blob: c1999bd889fba89d65c70bc88790135fb6a2d57c [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.util;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.Arrays;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.Localizable;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.exception.NonMonotonousSequenceException;
/**
* Some useful additions to the built-in functions in {@link Math}.
* @version $Revision: 1073472 $ $Date: 2011-02-22 20:49:07 +0100 (mar. 22 févr. 2011) $
*/
public final class MathUtils {
/** Smallest positive number such that 1 - EPSILON is not numerically equal to 1. */
public static final double EPSILON = 0x1.0p-53;
/** Safe minimum, such that 1 / SAFE_MIN does not overflow.
* <p>In IEEE 754 arithmetic, this is also the smallest normalized
* number 2<sup>-1022</sup>.</p>
*/
public static final double SAFE_MIN = 0x1.0p-1022;
/**
* 2 &pi;.
* @since 2.1
*/
public static final double TWO_PI = 2 * FastMath.PI;
/** -1.0 cast as a byte. */
private static final byte NB = (byte)-1;
/** -1.0 cast as a short. */
private static final short NS = (short)-1;
/** 1.0 cast as a byte. */
private static final byte PB = (byte)1;
/** 1.0 cast as a short. */
private static final short PS = (short)1;
/** 0.0 cast as a byte. */
private static final byte ZB = (byte)0;
/** 0.0 cast as a short. */
private static final short ZS = (short)0;
/** Gap between NaN and regular numbers. */
private static final int NAN_GAP = 4 * 1024 * 1024;
/** Offset to order signed double numbers lexicographically. */
private static final long SGN_MASK = 0x8000000000000000L;
/** Offset to order signed double numbers lexicographically. */
private static final int SGN_MASK_FLOAT = 0x80000000;
/** All long-representable factorials */
private static final long[] FACTORIALS = new long[] {
1l, 1l, 2l,
6l, 24l, 120l,
720l, 5040l, 40320l,
362880l, 3628800l, 39916800l,
479001600l, 6227020800l, 87178291200l,
1307674368000l, 20922789888000l, 355687428096000l,
6402373705728000l, 121645100408832000l, 2432902008176640000l };
/**
* Private Constructor
*/
private MathUtils() {
super();
}
/**
* Add two integers, checking for overflow.
*
* @param x an addend
* @param y an addend
* @return the sum <code>x+y</code>
* @throws ArithmeticException if the result can not be represented as an
* int
* @since 1.1
*/
public static int addAndCheck(int x, int y) {
long s = (long)x + (long)y;
if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
throw MathRuntimeException.createArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, x, y);
}
return (int)s;
}
/**
* Add two long integers, checking for overflow.
*
* @param a an addend
* @param b an addend
* @return the sum <code>a+b</code>
* @throws ArithmeticException if the result can not be represented as an
* long
* @since 1.2
*/
public static long addAndCheck(long a, long b) {
return addAndCheck(a, b, LocalizedFormats.OVERFLOW_IN_ADDITION);
}
/**
* Add two long integers, checking for overflow.
*
* @param a an addend
* @param b an addend
* @param pattern the pattern to use for any thrown exception.
* @return the sum <code>a+b</code>
* @throws ArithmeticException if the result can not be represented as an
* long
* @since 1.2
*/
private static long addAndCheck(long a, long b, Localizable pattern) {
long ret;
if (a > b) {
// use symmetry to reduce boundary cases
ret = addAndCheck(b, a, pattern);
} else {
// assert a <= b
if (a < 0) {
if (b < 0) {
// check for negative overflow
if (Long.MIN_VALUE - b <= a) {
ret = a + b;
} else {
throw MathRuntimeException.createArithmeticException(pattern, a, b);
}
} else {
// opposite sign addition is always safe
ret = a + b;
}
} else {
// assert a >= 0
// assert b >= 0
// check for positive overflow
if (a <= Long.MAX_VALUE - b) {
ret = a + b;
} else {
throw MathRuntimeException.createArithmeticException(pattern, a, b);
}
}
}
return ret;
}
/**
* Returns an exact representation of the <a
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
* Coefficient</a>, "<code>n choose k</code>", the number of
* <code>k</code>-element subsets that can be selected from an
* <code>n</code>-element set.
* <p>
* <Strong>Preconditions</strong>:
* <ul>
* <li> <code>0 <= k <= n </code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
* <li> The result is small enough to fit into a <code>long</code>. The
* largest value of <code>n</code> for which all coefficients are
* <code> < Long.MAX_VALUE</code> is 66. If the computed value exceeds
* <code>Long.MAX_VALUE</code> an <code>ArithMeticException</code> is
* thrown.</li>
* </ul></p>
*
* @param n the size of the set
* @param k the size of the subsets to be counted
* @return <code>n choose k</code>
* @throws IllegalArgumentException if preconditions are not met.
* @throws ArithmeticException if the result is too large to be represented
* by a long integer.
*/
public static long binomialCoefficient(final int n, final int k) {
checkBinomial(n, k);
if ((n == k) || (k == 0)) {
return 1;
}
if ((k == 1) || (k == n - 1)) {
return n;
}
// Use symmetry for large k
if (k > n / 2)
return binomialCoefficient(n, n - k);
// We use the formula
// (n choose k) = n! / (n-k)! / k!
// (n choose k) == ((n-k+1)*...*n) / (1*...*k)
// which could be written
// (n choose k) == (n-1 choose k-1) * n / k
long result = 1;
if (n <= 61) {
// For n <= 61, the naive implementation cannot overflow.
int i = n - k + 1;
for (int j = 1; j <= k; j++) {
result = result * i / j;
i++;
}
} else if (n <= 66) {
// For n > 61 but n <= 66, the result cannot overflow,
// but we must take care not to overflow intermediate values.
int i = n - k + 1;
for (int j = 1; j <= k; j++) {
// We know that (result * i) is divisible by j,
// but (result * i) may overflow, so we split j:
// Filter out the gcd, d, so j/d and i/d are integer.
// result is divisible by (j/d) because (j/d)
// is relative prime to (i/d) and is a divisor of
// result * (i/d).
final long d = gcd(i, j);
result = (result / (j / d)) * (i / d);
i++;
}
} else {
// For n > 66, a result overflow might occur, so we check
// the multiplication, taking care to not overflow
// unnecessary.
int i = n - k + 1;
for (int j = 1; j <= k; j++) {
final long d = gcd(i, j);
result = mulAndCheck(result / (j / d), i / d);
i++;
}
}
return result;
}
/**
* Returns a <code>double</code> representation of the <a
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
* Coefficient</a>, "<code>n choose k</code>", the number of
* <code>k</code>-element subsets that can be selected from an
* <code>n</code>-element set.
* <p>
* <Strong>Preconditions</strong>:
* <ul>
* <li> <code>0 <= k <= n </code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
* <li> The result is small enough to fit into a <code>double</code>. The
* largest value of <code>n</code> for which all coefficients are <
* Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE,
* Double.POSITIVE_INFINITY is returned</li>
* </ul></p>
*
* @param n the size of the set
* @param k the size of the subsets to be counted
* @return <code>n choose k</code>
* @throws IllegalArgumentException if preconditions are not met.
*/
public static double binomialCoefficientDouble(final int n, final int k) {
checkBinomial(n, k);
if ((n == k) || (k == 0)) {
return 1d;
}
if ((k == 1) || (k == n - 1)) {
return n;
}
if (k > n/2) {
return binomialCoefficientDouble(n, n - k);
}
if (n < 67) {
return binomialCoefficient(n,k);
}
double result = 1d;
for (int i = 1; i <= k; i++) {
result *= (double)(n - k + i) / (double)i;
}
return FastMath.floor(result + 0.5);
}
/**
* Returns the natural <code>log</code> of the <a
* href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
* Coefficient</a>, "<code>n choose k</code>", the number of
* <code>k</code>-element subsets that can be selected from an
* <code>n</code>-element set.
