blob: bbf3dfbfe257392fcd430b7563896f6cd00285f1 [file] [log] [blame]
/* [The "BSD license"]
Copyright (c) 2008 Erik van Bilsen
Copyright (c) 2007-2008 Johannes Luber
Copyright (c) 2005-2007 Kunle Odutola
Copyright (c) 2005-2006 Terence Parr
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
group Delphi;
csharpTypeInitMap ::= [
"int":"0",
"uint":"0",
"long":"0",
"ulong":"0",
"float":"0.0",
"double":"0.0",
"bool":"False",
"byte":"0",
"sbyte":"0",
"short":"0",
"ushort":"0",
"char":"#0",
"string":"''",
"String":"''",
default:"nil" // anything other than an atomic type
]
/** The overall file structure of a recognizer; stores methods for rules
* and cyclic DFAs plus support code.
* LEXER (Boolean): should we generate lexer code?
* PARSER (Boolean): should we generate parser code?
* TREE_PARSER (Boolean): should we generate tree parser code?
* actionScope (String): 'lexer', 'parser', 'tree_parser' or custom scope
* actions (HashMap):
* docComment (String): document comment
* recognizer (Object): recognizer class generator
* name (String): name of grammar
* tokens (HashMap<name: String, type: Integer>):
* tokenNames:
* rules:
* cyclicDFAs:
* bitsets:
* buildTemplate (Boolean): should we generate a string template?
* buildAST (Boolean): should we generate an AST?
* rewriteMode (Boolean): are we rewriteing nodes?
* profile (Boolean):
* backtracking (Boolean): backtracking mode?
* synpreds (): syntactic predicates
* memoize (Boolean): should we memoize?
* numRules (Integer): number of rules
* fileName (String): fully qualified name of original .g file
* ANTLRVersion (String): ANTLR version in Major.Minor.Build format
* generatedTimestamp (String): date/time when the file is generated
* trace (Boolean): should we trace input/output?
* scopes:
* superClass (String): name of base class, or empty string
* literals:
*/
outputFile(LEXER,PARSER,TREE_PARSER, actionScope, actions,
docComment, recognizer,
name, tokens, tokenNames, rules, cyclicDFAs,
bitsets, buildTemplate, buildAST, rewriteMode, profile,
backtracking, synpreds, memoize, numRules,
fileName, ANTLRVersion, generatedTimestamp, trace,
scopes, superClass, literals) ::=
<<
unit <name>;
{$HINTS OFF}
// $ANTLR <ANTLRVersion> <fileName> <generatedTimestamp>
<actions.(actionScope).header>
interface
<@imports>
uses<\n>
<@end>
<actions.(actionScope).usesInterface>
<if(TREE_PARSER)>
Antlr.Runtime.Tree,<\n>
<endif>
Antlr.Runtime,
Antlr.Runtime.Collections,
Antlr.Runtime.Tools;
<docComment>
<recognizer>
>>
/** Generates source code for the lexer class
* grammar (Grammar object)
*/
lexer(grammar, name, tokens, scopes, rules, numRules, labelType="Token",
filterMode, superClass="Lexer") ::= <<
type
I<grammar.recognizerName> = interface(I<@superClassName><superClass><@end>)
end;
T<grammar.recognizerName> = class(T<@superClassName><superClass><@end>, I<grammar.recognizerName>)
strict private
FCnt: array [0..<grammar.numberOfDecisions>] of Byte;
FLA: array [0..<grammar.numberOfDecisions>, 0..255] of Integer;
FException: ERecognitionException;
procedure InitializeCyclicDFAs;
<cyclicDFAs:cyclicDFADeclaration()>
public
const
<tokens:{<it.name> = <it.type>;}; separator="\n">
<scopes:{<if(it.isDynamicGlobalScope)><globalAttributeScope(scope=it)><endif>}>
strict private
<actions.(actionScope).memberDeclarations>
public
// delegates
<grammar.delegates: {g|<g:delegateName()>: I<superClass>; {<g.recognizerName>}}; separator="\n">
public
// delegators
