f), x);
#else
/* Otherwise, special-case large and special values. */
v_u32_t special = v_cond_u32 (iax >= RangeVal);
#endif
/* n = rint(x/(pi/2)). */
v_f32_t q = v_fma_f32 (InvPio2, x, Shift);
v_f32_t n = q - Shift;
/* n is representable as a signed integer, simply convert it. */
v_s32_t in = v_round_s32 (n);
/* Determine if x lives in an interval, where |tan(x)| grows to infinity. */
v_s32_t alt = in & 1;
v_u32_t pred_alt = (alt != 0);
/* r = x - n * (pi/2) (range reduction into -pi./4 .. pi/4). */
v_f32_t r;
r = v_fma_f32 (NegPio2_1, n, x);
r = v_fma_f32 (NegPio2_2, n, r);
r = v_fma_f32 (NegPio2_3, n, r);
/* If x lives in an interval, where |tan(x)|
- is finite, then use a polynomial approximation of the form
tan(r) ~ r + r^3 * P(r^2) = r + r * r^2 * P(r^2).
- grows to infinity then use symmetries of tangent and the identity
tan(r) = cotan(pi/2 - r) to express tan(x) as 1/tan(-r). Finally, use
the same polynomial approximation of tan as above. */
/* Perform additional reduction if required. */
v_f32_t z = v_sel_f32 (pred_alt, -r, r);
/* Evaluate polynomial approximation of tangent on [-pi/4, pi/4]. */
v_f32_t z2 = r * r;
v_f32_t p = eval_poly (z2);
v_f32_t y = v_fma_f32 (z * z2, p, z);
/* Compute reciprocal and apply if required. */
v_f32_t inv_y = v_div_f32 (v_f32 (1.0f), y);
y = v_sel_f32 (pred_alt, inv_y, y);
/* Fast reduction does not handle the x = -0.0 case well,
therefore it is fixed here. */
y = v_sel_f32 (x == v_f32 (-0.0), x, y);
if (unlikely (v_any_u32 (special)))
return specialcase (special_arg, y, special);
return y;
}
VPCS_ALIAS
#endif