* <p>
* <Strong>Preconditions</strong>:
* <ul>
* <li> <code>0 <= k <= n </code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
* </ul></p>
*
* @param n the size of the set
* @param k the size of the subsets to be counted
* @return <code>n choose k</code>
* @throws IllegalArgumentException if preconditions are not met.
*/
public static double binomialCoefficientLog(final int n, final int k) {
checkBinomial(n, k);
if ((n == k) || (k == 0)) {
return 0;
}
if ((k == 1) || (k == n - 1)) {
return FastMath.log(n);
}
/*
* For values small enough to do exact integer computation,
* return the log of the exact value
*/
if (n < 67) {
return FastMath.log(binomialCoefficient(n,k));
}
/*
* Return the log of binomialCoefficientDouble for values that will not
* overflow binomialCoefficientDouble
*/
if (n < 1030) {
return FastMath.log(binomialCoefficientDouble(n, k));
}
if (k > n / 2) {
return binomialCoefficientLog(n, n - k);
}
/*
* Sum logs for values that could overflow
*/
double logSum = 0;
// n!/(n-k)!
for (int i = n - k + 1; i <= n; i++) {
logSum += FastMath.log(i);
}
// divide by k!
for (int i = 2; i <= k; i++) {
logSum -= FastMath.log(i);
}
return logSum;
}
/**
* Check binomial preconditions.
* @param n the size of the set
* @param k the size of the subsets to be counted
* @exception IllegalArgumentException if preconditions are not met.
*/
private static void checkBinomial(final int n, final int k)
throws IllegalArgumentException {
if (n < k) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.BINOMIAL_INVALID_PARAMETERS_ORDER,
n, k);
}
if (n < 0) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.BINOMIAL_NEGATIVE_PARAMETER,
n);
}
}
/**
* Compares two numbers given some amount of allowed error.
*
* @param x the first number
* @param y the second number
* @param eps the amount of error to allow when checking for equality
* @return <ul><li>0 if {@link #equals(double, double, double) equals(x, y, eps)}</li>
* <li>&lt; 0 if !{@link #equals(double, double, double) equals(x, y, eps)} &amp;&amp; x &lt; y</li>
* <li>> 0 if !{@link #equals(double, double, double) equals(x, y, eps)} &amp;&amp; x > y</li></ul>
*/
public static int compareTo(double x, double y, double eps) {
if (equals(x, y, eps)) {
return 0;
} else if (x < y) {
return -1;
}
return 1;
}
/**
* Returns the <a href="http://mathworld.wolfram.com/HyperbolicCosine.html">
* hyperbolic cosine</a> of x.
*
* @param x double value for which to find the hyperbolic cosine
* @return hyperbolic cosine of x
*/
public static double cosh(double x) {
return (FastMath.exp(x) + FastMath.exp(-x)) / 2.0;
}
/**
* Returns true iff they are strictly equal.
*
* @param x first value
* @param y second value
* @return {@code true} if the values are equal.
* @deprecated as of 2.2 his method considers that {@code NaN == NaN}. In release
* 3.0, the semantics will change in order to comply with IEEE754 where it
* is specified that {@code NaN != NaN}.
* New methods have been added for those cases wher the old semantics is
* useful (see e.g. {@link #equalsIncludingNaN(float,float)
* equalsIncludingNaN}.
*/
@Deprecated
public static boolean equals(float x, float y) {
return (Float.isNaN(x) && Float.isNaN(y)) || x == y;
}
/**
* Returns true if both arguments are NaN or neither is NaN and they are
* equal as defined by {@link #equals(float,float,int) equals(x, y, 1)}.
*
* @param x first value
* @param y second value
* @return {@code true} if the values are equal or both are NaN.
* @since 2.2
*/
public static boolean equalsIncludingNaN(float x, float y) {
return (Float.isNaN(x) && Float.isNaN(y)) || equals(x, y, 1);
}
/**
* Returns true if both arguments are equal or within the range of allowed
* error (inclusive).
*
* @param x first value
* @param y second value
* @param eps the amount of absolute error to allow.
* @return {@code true} if the values are equal or within range of each other.
* @since 2.2
*/
public static boolean equals(float x, float y, float eps) {
return equals(x, y, 1) || FastMath.abs(y - x) <= eps;
}
/**
* Returns true if both arguments are NaN or are equal or within the range
* of allowed error (inclusive).
*
* @param x first value
* @param y second value
* @param eps the amount of absolute error to allow.
* @return {@code true} if the values are equal or within range of each other,
* or both are NaN.
* @since 2.2
*/
public static boolean equalsIncludingNaN(float x, float y, float eps) {
return equalsIncludingNaN(x, y) || (FastMath.abs(y - x) <= eps);
}
/**
* Returns true if both arguments are equal or within the range of allowed
* error (inclusive).
* Two float numbers are considered equal if there are {@code (maxUlps - 1)}
* (or fewer) floating point numbers between them, i.e. two adjacent floating
* point numbers are considered equal.
* Adapted from <a
* href="http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm">
* Bruce Dawson</a>
*
* @param x first value
* @param y second value
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point
* values between {@code x} and {@code y}.
* @return {@code true} if there are fewer than {@code maxUlps} floating
* point values between {@code x} and {@code y}.
* @since 2.2
*/
public static boolean equals(float x, float y, int maxUlps) {
// Check that "maxUlps" is non-negative and small enough so that
// NaN won't compare as equal to anything (except another NaN).
assert maxUlps > 0 && maxUlps < NAN_GAP;
int xInt = Float.floatToIntBits(x);
int yInt = Float.floatToIntBits(y);
// Make lexicographically ordered as a two's-complement integer.
if (xInt < 0) {
xInt = SGN_MASK_FLOAT - xInt;
}
if (yInt < 0) {
yInt = SGN_MASK_FLOAT - yInt;
}
final boolean isEqual = FastMath.abs(xInt - yInt) <= maxUlps;
return isEqual && !Float.isNaN(x) && !Float.isNaN(y);
}
/**
* Returns true if both arguments are NaN or if they are equal as defined
* by {@link #equals(float,float,int) equals(x, y, maxUlps)}.
*
* @param x first value
* @param y second value
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point
* values between {@code x} and {@code y}.
* @return {@code true} if both arguments are NaN or if there are less than
* {@code maxUlps} floating point values between {@code x} and {@code y}.
* @since 2.2
*/
public static boolean equalsIncludingNaN(float x, float y, int maxUlps) {
return (Float.isNaN(x) && Float.isNaN(y)) || equals(x, y, maxUlps);
}
/**
* Returns true iff both arguments are null or have same dimensions and all
* their elements are equal as defined by
* {@link #equals(float,float)}.
*
* @param x first array
* @param y second array
* @return true if the values are both null or have same dimension
* and equal elements.
* @deprecated as of 2.2 this method considers that {@code NaN == NaN}. In release
* 3.0, the semantics will change in order to comply with IEEE754 where it
* is specified that {@code NaN != NaN}.
* New methods have been added for those cases where the old semantics is
* useful (see e.g. {@link #equalsIncludingNaN(float[],float[])
* equalsIncludingNaN}.
*/
@Deprecated
public static boolean equals(float[] x, float[] y) {
if ((x == null) || (y == null)) {
return !((x == null) ^ (y == null));
}
if (x.length != y.length) {
return false;
}
for (int i = 0; i < x.length; ++i) {
if (!equals(x[i], y[i])) {
return false;
}
}
return true;
}
/**
* Returns true iff both arguments are null or have same dimensions and all
* their elements are equal as defined by
* {@link #equalsIncludingNaN(float,float)}.