<grammar.delegators: {g|<g:delegateName()>: Pointer; {<g.recognizerName>}}; separator="\n">
<last(grammar.delegators):{g|gParent: Pointer; {<g.recognizerName>}}>
protected
{ IBaseRecognizer }
function GetGrammarFileName: String; override;
<if(filterMode)>
function AlreadyParsedRule(const Input: IIntStream;
const RuleIndex: Integer): Boolean; override;
procedure Memoize(const Input: IIntStream; const RuleIndex,
RuleStartIndex: Integer); override;
protected
{ ILexer }
function NextToken: IToken; override;<\n>
<endif>
protected
{ ILexer }
procedure DoTokens; override;
public
constructor Create; overload;
constructor Create(const AInput: ICharStream<grammar.delegators:{g|; const A<g:delegateName()>: IBaseRecognizer{<g.recognizerName>}}>); overload;
constructor Create(const AInput: ICharStream; const AState: IRecognizerSharedState<grammar.delegators:{g|; const A<g:delegateName()>: IBaseRecognizer{<g.recognizerName>}}>); overload;
<rules: {r | <if(!r.ruleDescriptor.isSynPred)><lexerRuleDeclaration(r)><endif>}>
<synpreds:{p | <lexerSynpredDeclaration(p)>}; separator="\n">
end;
implementation
uses
<grammar.delegates: {g|<g.recognizerName>,}; separator="\n">
<grammar.delegators: {g|<g.recognizerName>,}; separator="\n">
<actions.(actionScope).usesImplementation>
SysUtils,
StrUtils,
Math;
{ T<grammar.recognizerName> }
constructor T<grammar.recognizerName>.Create;
begin
InitializeCyclicDFAs;
end;
constructor T<grammar.recognizerName>.Create(const AInput: ICharStream<grammar.delegators:{g|; const A<g:delegateName()>: IBaseRecognizer{<g.recognizerName>}}>);
begin
Create(AInput, nil<grammar.delegators:{g|, A<g:delegateName()>}>);
end;
constructor T<grammar.recognizerName>.Create(const AInput: ICharStream; const AState: IRecognizerSharedState<grammar.delegators:{g|; const A<g:delegateName()>: IBaseRecognizer{<g.recognizerName>}}>);
begin
inherited Create(AInput, AState);
InitializeCyclicDFAs; { TODO: Necessary in Delphi??? Not removed yet. }
<if(memoize)>
<if(grammar.grammarIsRoot)>
State.RuleMemoCount := <numRules>+1;<\n> <! index from 1..n !>
<endif>
<endif>
<grammar.directDelegates:
{g|<g:delegateName()> := T<g.recognizerName>.Create(AInput, State<trunc(g.delegators):{p|, <p:delegateName()>}>, Self);}; separator="\n">
<grammar.delegators:
{g|<g:delegateName()> := Pointer(A<g:delegateName()>);}; separator="\n">
<last(grammar.delegators):{g|gParent := Pointer(A<g:delegateName()>);}>
<actions.(actionScope).memberInitializations>
end;
<actions.(actionScope).memberImplementations>
function T<grammar.recognizerName>.GetGrammarFileName: String;
begin
Result := '<fileName>';
end;
<if(filterMode)>
<filteringNextToken()>
<endif>
<rules; separator="\n\n">
<synpreds:{p | <lexerSynpred(p)>}>
procedure T<grammar.recognizerName>.InitializeCyclicDFAs;
begin
<cyclicDFAs:{dfa | FDFA<dfa.decisionNumber> := TDFA<dfa.decisionNumber>.Create(Self<@debugAddition()>);}; separator="\n">
<cyclicDFAs:{dfa | <if(dfa.specialStateSTs)>FDFA<dfa.decisionNumber>.SpecialStateTransitionHandler := DFA<dfa.decisionNumber>_SpecialStateTransition;<endif>}; separator="\n">
end;
<cyclicDFAs:cyclicDFA()> <! dump tables for all DFA !>
end.>>
lexerRuleDeclaration(rule) ::= <<
procedure m<rule.ruleName>(<rule.ruleDescriptor.parameterScope:parameterScope(scope=rule)>);<\n>
>>
/** A override of Lexer.nextToken() that backtracks over mTokens() looking
* for matches. No error can be generated upon error; just rewind, consume
* a token and then try again. backtracking needs to be set as well.