*
* @param x first array
* @param y second array
* @return true if the values are both null or have same dimension and
* equal elements
* @since 2.2
*/
public static boolean equalsIncludingNaN(float[] x, float[] y) {
if ((x == null) || (y == null)) {
return !((x == null) ^ (y == null));
}
if (x.length != y.length) {
return false;
}
for (int i = 0; i < x.length; ++i) {
if (!equalsIncludingNaN(x[i], y[i])) {
return false;
}
}
return true;
}
/**
* Returns true iff both arguments are NaN or neither is NaN and they are
* equal
*
* <p>This method considers that {@code NaN == NaN}. In release
* 3.0, the semantics will change in order to comply with IEEE754 where it
* is specified that {@code NaN != NaN}.
* New methods have been added for those cases where the old semantics
* (w.r.t. NaN) is useful (see e.g.
* {@link #equalsIncludingNaN(double,double, double) equalsIncludingNaN}.
* </p>
*
* @param x first value
* @param y second value
* @return {@code true} if the values are equal.
*/
public static boolean equals(double x, double y) {
return (Double.isNaN(x) && Double.isNaN(y)) || x == y;
}
/**
* Returns true if both arguments are NaN or neither is NaN and they are
* equal as defined by {@link #equals(double,double,int) equals(x, y, 1)}.
*
* @param x first value
* @param y second value
* @return {@code true} if the values are equal or both are NaN.
* @since 2.2
*/
public static boolean equalsIncludingNaN(double x, double y) {
return (Double.isNaN(x) && Double.isNaN(y)) || equals(x, y, 1);
}
/**
* Returns true if both arguments are equal or within the range of allowed
* error (inclusive).
* <p>
* Two NaNs are considered equals, as are two infinities with same sign.
* </p>
* <p>This method considers that {@code NaN == NaN}. In release
* 3.0, the semantics will change in order to comply with IEEE754 where it
* is specified that {@code NaN != NaN}.
* New methods have been added for those cases where the old semantics
* (w.r.t. NaN) is useful (see e.g.
* {@link #equalsIncludingNaN(double,double, double) equalsIncludingNaN}.
* </p>
* @param x first value
* @param y second value
* @param eps the amount of absolute error to allow.
* @return {@code true} if the values are equal or within range of each other.
*/
public static boolean equals(double x, double y, double eps) {
return equals(x, y) || FastMath.abs(y - x) <= eps;
}
/**
* Returns true if both arguments are NaN or are equal or within the range
* of allowed error (inclusive).
*
* @param x first value
* @param y second value
* @param eps the amount of absolute error to allow.
* @return {@code true} if the values are equal or within range of each other,
* or both are NaN.
* @since 2.2
*/
public static boolean equalsIncludingNaN(double x, double y, double eps) {
return equalsIncludingNaN(x, y) || (FastMath.abs(y - x) <= eps);
}
/**
* Returns true if both arguments are equal or within the range of allowed
* error (inclusive).
* Two float numbers are considered equal if there are {@code (maxUlps - 1)}
* (or fewer) floating point numbers between them, i.e. two adjacent floating
* point numbers are considered equal.
* Adapted from <a
* href="http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm">
* Bruce Dawson</a>
*
* <p>This method considers that {@code NaN == NaN}. In release
* 3.0, the semantics will change in order to comply with IEEE754 where it
* is specified that {@code NaN != NaN}.
* New methods have been added for those cases where the old semantics
* (w.r.t. NaN) is useful (see e.g.
* {@link #equalsIncludingNaN(double,double, int) equalsIncludingNaN}.
* </p>
*
* @param x first value
* @param y second value
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point
* values between {@code x} and {@code y}.
* @return {@code true} if there are fewer than {@code maxUlps} floating
* point values between {@code x} and {@code y}.
*/
public static boolean equals(double x, double y, int maxUlps) {
// Check that "maxUlps" is non-negative and small enough so that
// NaN won't compare as equal to anything (except another NaN).
assert maxUlps > 0 && maxUlps < NAN_GAP;
long xInt = Double.doubleToLongBits(x);
long yInt = Double.doubleToLongBits(y);
// Make lexicographically ordered as a two's-complement integer.
if (xInt < 0) {
xInt = SGN_MASK - xInt;
}
if (yInt < 0) {
yInt = SGN_MASK - yInt;
}
return FastMath.abs(xInt - yInt) <= maxUlps;
}
/**
* Returns true if both arguments are NaN or if they are equal as defined
* by {@link #equals(double,double,int) equals(x, y, maxUlps}.
*
* @param x first value
* @param y second value
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point
* values between {@code x} and {@code y}.
* @return {@code true} if both arguments are NaN or if there are less than
* {@code maxUlps} floating point values between {@code x} and {@code y}.
* @since 2.2
*/
public static boolean equalsIncludingNaN(double x, double y, int maxUlps) {
return (Double.isNaN(x) && Double.isNaN(y)) || equals(x, y, maxUlps);
}
/**
* Returns true iff both arguments are null or have same dimensions and all
* their elements are equal as defined by
* {@link #equals(double,double)}.
*
* <p>This method considers that {@code NaN == NaN}. In release
* 3.0, the semantics will change in order to comply with IEEE754 where it
* is specified that {@code NaN != NaN}.
* New methods have been added for those cases wher the old semantics is
* useful (see e.g. {@link #equalsIncludingNaN(double[],double[])
* equalsIncludingNaN}.
* </p>
* @param x first array
* @param y second array
* @return true if the values are both null or have same dimension
* and equal elements.
*/
public static boolean equals(double[] x, double[] y) {
if ((x == null) || (y == null)) {
return !((x == null) ^ (y == null));
}
if (x.length != y.length) {
return false;
}
for (int i = 0; i < x.length; ++i) {
if (!equals(x[i], y[i])) {
return false;
}
}
return true;
}
/**
* Returns true iff both arguments are null or have same dimensions and all
* their elements are equal as defined by
* {@link #equalsIncludingNaN(double,double)}.
*
* @param x first array
* @param y second array
* @return true if the values are both null or have same dimension and
* equal elements
* @since 2.2
*/
public static boolean equalsIncludingNaN(double[] x, double[] y) {
if ((x == null) || (y == null)) {
return !((x == null) ^ (y == null));
}
if (x.length != y.length) {
return false;
}
for (int i = 0; i < x.length; ++i) {
if (!equalsIncludingNaN(x[i], y[i])) {
return false;
}
}
return true;
}
/**
* Returns n!. Shorthand for <code>n</code> <a
* href="http://mathworld.wolfram.com/Factorial.html"> Factorial</a>, the
* product of the numbers <code>1,...,n</code>.
* <p>
* <Strong>Preconditions</strong>:
* <ul>
* <li> <code>n >= 0</code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
* <li> The result is small enough to fit into a <code>long</code>. The
* largest value of <code>n</code> for which <code>n!</code> <
* Long.MAX_VALUE</code> is 20. If the computed value exceeds <code>Long.MAX_VALUE</code>
* an <code>ArithMeticException </code> is thrown.</li>
* </ul>
* </p>
*
* @param n argument
* @return <code>n!</code>
* @throws ArithmeticException if the result is too large to be represented
* by a long integer.
* @throws IllegalArgumentException if n < 0
*/
public static long factorial(final int n) {
if (n < 0) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER,
n);
}
if (n > 20) {
throw new ArithmeticException(
"factorial value is too large to fit in a long");
}
return FACTORIALS[n];
}
/**
* Returns n!. Shorthand for <code>n</code> <a
* href="http://mathworld.wolfram.com/Factorial.html"> Factorial</a>, the
* product of the numbers <code>1,...,n</code> as a <code>double</code>.
* <p>
* <Strong>Preconditions</strong>:
* <ul>
* <li> <code>n >= 0</code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
* <li> The result is small enough to fit into a <code>double</code>. The
* largest value of <code>n</code> for which <code>n!</code> <
* Double.MAX_VALUE</code> is 170. If the computed value exceeds
* Double.MAX_VALUE, Double.POSITIVE_INFINITY is returned</li>
* </ul>
* </p>
*
* @param n argument
* @return <code>n!</code>
* @throws IllegalArgumentException if n < 0
*/
public static double factorialDouble(final int n) {
if (n < 0) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER,
n);
}
if (n < 21) {
return factorial(n);
}
return FastMath.floor(FastMath.exp(factorialLog(n)) + 0.5);
}
/**
* Returns the natural logarithm of n!.