*
* Make rule memoization happen only at levels above 1 as we start mTokens
* at backtracking==1.
*/
filteringNextToken() ::= <<
function T<grammar.recognizerName>.NextToken: IToken;
var
M: Integer;
begin
while (True) do
begin
if (Input.LA(1) = Integer(cscEOF)) then
Exit(TToken.EOF_TOKEN);
State.Token := nil;
State.Channel := TToken.DEFAULT_CHANNEL;
State.TokenStartCharIndex := Input.Index;
State.TokenStartCharPositionInLine := Input.CharPositionInLine;
State.TokenStartLine := Input.Line;
State.Text := '';
try
M := Input.Mark();
State.Backtracking := 1; <! means we won't throw slow exception !>
State.Failed := False;
mTokens();
State.Backtracking := 0;
<!
mTokens backtracks with synpred at backtracking==2
and we set the synpredgate to allow actions at level 1.
!>
if (State.Failed) then
begin
Input.Rewind(M);
Input.Consume; <! // advance one char and try again !>
end
else
begin
Emit;
Exit(State.Token);
end;
except
on RE: ERecognitionException do
begin
// shouldn't happen in backtracking mode, but...
ReportError(RE);
Recover(RE);
end;
end;
end;
end;
function T<grammar.recognizerName>.AlreadyParsedRule(const Input: IIntStream;
const RuleIndex: Integer): Boolean;
begin
if (State.Backtracking > 1) then
Result := inherited AlreadyParsedRule(Input, RuleIndex)
else
Result := False;
end;
procedure T<grammar.recognizerName>.Memoize(const Input: IIntStream; const RuleIndex,
RuleStartIndex: Integer);
begin
if (State.Backtracking > 1) then
inherited Memoize(Input, RuleIndex, RuleStartIndex);
end;
>>
filteringActionGate() ::= "(State.Backtracking = 1)"
/** How to generate a parser */
genericParser(grammar, name, scopes, tokens, tokenNames, rules, numRules,
bitsets, inputStreamType, superClass, filterMode,
ASTLabelType="ANTLRInterface", labelType, members, rewriteElementType) ::= <<
type
<rules: {r | <genericParserRuleReturnType(rule=r, ruleDescriptor=r.ruleDescriptor)>}>
I<grammar.recognizerName> = interface(I<@superClassName><superClass><@end>)
<rules: {r | <genericParserRuleInterface(rule=r, ruleDescriptor=r.ruleDescriptor)>}>
end;
T<grammar.recognizerName> = class(T<@superClassName><superClass><@end>, I<grammar.recognizerName>)
<if(grammar.grammarIsRoot)>
public
const
TOKEN_NAMES: array [0..<length(tokenNames)>+3] of String = (
'\<invalid>',
'\<EOR>',
'\<DOWN>',
'\<UP>',
<tokenNames; separator=",\n">);<\n>
<endif>
public
const
<tokens:{<it.name> = <it.type>;}; separator="\n">
public
// delegates
<grammar.delegates: {g|<g:delegateName()>: I<superClass>; {<g.recognizerName>}}; separator="\n">
public
// delegators
<grammar.delegators: {g|<g:delegateName()>: Pointer; {<g.recognizerName>}}; separator="\n">
<last(grammar.delegators):{g|gParent: Pointer; {<g.recognizerName>}}>
<scopes:{<if(it.isDynamicGlobalScope)><globalAttributeScopeDeclaration(scope=it)><endif>}>
<@members>
<! WARNING. bug in ST: this is cut-n-paste into Dbg.stg !>
public
constructor Create(const AInput: <inputStreamType><grammar.delegators:{g|; const A<g:delegateName()>: IBaseRecognizer{<g.recognizerName>}}>); overload;
constructor Create(const AInput: <inputStreamType>; const AState: IRecognizerSharedState<grammar.delegators:{g|; const A<g:delegateName()>: IBaseRecognizer{<g.recognizerName>}}>); overload;