* <p>
* <Strong>Preconditions</strong>:
* <ul>
* <li> <code>n >= 0</code> (otherwise
* <code>IllegalArgumentException</code> is thrown)</li>
* </ul></p>
*
* @param n argument
* @return <code>n!</code>
* @throws IllegalArgumentException if preconditions are not met.
*/
public static double factorialLog(final int n) {
if (n < 0) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER,
n);
}
if (n < 21) {
return FastMath.log(factorial(n));
}
double logSum = 0;
for (int i = 2; i <= n; i++) {
logSum += FastMath.log(i);
}
return logSum;
}
/**
* <p>
* Gets the greatest common divisor of the absolute value of two numbers,
* using the "binary gcd" method which avoids division and modulo
* operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef
* Stein (1961).
* </p>
* Special cases:
* <ul>
* <li>The invocations
* <code>gcd(Integer.MIN_VALUE, Integer.MIN_VALUE)</code>,
* <code>gcd(Integer.MIN_VALUE, 0)</code> and
* <code>gcd(0, Integer.MIN_VALUE)</code> throw an
* <code>ArithmeticException</code>, because the result would be 2^31, which
* is too large for an int value.</li>
* <li>The result of <code>gcd(x, x)</code>, <code>gcd(0, x)</code> and
* <code>gcd(x, 0)</code> is the absolute value of <code>x</code>, except
* for the special cases above.
* <li>The invocation <code>gcd(0, 0)</code> is the only one which returns
* <code>0</code>.</li>
* </ul>
*
* @param p any number
* @param q any number
* @return the greatest common divisor, never negative
* @throws ArithmeticException if the result cannot be represented as a
* nonnegative int value
* @since 1.1
*/
public static int gcd(final int p, final int q) {
int u = p;
int v = q;
if ((u == 0) || (v == 0)) {
if ((u == Integer.MIN_VALUE) || (v == Integer.MIN_VALUE)) {
throw MathRuntimeException.createArithmeticException(
LocalizedFormats.GCD_OVERFLOW_32_BITS,
p, q);
}
return FastMath.abs(u) + FastMath.abs(v);
}
// keep u and v negative, as negative integers range down to
// -2^31, while positive numbers can only be as large as 2^31-1
// (i.e. we can't necessarily negate a negative number without
// overflow)
/* assert u!=0 && v!=0; */
if (u > 0) {
u = -u;
} // make u negative
if (v > 0) {
v = -v;
} // make v negative
// B1. [Find power of 2]
int k = 0;
while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are
// both even...
u /= 2;
v /= 2;
k++; // cast out twos.
}
if (k == 31) {
throw MathRuntimeException.createArithmeticException(
LocalizedFormats.GCD_OVERFLOW_32_BITS,
p, q);
}
// B2. Initialize: u and v have been divided by 2^k and at least
// one is odd.
int t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */;
// t negative: u was odd, v may be even (t replaces v)
// t positive: u was even, v is odd (t replaces u)
do {
/* assert u<0 && v<0; */
// B4/B3: cast out twos from t.
while ((t & 1) == 0) { // while t is even..
t /= 2; // cast out twos
}
// B5 [reset max(u,v)]
if (t > 0) {
u = -t;
} else {
v = t;
}
// B6/B3. at this point both u and v should be odd.
t = (v - u) / 2;
// |u| larger: t positive (replace u)
// |v| larger: t negative (replace v)
} while (t != 0);
return -u * (1 << k); // gcd is u*2^k
}
/**
* <p>
* Gets the greatest common divisor of the absolute value of two numbers,
* using the "binary gcd" method which avoids division and modulo
* operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef
* Stein (1961).
* </p>
* Special cases:
* <ul>
* <li>The invocations
* <code>gcd(Long.MIN_VALUE, Long.MIN_VALUE)</code>,
* <code>gcd(Long.MIN_VALUE, 0L)</code> and
* <code>gcd(0L, Long.MIN_VALUE)</code> throw an
* <code>ArithmeticException</code>, because the result would be 2^63, which
* is too large for a long value.</li>
* <li>The result of <code>gcd(x, x)</code>, <code>gcd(0L, x)</code> and
* <code>gcd(x, 0L)</code> is the absolute value of <code>x</code>, except
* for the special cases above.
* <li>The invocation <code>gcd(0L, 0L)</code> is the only one which returns
* <code>0L</code>.</li>
* </ul>
*
* @param p any number
* @param q any number
* @return the greatest common divisor, never negative
* @throws ArithmeticException if the result cannot be represented as a nonnegative long
* value
* @since 2.1
*/
public static long gcd(final long p, final long q) {
long u = p;
long v = q;
if ((u == 0) || (v == 0)) {
if ((u == Long.MIN_VALUE) || (v == Long.MIN_VALUE)){
throw MathRuntimeException.createArithmeticException(
LocalizedFormats.GCD_OVERFLOW_64_BITS,
p, q);
}
return FastMath.abs(u) + FastMath.abs(v);
}
// keep u and v negative, as negative integers range down to
// -2^63, while positive numbers can only be as large as 2^63-1
// (i.e. we can't necessarily negate a negative number without
// overflow)
/* assert u!=0 && v!=0; */
if (u > 0) {
u = -u;
} // make u negative
if (v > 0) {
v = -v;
} // make v negative
// B1. [Find power of 2]
int k = 0;
while ((u & 1) == 0 && (v & 1) == 0 && k < 63) { // while u and v are
// both even...
u /= 2;
v /= 2;
k++; // cast out twos.
}
if (k == 63) {
throw MathRuntimeException.createArithmeticException(
LocalizedFormats.GCD_OVERFLOW_64_BITS,
p, q);
}
// B2. Initialize: u and v have been divided by 2^k and at least
// one is odd.
long t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */;
// t negative: u was odd, v may be even (t replaces v)
// t positive: u was even, v is odd (t replaces u)
do {
/* assert u<0 && v<0; */
// B4/B3: cast out twos from t.
while ((t & 1) == 0) { // while t is even..
t /= 2; // cast out twos
}
// B5 [reset max(u,v)]
if (t > 0) {
u = -t;
} else {
v = t;
}
// B6/B3. at this point both u and v should be odd.
t = (v - u) / 2;
// |u| larger: t positive (replace u)
// |v| larger: t negative (replace v)
} while (t != 0);
return -u * (1L << k); // gcd is u*2^k
}
/**
* Returns an integer hash code representing the given double value.
*
* @param value the value to be hashed
* @return the hash code
*/
public static int hash(double value) {
return new Double(value).hashCode();
}
/**
* Returns an integer hash code representing the given double array.
*
* @param value the value to be hashed (may be null)
* @return the hash code
* @since 1.2
*/
public static int hash(double[] value) {
return Arrays.hashCode(value);
}
/**
* For a byte value x, this method returns (byte)(+1) if x >= 0 and
* (byte)(-1) if x < 0.
*
* @param x the value, a byte
* @return (byte)(+1) or (byte)(-1), depending on the sign of x
*/
public static byte indicator(final byte x) {
return (x >= ZB) ? PB : NB;
}
/**
* For a double precision value x, this method returns +1.0 if x >= 0 and
* -1.0 if x < 0. Returns <code>NaN</code> if <code>x</code> is
* <code>NaN</code>.
*
* @param x the value, a double
* @return +1.0 or -1.0, depending on the sign of x
*/
public static double indicator(final double x) {
if (Double.isNaN(x)) {
return Double.NaN;
}
return (x >= 0.0) ? 1.0 : -1.0;
}
/**
* For a float value x, this method returns +1.0F if x >= 0 and -1.0F if x <
* 0. Returns <code>NaN</code> if <code>x</code> is <code>NaN</code>.