<@end>
protected
{ IBaseRecognizer }
function GetTokenNames: TStringArray; override;
function GetGrammarFileName: String; override;
strict private
<actions.(actionScope).memberDeclarations>
<rules: {r | <genericParserRuleDeclaration(rule=r, ruleDescriptor=r.ruleDescriptor)>}>
<! generate rule/method definitions for imported rules so they
appear to be defined in this recognizer. !>
// Delegated rules
<grammar.delegatedRules:{ruleDescriptor| <delegatedRuleDeclaration(ruleDescriptor)>}>
<synpreds:{p | <synpredDeclaration(p)>}; separator="\n">
<cyclicDFAs:cyclicDFADeclaration()>
strict private
FException: ERecognitionException;
FLA: array [0..<grammar.numberOfDecisions>, 0..255] of Integer;
FCnt: array [0..<grammar.numberOfDecisions>] of Byte;
procedure InitializeCyclicDFAs;
<if(bitsets)>
public
class var
<bitsets:bitsetDecl(name={FOLLOW_<it.name>_in_<it.inName><it.tokenIndex>})>
public
class procedure InitializeBitsets; static;<\n>
<endif>
end;
implementation
uses
<grammar.delegates: {g|<g.recognizerName>,}; separator="\n">
<grammar.delegators: {g|<g.recognizerName>,}; separator="\n">
<actions.(actionScope).usesImplementation>
SysUtils,
StrUtils,
Math;
{ T<grammar.recognizerName> }
constructor T<grammar.recognizerName>.Create(const AInput: <inputStreamType><grammar.delegators:{g|; const A<g:delegateName()>: IBaseRecognizer{<g.recognizerName>}}>);
begin
Create(AInput, TRecognizerSharedState.Create<grammar.delegators:{g|, A<g:delegateName()>}>);
end;
constructor T<grammar.recognizerName>.Create(const AInput: <inputStreamType>;
const AState: IRecognizerSharedState<grammar.delegators:{g|; const A<g:delegateName()>: IBaseRecognizer{<g.recognizerName>}}>);
begin
inherited Create(AInput, AState);
<@membersConstructor>
<@end>
<parserCtorBody()>
<grammar.directDelegates:{g|<g:delegateName()> := T<g.recognizerName>.Create(Input, State<trunc(g.delegators):{p|, <p:delegateName()>}>, Self);}; separator="\n">
<grammar.indirectDelegates:{g | <g:delegateName()> := <g.delegator:delegateName()>.<g:delegateName()>;}; separator="\n">
<last(grammar.delegators):{g|gParent := Pointer(A<g:delegateName()>);}>
<rules: {r | <ruleAttributeScopeInit(scope=r.ruleDescriptor.ruleScope)>}>
<scopes:{<if(it.isDynamicGlobalScope)><globalAttributeScope(scope=it)><endif>}>
<actions.(actionScope).memberInitializations>
end;
<actions.(actionScope).memberImplementations>
<grammar.delegatedRules:{ruleDescriptor| <delegatedRuleImplementation(ruleDescriptor)>}; separator="\n">
procedure T<grammar.recognizerName>.InitializeCyclicDFAs;
begin
<cyclicDFAs:{dfa | FDFA<dfa.decisionNumber> := TDFA<dfa.decisionNumber>.Create(Self);}; separator="\n">
<cyclicDFAs:{dfa | <if(dfa.specialStateSTs)>FDFA<dfa.decisionNumber>.SpecialStateTransitionHandler := DFA<dfa.decisionNumber>_SpecialStateTransition;<endif>}; separator="\n">
end;
<if(bitsets)>
class procedure T<grammar.recognizerName>.InitializeBitsets;
begin
<bitsets:bitset(name={FOLLOW_<it.name>_in_<it.inName><it.tokenIndex>}, words64=it.bits)>
end;
<endif>
<@membersImplementation>
<@end>
function T<grammar.recognizerName>.GetTokenNames: TStringArray;
var
I: Integer;
begin
SetLength(Result,Length(T<grammar.composite.rootGrammar.recognizerName>.TOKEN_NAMES));
for I := 0 to Length(T<grammar.composite.rootGrammar.recognizerName>.TOKEN_NAMES) - 1 do
Result[I] := T<grammar.composite.rootGrammar.recognizerName>.TOKEN_NAMES[I];
end;
function T<grammar.recognizerName>.GetGrammarFileName: String;
begin
Result := '<fileName>';
end;
<rules; separator="\n\n">
<synpreds:{p | <synpred(p)>}>
<cyclicDFAs:cyclicDFA()> <! dump tables for all DFA !>
<if(bitsets)>
initialization
T<grammar.recognizerName>.InitializeBitsets;<\n>
<endif>
end.>>
delegatedRuleDeclaration(ruleDescriptor) ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
function <ruleDescriptor.name>(<ruleDescriptor.parameterScope:parameterScope(scope=it)>): I<returnType()>;<\n>
<else>
<if(ruleDescriptor.hasSingleReturnValue)>
function <ruleDescriptor.name>(<ruleDescriptor.parameterScope:parameterScope(scope=it)>): <returnType()>;<\n>
<else>
procedure <ruleDescriptor.name>(<ruleDescriptor.parameterScope:parameterScope(scope=it)>);<\n>
<endif>
<endif>
>>
delegatedRuleImplementation(ruleDescriptor) ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
function T<grammar.recognizerName>.<ruleDescriptor.name>(<ruleDescriptor.parameterScope:parameterScope(scope=it)>): I<returnType()>;<\n>
<else>
<if(ruleDescriptor.hasSingleReturnValue)>
function T<grammar.recognizerName>.<ruleDescriptor.name>(<ruleDescriptor.parameterScope:parameterScope(scope=it)>): <returnType()>;<\n>
<else>
procedure T<grammar.recognizerName>.<ruleDescriptor.name>(<ruleDescriptor.parameterScope:parameterScope(scope=it)>);<\n>
<endif>
<endif>
begin
<if(ruleDescriptor.hasReturnValue)>Result :=<endif> T<ruleDescriptor.grammar.recognizerName>(<ruleDescriptor.grammar:delegateName()>.Implementor).<ruleDescriptor.name>(<ruleDescriptor.parameterScope.attributes:{a|<a.name>}; separator=", ">);
end;
>>
parserCtorBody() ::= <<
InitializeCyclicDFAs;
<if(memoize)>
<if(grammar.grammarIsRoot)>
State.RuleMemoCount := <length(grammar.allImportedRules)>+1;<\n> <! index from 1..n !>
<endif>
<endif>
<grammar.delegators: {g|<g:delegateName()> := Pointer(A<g:delegateName()>);}; separator="\n">
>>
parser(grammar, name, scopes, tokens, tokenNames, rules, numRules, bitsets, ASTLabelType, superClass="Parser", labelType="Token", members={<actions.parser.members>}) ::= <<
<genericParser(inputStreamType="ITokenStream", rewriteElementType="Token", ...)>
>>
/** How to generate a tree parser; same as parser except the input
* stream is a different type.
*/
treeParser(grammar, name, scopes, tokens, tokenNames, globalAction, rules, numRules, bitsets, labelType={<ASTLabelType>}, ASTLabelType="object", superClass="TreeParser", members={<actions.treeparser.members>}, filterMode) ::= <<
<genericParser(inputStreamType="ITreeNodeStream", rewriteElementType="Node", ...)>
>>
/** A simpler version of a rule template that is specific to the imaginary
* rules created for syntactic predicates. As they never have return values
* nor parameters etc..., just give simplest possible method. Don't do
* any of the normal memoization stuff in here either; it's a waste.
* As predicates cannot be inlined into the invoking rule, they need to
* be in a rule by themselves.