*
* @param x the value, a float
* @return +1.0F or -1.0F, depending on the sign of x
*/
public static float indicator(final float x) {
if (Float.isNaN(x)) {
return Float.NaN;
}
return (x >= 0.0F) ? 1.0F : -1.0F;
}
/**
* For an int value x, this method returns +1 if x >= 0 and -1 if x < 0.
*
* @param x the value, an int
* @return +1 or -1, depending on the sign of x
*/
public static int indicator(final int x) {
return (x >= 0) ? 1 : -1;
}
/**
* For a long value x, this method returns +1L if x >= 0 and -1L if x < 0.
*
* @param x the value, a long
* @return +1L or -1L, depending on the sign of x
*/
public static long indicator(final long x) {
return (x >= 0L) ? 1L : -1L;
}
/**
* For a short value x, this method returns (short)(+1) if x >= 0 and
* (short)(-1) if x < 0.
*
* @param x the value, a short
* @return (short)(+1) or (short)(-1), depending on the sign of x
*/
public static short indicator(final short x) {
return (x >= ZS) ? PS : NS;
}
/**
* <p>
* Returns the least common multiple of the absolute value of two numbers,
* using the formula <code>lcm(a,b) = (a / gcd(a,b)) * b</code>.
* </p>
* Special cases:
* <ul>
* <li>The invocations <code>lcm(Integer.MIN_VALUE, n)</code> and
* <code>lcm(n, Integer.MIN_VALUE)</code>, where <code>abs(n)</code> is a
* power of 2, throw an <code>ArithmeticException</code>, because the result
* would be 2^31, which is too large for an int value.</li>
* <li>The result of <code>lcm(0, x)</code> and <code>lcm(x, 0)</code> is
* <code>0</code> for any <code>x</code>.
* </ul>
*
* @param a any number
* @param b any number
* @return the least common multiple, never negative
* @throws ArithmeticException
* if the result cannot be represented as a nonnegative int
* value
* @since 1.1
*/
public static int lcm(int a, int b) {
if (a==0 || b==0){
return 0;
}
int lcm = FastMath.abs(mulAndCheck(a / gcd(a, b), b));
if (lcm == Integer.MIN_VALUE) {
throw MathRuntimeException.createArithmeticException(
LocalizedFormats.LCM_OVERFLOW_32_BITS,
a, b);
}
return lcm;
}
/**
* <p>
* Returns the least common multiple of the absolute value of two numbers,
* using the formula <code>lcm(a,b) = (a / gcd(a,b)) * b</code>.
* </p>
* Special cases:
* <ul>
* <li>The invocations <code>lcm(Long.MIN_VALUE, n)</code> and
* <code>lcm(n, Long.MIN_VALUE)</code>, where <code>abs(n)</code> is a
* power of 2, throw an <code>ArithmeticException</code>, because the result
* would be 2^63, which is too large for an int value.</li>
* <li>The result of <code>lcm(0L, x)</code> and <code>lcm(x, 0L)</code> is
* <code>0L</code> for any <code>x</code>.
* </ul>
*
* @param a any number
* @param b any number
* @return the least common multiple, never negative
* @throws ArithmeticException if the result cannot be represented as a nonnegative long
* value
* @since 2.1
*/
public static long lcm(long a, long b) {
if (a==0 || b==0){
return 0;
}
long lcm = FastMath.abs(mulAndCheck(a / gcd(a, b), b));
if (lcm == Long.MIN_VALUE){
throw MathRuntimeException.createArithmeticException(
LocalizedFormats.LCM_OVERFLOW_64_BITS,
a, b);
}
return lcm;
}
/**
* <p>Returns the
* <a href="http://mathworld.wolfram.com/Logarithm.html">logarithm</a>
* for base <code>b</code> of <code>x</code>.
* </p>
* <p>Returns <code>NaN<code> if either argument is negative. If
* <code>base</code> is 0 and <code>x</code> is positive, 0 is returned.
* If <code>base</code> is positive and <code>x</code> is 0,
* <code>Double.NEGATIVE_INFINITY</code> is returned. If both arguments
* are 0, the result is <code>NaN</code>.</p>
*
* @param base the base of the logarithm, must be greater than 0
* @param x argument, must be greater than 0
* @return the value of the logarithm - the number y such that base^y = x.
* @since 1.2
*/
public static double log(double base, double x) {
return FastMath.log(x)/FastMath.log(base);
}
/**
* Multiply two integers, checking for overflow.
*
* @param x a factor
* @param y a factor
* @return the product <code>x*y</code>
* @throws ArithmeticException if the result can not be represented as an
* int
* @since 1.1
*/
public static int mulAndCheck(int x, int y) {
long m = ((long)x) * ((long)y);
if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
throw new ArithmeticException("overflow: mul");
}
return (int)m;
}
/**
* Multiply two long integers, checking for overflow.
*
* @param a first value
* @param b second value
* @return the product <code>a * b</code>
* @throws ArithmeticException if the result can not be represented as an
* long
* @since 1.2
*/
public static long mulAndCheck(long a, long b) {
long ret;
String msg = "overflow: multiply";
if (a > b) {
// use symmetry to reduce boundary cases
ret = mulAndCheck(b, a);
} else {
if (a < 0) {
if (b < 0) {
// check for positive overflow with negative a, negative b
if (a >= Long.MAX_VALUE / b) {
ret = a * b;
} else {
throw new ArithmeticException(msg);
}
} else if (b > 0) {
// check for negative overflow with negative a, positive b
if (Long.MIN_VALUE / b <= a) {
ret = a * b;
} else {
throw new ArithmeticException(msg);
}
} else {
// assert b == 0
ret = 0;
}
} else if (a > 0) {
// assert a > 0
// assert b > 0
// check for positive overflow with positive a, positive b
if (a <= Long.MAX_VALUE / b) {
ret = a * b;
} else {
throw new ArithmeticException(msg);
}
} else {
// assert a == 0
ret = 0;
}
}
return ret;
}
/**
* Get the next machine representable number after a number, moving
* in the direction of another number.
* <p>
* If <code>direction</code> is greater than or equal to<code>d</code>,
* the smallest machine representable number strictly greater than
* <code>d</code> is returned; otherwise the largest representable number
* strictly less than <code>d</code> is returned.</p>
* <p>
* If <code>d</code> is NaN or Infinite, it is returned unchanged.</p>
*
* @param d base number
* @param direction (the only important thing is whether
* direction is greater or smaller than d)
* @return the next machine representable number in the specified direction
* @since 1.2
* @deprecated as of 2.2, replaced by {@link FastMath#nextAfter(double, double)}
* which handles Infinities differently, and returns direction if d and direction compare equal.
*/
@Deprecated
public static double nextAfter(double d, double direction) {
// handling of some important special cases
if (Double.isNaN(d) || Double.isInfinite(d)) {
return d;
} else if (d == 0) {
return (direction < 0) ? -Double.MIN_VALUE : Double.MIN_VALUE;
}
// special cases MAX_VALUE to infinity and MIN_VALUE to 0
// are handled just as normal numbers
// split the double in raw components
long bits = Double.doubleToLongBits(d);
long sign = bits & 0x8000000000000000L;
long exponent = bits & 0x7ff0000000000000L;
long mantissa = bits & 0x000fffffffffffffL;
if (d * (direction - d) >= 0) {
// we should increase the mantissa
if (mantissa == 0x000fffffffffffffL) {
return Double.longBitsToDouble(sign |
(exponent + 0x0010000000000000L));
} else {
return Double.longBitsToDouble(sign |
exponent | (mantissa + 1));
}
} else {
// we should decrease the mantissa
if (mantissa == 0L) {
return Double.longBitsToDouble(sign |
(exponent - 0x0010000000000000L) |
0x000fffffffffffffL);
} else {
return Double.longBitsToDouble(sign |
exponent | (mantissa - 1));
}
}
}
/**
* Scale a number by 2<sup>scaleFactor</sup>.