*/
synpredRule(ruleName, ruleDescriptor, block, description, nakedBlock) ::=
<<
// $ANTLR start "<ruleName>"
procedure T<grammar.recognizerName>.<ruleName>_fragment(<ruleDescriptor.parameterScope:parameterScope(scope=it)>);
var
Alt: array [0..<grammar.numberOfDecisions>] of Integer;
<ruleLabelDefVars()>
begin
<ruleLabelDefs()>
<if(trace)>
TraceIn('<ruleName>_fragment', <ruleDescriptor.index>);
try
<block>
finally
TraceOut('<ruleName>_fragment', <ruleDescriptor.index>);
end;
<else>
<block>
<endif>
end;
// $ANTLR end "<ruleName>"
>>
synpredDecls(name) ::= <<
SynPredPointer <name>;<\n>
>>
synpred(name) ::= <<
function T<grammar.recognizerName>.<name>: Boolean;
var
Start: Integer;
Success: Boolean;
begin
State.Backtracking := State.Backtracking + 1;
<@start()>
Start := Input.Mark;
try
<name>_fragment(); // can never throw exception
except
on RE: ERecognitionException do
WriteLn('Impossible: ' + RE.ToString);
end;
Success := not State.Failed;
Input.Rewind(Start);
<@stop()>
State.Backtracking := State.Backtracking - 1;
State.Failed := False;
Result := Success;
end;<\n>
>>
lexerSynpred(name) ::= <<
<synpred(name)>
>>
lexerSynpredDeclaration(name) ::= <<
function <name>: Boolean;
procedure <name>_fragment;
>>
synpredDeclaration(name) ::= <<
function <name>: Boolean;
procedure <name>_fragment;
>>
ruleMemoization(name) ::= <<
<if(memoize)>
if ((State.Backtracking > 0) and AlreadyParsedRule(Input, <ruleDescriptor.index>)) then
Exit(<ruleReturnValue()>);
<endif>
>>
/** How to test for failure and return from rule */
checkRuleBacktrackFailure() ::= <<
<if(backtracking)><\n>if (State.Failed) then Exit(<ruleReturnValue()>);<\n><endif>
>>
/** This rule has failed, exit indicating failure during backtrack */
ruleBacktrackFailure() ::= <<
<if(backtracking)>if (State.Backtracking > 0) then
begin
State.Failed := True;
Exit(<ruleReturnValue()>);
end;<endif>
>>
genericParserRuleDeclaration(rule, ruleDescriptor) ::= <<
<if(ruleDescriptor.isSynPred)>
<else>
<ruleAttributeScopeDeclaration(scope=ruleDescriptor.ruleScope)>
<returnScopeDeclaration(scope=ruleDescriptor.returnScope)>
public
<if(ruleDescriptor.hasMultipleReturnValues)>
function <rule.ruleName>: I<returnType()>;<\n>
<else>
<if(ruleDescriptor.hasSingleReturnValue)>
function <rule.ruleName>: <returnType()>;<\n>
<else>
procedure <rule.ruleName>;<\n>
<endif>
<endif>
<endif>
>>
genericParserRuleInterface(rule, ruleDescriptor) ::= <<
<if(ruleDescriptor.isSynPred)>
<else>
<if(ruleDescriptor.hasMultipleReturnValues)>
function <rule.ruleName>: I<returnType()>;<\n>
<else>
<if(ruleDescriptor.hasSingleReturnValue)>
function <rule.ruleName>: <returnType()>;<\n>
<else>
procedure <rule.ruleName>;<\n>
<endif>
<endif>
<endif>
>>
genericParserRuleReturnType(rule, ruleDescriptor) ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
<if(ruleDescriptor.isSynPred)>
<else>
I<returnType()> = interface(I<if(TREE_PARSER)>Tree<else>Parser<endif>RuleReturnScope)
end;<\n>
<endif>
<endif>
>>
/** How to generate code for a rule. This includes any return type
* data aggregates required for multiple return values.