* <p>If <code>d</code> is 0 or NaN or Infinite, it is returned unchanged.</p>
*
* @param d base number
* @param scaleFactor power of two by which d should be multiplied
* @return d &times; 2<sup>scaleFactor</sup>
* @since 2.0
* @deprecated as of 2.2, replaced by {@link FastMath#scalb(double, int)}
*/
@Deprecated
public static double scalb(final double d, final int scaleFactor) {
return FastMath.scalb(d, scaleFactor);
}
/**
* Normalize an angle in a 2&pi wide interval around a center value.
* <p>This method has three main uses:</p>
* <ul>
* <li>normalize an angle between 0 and 2&pi;:<br/>
* <code>a = MathUtils.normalizeAngle(a, FastMath.PI);</code></li>
* <li>normalize an angle between -&pi; and +&pi;<br/>
* <code>a = MathUtils.normalizeAngle(a, 0.0);</code></li>
* <li>compute the angle between two defining angular positions:<br>
* <code>angle = MathUtils.normalizeAngle(end, start) - start;</code></li>
* </ul>
* <p>Note that due to numerical accuracy and since &pi; cannot be represented
* exactly, the result interval is <em>closed</em>, it cannot be half-closed
* as would be more satisfactory in a purely mathematical view.</p>
* @param a angle to normalize
* @param center center of the desired 2&pi; interval for the result
* @return a-2k&pi; with integer k and center-&pi; &lt;= a-2k&pi; &lt;= center+&pi;
* @since 1.2
*/
public static double normalizeAngle(double a, double center) {
return a - TWO_PI * FastMath.floor((a + FastMath.PI - center) / TWO_PI);
}
/**
* <p>Normalizes an array to make it sum to a specified value.
* Returns the result of the transformation <pre>
* x |-> x * normalizedSum / sum
* </pre>
* applied to each non-NaN element x of the input array, where sum is the
* sum of the non-NaN entries in the input array.</p>
*
* <p>Throws IllegalArgumentException if <code>normalizedSum</code> is infinite
* or NaN and ArithmeticException if the input array contains any infinite elements
* or sums to 0</p>
*
* <p>Ignores (i.e., copies unchanged to the output array) NaNs in the input array.</p>
*
* @param values input array to be normalized
* @param normalizedSum target sum for the normalized array
* @return normalized array
* @throws ArithmeticException if the input array contains infinite elements or sums to zero
* @throws IllegalArgumentException if the target sum is infinite or NaN
* @since 2.1
*/
public static double[] normalizeArray(double[] values, double normalizedSum)
throws ArithmeticException, IllegalArgumentException {
if (Double.isInfinite(normalizedSum)) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.NORMALIZE_INFINITE);
}
if (Double.isNaN(normalizedSum)) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.NORMALIZE_NAN);
}
double sum = 0d;
final int len = values.length;
double[] out = new double[len];
for (int i = 0; i < len; i++) {
if (Double.isInfinite(values[i])) {
throw MathRuntimeException.createArithmeticException(
LocalizedFormats.INFINITE_ARRAY_ELEMENT, values[i], i);
}
if (!Double.isNaN(values[i])) {
sum += values[i];
}
}
if (sum == 0) {
throw MathRuntimeException.createArithmeticException(LocalizedFormats.ARRAY_SUMS_TO_ZERO);
}
for (int i = 0; i < len; i++) {
if (Double.isNaN(values[i])) {
out[i] = Double.NaN;
} else {
out[i] = values[i] * normalizedSum / sum;
}
}
return out;
}
/**
* Round the given value to the specified number of decimal places. The
* value is rounded using the {@link BigDecimal#ROUND_HALF_UP} method.
*
* @param x the value to round.
* @param scale the number of digits to the right of the decimal point.
* @return the rounded value.
* @since 1.1
*/
public static double round(double x, int scale) {
return round(x, scale, BigDecimal.ROUND_HALF_UP);
}
/**
* Round the given value to the specified number of decimal places. The
* value is rounded using the given method which is any method defined in
* {@link BigDecimal}.
*
* @param x the value to round.
* @param scale the number of digits to the right of the decimal point.
* @param roundingMethod the rounding method as defined in
* {@link BigDecimal}.
* @return the rounded value.
* @since 1.1
*/
public static double round(double x, int scale, int roundingMethod) {
try {
return (new BigDecimal
(Double.toString(x))
.setScale(scale, roundingMethod))
.doubleValue();
} catch (NumberFormatException ex) {
if (Double.isInfinite(x)) {
return x;
} else {
return Double.NaN;
}
}
}
/**
* Round the given value to the specified number of decimal places. The
* value is rounding using the {@link BigDecimal#ROUND_HALF_UP} method.
*
* @param x the value to round.
* @param scale the number of digits to the right of the decimal point.
* @return the rounded value.
* @since 1.1
*/
public static float round(float x, int scale) {
return round(x, scale, BigDecimal.ROUND_HALF_UP);
}
/**
* Round the given value to the specified number of decimal places. The
* value is rounded using the given method which is any method defined in
* {@link BigDecimal}.
*
* @param x the value to round.
* @param scale the number of digits to the right of the decimal point.
* @param roundingMethod the rounding method as defined in
* {@link BigDecimal}.
* @return the rounded value.
* @since 1.1
*/
public static float round(float x, int scale, int roundingMethod) {
float sign = indicator(x);
float factor = (float)FastMath.pow(10.0f, scale) * sign;
return (float)roundUnscaled(x * factor, sign, roundingMethod) / factor;
}
/**
* Round the given non-negative, value to the "nearest" integer. Nearest is
* determined by the rounding method specified. Rounding methods are defined
* in {@link BigDecimal}.
*
* @param unscaled the value to round.
* @param sign the sign of the original, scaled value.
* @param roundingMethod the rounding method as defined in
* {@link BigDecimal}.
* @return the rounded value.
* @since 1.1
*/
private static double roundUnscaled(double unscaled, double sign,
int roundingMethod) {
switch (roundingMethod) {
case BigDecimal.ROUND_CEILING :
if (sign == -1) {
unscaled = FastMath.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY));
} else {
unscaled = FastMath.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY));
}
break;
case BigDecimal.ROUND_DOWN :
unscaled = FastMath.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY));
break;
case BigDecimal.ROUND_FLOOR :
if (sign == -1) {
unscaled = FastMath.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY));
} else {
unscaled = FastMath.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY));
}
break;
case BigDecimal.ROUND_HALF_DOWN : {
unscaled = nextAfter(unscaled, Double.NEGATIVE_INFINITY);
double fraction = unscaled - FastMath.floor(unscaled);
if (fraction > 0.5) {
unscaled = FastMath.ceil(unscaled);
} else {
unscaled = FastMath.floor(unscaled);
}
break;
}
case BigDecimal.ROUND_HALF_EVEN : {
double fraction = unscaled - FastMath.floor(unscaled);
if (fraction > 0.5) {
unscaled = FastMath.ceil(unscaled);
} else if (fraction < 0.5) {
unscaled = FastMath.floor(unscaled);
} else {
// The following equality test is intentional and needed for rounding purposes
if (FastMath.floor(unscaled) / 2.0 == FastMath.floor(Math
.floor(unscaled) / 2.0)) { // even
unscaled = FastMath.floor(unscaled);
} else { // odd
unscaled = FastMath.ceil(unscaled);
}
}
break;
}
case BigDecimal.ROUND_HALF_UP : {
unscaled = nextAfter(unscaled, Double.POSITIVE_INFINITY);
double fraction = unscaled - FastMath.floor(unscaled);
if (fraction >= 0.5) {
unscaled = FastMath.ceil(unscaled);
} else {
unscaled = FastMath.floor(unscaled);
}
break;
}
case BigDecimal.ROUND_UNNECESSARY :
if (unscaled != FastMath.floor(unscaled)) {
throw new ArithmeticException("Inexact result from rounding");
}
break;
case BigDecimal.ROUND_UP :
unscaled = FastMath.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY));
break;
default :
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.INVALID_ROUNDING_METHOD,
roundingMethod,
"ROUND_CEILING", BigDecimal.ROUND_CEILING,
"ROUND_DOWN", BigDecimal.ROUND_DOWN,
"ROUND_FLOOR", BigDecimal.ROUND_FLOOR,
"ROUND_HALF_DOWN", BigDecimal.ROUND_HALF_DOWN,
"ROUND_HALF_EVEN", BigDecimal.ROUND_HALF_EVEN,
"ROUND_HALF_UP", BigDecimal.ROUND_HALF_UP,
"ROUND_UNNECESSARY", BigDecimal.ROUND_UNNECESSARY,
"ROUND_UP", BigDecimal.ROUND_UP);
}
return unscaled;
}
/**
* Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
* for byte value <code>x</code>.
* <p>
* For a byte value x, this method returns (byte)(+1) if x > 0, (byte)(0) if
* x = 0, and (byte)(-1) if x < 0.</p>
*
* @param x the value, a byte
* @return (byte)(+1), (byte)(0), or (byte)(-1), depending on the sign of x
*/
public static byte sign(final byte x) {
return (x == ZB) ? ZB : (x > ZB) ? PB : NB;
}
/**
* Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
* for double precision <code>x</code>.
* <p>
* For a double value <code>x</code>, this method returns
* <code>+1.0</code> if <code>x > 0</code>, <code>0.0</code> if
* <code>x = 0.0</code>, and <code>-1.0</code> if <code>x < 0</code>.
* Returns <code>NaN</code> if <code>x</code> is <code>NaN</code>.</p>
*
* @param x the value, a double
* @return +1.0, 0.0, or -1.0, depending on the sign of x
*/
public static double sign(final double x) {
if (Double.isNaN(x)) {
return Double.NaN;
}
return (x == 0.0) ? 0.0 : (x > 0.0) ? 1.0 : -1.0;
}
/**
* Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
* for float value <code>x</code>.
* <p>
* For a float value x, this method returns +1.0F if x > 0, 0.0F if x =
* 0.0F, and -1.0F if x < 0. Returns <code>NaN</code> if <code>x</code>
* is <code>NaN</code>.</p>
*
* @param x the value, a float
* @return +1.0F, 0.0F, or -1.0F, depending on the sign of x
*/
public static float sign(final float x) {
if (Float.isNaN(x)) {
return Float.NaN;
}
return (x == 0.0F) ? 0.0F : (x > 0.0F) ? 1.0F : -1.0F;
}
/**
* Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
* for int value <code>x</code>.
* <p>
* For an int value x, this method returns +1 if x > 0, 0 if x = 0, and -1
* if x < 0.</p>
*
* @param x the value, an int
* @return +1, 0, or -1, depending on the sign of x
*/
public static int sign(final int x) {
return (x == 0) ? 0 : (x > 0) ? 1 : -1;
}
/**
* Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
* for long value <code>x</code>.
* <p>
* For a long value x, this method returns +1L if x > 0, 0L if x = 0, and
* -1L if x < 0.</p>
*
* @param x the value, a long
* @return +1L, 0L, or -1L, depending on the sign of x
*/
public static long sign(final long x) {
return (x == 0L) ? 0L : (x > 0L) ? 1L : -1L;
}
/**
* Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
* for short value <code>x</code>.
* <p>
* For a short value x, this method returns (short)(+1) if x > 0, (short)(0)
* if x = 0, and (short)(-1) if x < 0.</p>
*
* @param x the value, a short
* @return (short)(+1), (short)(0), or (short)(-1), depending on the sign of
* x
*/
public static short sign(final short x) {
return (x == ZS) ? ZS : (x > ZS) ? PS : NS;
}
/**
* Returns the <a href="http://mathworld.wolfram.com/HyperbolicSine.html">
* hyperbolic sine</a> of x.
*
* @param x double value for which to find the hyperbolic sine
* @return hyperbolic sine of x
*/
public static double sinh(double x) {
return (FastMath.exp(x) - FastMath.exp(-x)) / 2.0;
}
/**
* Subtract two integers, checking for overflow.
*
* @param x the minuend
* @param y the subtrahend
* @return the difference <code>x-y</code>
* @throws ArithmeticException if the result can not be represented as an
* int
* @since 1.1
*/
public static int subAndCheck(int x, int y) {
long s = (long)x - (long)y;
if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
throw MathRuntimeException.createArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, x, y);
}
return (int)s;
}
/**
* Subtract two long integers, checking for overflow.
*
* @param a first value
* @param b second value
* @return the difference <code>a-b</code>
* @throws ArithmeticException if the result can not be represented as an
* long
* @since 1.2
*/
public static long subAndCheck(long a, long b) {
long ret;
String msg = "overflow: subtract";
if (b == Long.MIN_VALUE) {
if (a < 0) {
ret = a - b;
} else {
throw new ArithmeticException(msg);
}
} else {
// use additive inverse
ret = addAndCheck(a, -b, LocalizedFormats.OVERFLOW_IN_ADDITION);
}
return ret;
}
/**
* Raise an int to an int power.
* @param k number to raise
* @param e exponent (must be positive or null)
* @return k<sup>e</sup>
* @exception IllegalArgumentException if e is negative
*/
public static int pow(final int k, int e)
throws IllegalArgumentException {
if (e < 0) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
k, e);
}
int result = 1;
int k2p = k;
while (e != 0) {
if ((e & 0x1) != 0) {
result *= k2p;
}
k2p *= k2p;
e = e >> 1;
}
return result;
}
/**
* Raise an int to a long power.
* @param k number to raise
* @param e exponent (must be positive or null)
* @return k<sup>e</sup>
* @exception IllegalArgumentException if e is negative
*/
public static int pow(final int k, long e)
throws IllegalArgumentException {
if (e < 0) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
k, e);
}
int result = 1;
int k2p = k;
while (e != 0) {
if ((e & 0x1) != 0) {
result *= k2p;
}
k2p *= k2p;
e = e >> 1;
}
return result;
}
/**
* Raise a long to an int power.
* @param k number to raise
* @param e exponent (must be positive or null)
* @return k<sup>e</sup>
* @exception IllegalArgumentException if e is negative
*/
public static long pow(final long k, int e)
throws IllegalArgumentException {
if (e < 0) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
k, e);
}
long result = 1l;
long k2p = k;
while (e != 0) {
if ((e & 0x1) != 0) {
result *= k2p;
}
k2p *= k2p;
e = e >> 1;
}
return result;
}
/**
* Raise a long to a long power.
* @param k number to raise
* @param e exponent (must be positive or null)
* @return k<sup>e</sup>
* @exception IllegalArgumentException if e is negative
*/
public static long pow(final long k, long e)
throws IllegalArgumentException {
if (e < 0) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
k, e);
}
long result = 1l;
long k2p = k;
while (e != 0) {
if ((e & 0x1) != 0) {
result *= k2p;
}
k2p *= k2p;
e = e >> 1;
}
return result;
}
/**
* Raise a BigInteger to an int power.
* @param k number to raise
* @param e exponent (must be positive or null)
* @return k<sup>e</sup>
* @exception IllegalArgumentException if e is negative
*/
public static BigInteger pow(final BigInteger k, int e)
throws IllegalArgumentException {
if (e < 0) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
k, e);
}
return k.pow(e);
}
/**
* Raise a BigInteger to a long power.
* @param k number to raise
* @param e exponent (must be positive or null)
* @return k<sup>e</sup>
* @exception IllegalArgumentException if e is negative
*/
public static BigInteger pow(final BigInteger k, long e)
throws IllegalArgumentException {
if (e < 0) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
k, e);
}
BigInteger result = BigInteger.ONE;
BigInteger k2p = k;
while (e != 0) {
if ((e & 0x1) != 0) {
result = result.multiply(k2p);
}
k2p = k2p.multiply(k2p);
e = e >> 1;
}
return result;
}
/**
* Raise a BigInteger to a BigInteger power.
* @param k number to raise
* @param e exponent (must be positive or null)
* @return k<sup>e</sup>
* @exception IllegalArgumentException if e is negative
*/
public static BigInteger pow(final BigInteger k, BigInteger e)
throws IllegalArgumentException {
if (e.compareTo(BigInteger.ZERO) < 0) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
k, e);
}
BigInteger result = BigInteger.ONE;
BigInteger k2p = k;
while (!BigInteger.ZERO.equals(e)) {
if (e.testBit(0)) {
result = result.multiply(k2p);
}
k2p = k2p.multiply(k2p);
e = e.shiftRight(1);
}
return result;
}
/**
* Calculates the L<sub>1</sub> (sum of abs) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L<sub>1</sub> distance between the two points
*/
public static double distance1(double[] p1, double[] p2) {
double sum = 0;
for (int i = 0; i < p1.length; i++) {
sum += FastMath.abs(p1[i] - p2[i]);
}
return sum;
}
/**
* Calculates the L<sub>1</sub> (sum of abs) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L<sub>1</sub> distance between the two points
*/
public static int distance1(int[] p1, int[] p2) {
int sum = 0;
for (int i = 0; i < p1.length; i++) {
sum += FastMath.abs(p1[i] - p2[i]);
}
return sum;
}
/**
* Calculates the L<sub>2</sub> (Euclidean) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L<sub>2</sub> distance between the two points
*/
public static double distance(double[] p1, double[] p2) {
double sum = 0;
for (int i = 0; i < p1.length; i++) {
final double dp = p1[i] - p2[i];
sum += dp * dp;
}
return FastMath.sqrt(sum);
}
/**
* Calculates the L<sub>2</sub> (Euclidean) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L<sub>2</sub> distance between the two points
*/
public static double distance(int[] p1, int[] p2) {
double sum = 0;
for (int i = 0; i < p1.length; i++) {
final double dp = p1[i] - p2[i];
sum += dp * dp;
}
return FastMath.sqrt(sum);
}
/**
* Calculates the L<sub>&infin;</sub> (max of abs) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L<sub>&infin;</sub> distance between the two points
*/
public static double distanceInf(double[] p1, double[] p2) {
double max = 0;
for (int i = 0; i < p1.length; i++) {
max = FastMath.max(max, FastMath.abs(p1[i] - p2[i]));
}
return max;
}
/**
* Calculates the L<sub>&infin;</sub> (max of abs) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L<sub>&infin;</sub> distance between the two points
*/
public static int distanceInf(int[] p1, int[] p2) {
int max = 0;
for (int i = 0; i < p1.length; i++) {
max = FastMath.max(max, FastMath.abs(p1[i] - p2[i]));
}
return max;
}
/**
* Specification of ordering direction.
*/
public static enum OrderDirection {
/** Constant for increasing direction. */
INCREASING,
/** Constant for decreasing direction. */
DECREASING
}
/**
* Checks that the given array is sorted.
*
* @param val Values.
* @param dir Ordering direction.
* @param strict Whether the order should be strict.
* @throws NonMonotonousSequenceException if the array is not sorted.
* @since 2.2
*/
public static void checkOrder(double[] val, OrderDirection dir, boolean strict) {
double previous = val[0];
boolean ok = true;
int max = val.length;
for (int i = 1; i < max; i++) {
switch (dir) {
case INCREASING:
if (strict) {
if (val[i] <= previous) {
ok = false;
}
} else {
if (val[i] < previous) {
ok = false;
}
}
break;
case DECREASING:
if (strict) {
if (val[i] >= previous) {
ok = false;
}
} else {
if (val[i] > previous) {
ok = false;
}
}
break;
default:
// Should never happen.
throw new IllegalArgumentException();
}
if (!ok) {
throw new NonMonotonousSequenceException(val[i], previous, i, dir, strict);
}
previous = val[i];
}
}
/**
* Checks that the given array is sorted in strictly increasing order.
*
* @param val Values.
* @throws NonMonotonousSequenceException if the array is not sorted.
* @since 2.2
*/
public static void checkOrder(double[] val) {
checkOrder(val, OrderDirection.INCREASING, true);
}
/**
* Checks that the given array is sorted.
*
* @param val Values
* @param dir Order direction (-1 for decreasing, 1 for increasing)
* @param strict Whether the order should be strict
* @throws NonMonotonousSequenceException if the array is not sorted.
* @deprecated as of 2.2 (please use the new {@link #checkOrder(double[],OrderDirection,boolean)
* checkOrder} method). To be removed in 3.0.
*/
@Deprecated
public static void checkOrder(double[] val, int dir, boolean strict) {
if (dir > 0) {
checkOrder(val, OrderDirection.INCREASING, strict);
} else {
checkOrder(val, OrderDirection.DECREASING, strict);
}
}
/**
* Returns the Cartesian norm (2-norm), handling both overflow and underflow.
* Translation of the minpack enorm subroutine.
*
* The redistribution policy for MINPACK is available <a
* href="http://www.netlib.org/minpack/disclaimer">here</a>, for convenience, it
* is reproduced below.</p>
*
* <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0">
* <tr><td>
* Minpack Copyright Notice (1999) University of Chicago.
* All rights reserved
* </td></tr>
* <tr><td>
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* <ol>
* <li>Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.</li>
* <li>Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.</li>
* <li>The end-user documentation included with the redistribution, if any,
* must include the following acknowledgment:
* <code>This product includes software developed by the University of
* Chicago, as Operator of Argonne National Laboratory.</code>
* Alternately, this acknowledgment may appear in the software itself,
* if and wherever such third-party acknowledgments normally appear.</li>
* <li><strong>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
* WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
* UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
* THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
* OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
* OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
* USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
* THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
* DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
* UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
* BE CORRECTED.</strong></li>
* <li><strong>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
* HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
* ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
* INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
* ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
* PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
* SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
* (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
* EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
* POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong></li>
* <ol></td></tr>
* </table>
*
* @param v vector of doubles
* @return the 2-norm of the vector
* @since 2.2
*/
public static double safeNorm(double[] v) {
double rdwarf = 3.834e-20;
double rgiant = 1.304e+19;
double s1=0.0;
double s2=0.0;
double s3=0.0;
double x1max = 0.0;
double x3max = 0.0;
double floatn = (double)v.length;
double agiant = rgiant/floatn;
for (int i=0;i<v.length;i++) {
double xabs = Math.abs(v[i]);
if (xabs<rdwarf || xabs>agiant) {
if (xabs>rdwarf) {
if (xabs>x1max) {
double r=x1max/xabs;
s1=1.0+s1*r*r;
x1max=xabs;
} else {
double r=xabs/x1max;
s1+=r*r;
}
} else {
if (xabs>x3max) {
double r=x3max/xabs;
s3=1.0+s3*r*r;
x3max=xabs;
} else {
if (xabs!=0.0) {
double r=xabs/x3max;
s3+=r*r;
}
}
}
} else {
s2+=xabs*xabs;
}
}
double norm;
if (s1!=0.0) {
norm = x1max*Math.sqrt(s1+(s2/x1max)/x1max);
} else {
if (s2==0.0) {
norm = x3max*Math.sqrt(s3);
} else {
if (s2>=x3max) {
norm = Math.sqrt(s2*(1.0+(x3max/s2)*(x3max*s3)));
} else {
norm = Math.sqrt(x3max*((s2/x3max)+(x3max*s3)));
}
}
}
return norm;
}
}