*/
rule(ruleName,ruleDescriptor,block,emptyRule,description,exceptions,finally,memoize) ::= <<
<ruleAttributeScope(scope=ruleDescriptor.ruleScope)>
<returnScope(scope=ruleDescriptor.returnScope)>
// $ANTLR start "<ruleName>"
(* <fileName>:<description> *)
<if(ruleDescriptor.hasMultipleReturnValues)>
function T<grammar.recognizerName>.<ruleName>(<ruleDescriptor.parameterScope:parameterScope(scope=it)>): I<returnType()>;
<else>
<if(ruleDescriptor.hasSingleReturnValue)>
function T<grammar.recognizerName>.<ruleName>(<ruleDescriptor.parameterScope:parameterScope(scope=it)>): <returnType()>;
<else>
procedure T<grammar.recognizerName>.<ruleName>(<ruleDescriptor.parameterScope:parameterScope(scope=it)>);
<endif>
<endif>
var
<ruleDescriptor.actions.vars>
Locals: TLocalStorage;
<if(ruleDescriptor.hasMultipleReturnValues)>
RetVal: I<returnType()>;<\n>
<else>
<if(ruleDescriptor.hasSingleReturnValue)>
RetVal: <returnType()>;<\n>
<else>
<endif>
<endif>
Alt: array [0..<grammar.numberOfDecisions>] of Integer;
<ruleDeclarationVars()>
<ruleLabelDefVars()>
begin
Locals.Initialize;
try
<if(trace)>TraceIn('<ruleName>', <ruleDescriptor.index>);<endif>
<ruleScopeSetUp()>
<ruleDeclarations()>
<ruleLabelDefs()>
<ruleDescriptor.actions.init>
<@preamble()>
try
try
<ruleMemoization(name=ruleName)>
<block>
<ruleCleanUp()>
<(ruleDescriptor.actions.after):execAction()>
<if(exceptions)>
<exceptions:{e|<catch(decl=e.decl,action=e.action)><\n>}>
<else>
<if(!emptyRule)>
<if(actions.(actionScope).rulecatch)>
<actions.(actionScope).rulecatch>
<else>
except
on RE: ERecognitionException do
begin
ReportError(RE);
Recover(Input,RE);
<@setErrorReturnValue()>
end;<\n>
<endif>
<endif>
<endif>
end;
finally
<if(trace)>TraceOut("<ruleName>", <ruleDescriptor.index>);<endif>
<memoize()>
<ruleScopeCleanUp()>
<finally>
end;
<@postamble()>
finally
Locals.Finalize;
end;
Exit(<ruleReturnValue()>);
end;
// $ANTLR end "<ruleName>"
>>
catch(decl,action) ::= <<
catch (<e.decl>)
{
<e.action>
}
>>
ruleDeclarations() ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
RetVal := T<returnType()>.Create;
RetVal.Start := Input.LT(1);<\n>
<else>
<ruleDescriptor.returnScope.attributes:{ a |
<a.name> := <if(a.initValue)><a.initValue><else><initValue(a.type)><endif>;
}>
<endif>
<if(memoize)>
<ruleDescriptor.name>_StartIndex := Input.Index();
<endif>
>>
ruleDeclarationVars() ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
<else>
<ruleDescriptor.returnScope.attributes:{ a |
<a.name>: <a.type>;
}>
<endif>
<if(memoize)>
<ruleDescriptor.name>_StartIndex: Integer;
<endif>
>>
ruleScopeSetUp() ::= <<
<ruleDescriptor.useScopes:{<it>Stack.Push(T<it>Scope.Create);}; separator="\n">
<ruleDescriptor.ruleScope:{<it.name>Stack.Push(T<it.name>Scope.Create);}; separator="\n">
>>
ruleScopeCleanUp() ::= <<
<ruleDescriptor.useScopes:{<it>Stack.Pop();}; separator="\n">
<ruleDescriptor.ruleScope:{<it.name>Stack.Pop;}; separator="\n">
>>
ruleLabelDefs() ::= <<
<[ruleDescriptor.tokenLabels,ruleDescriptor.tokenListLabels]:{<it.label.text> := nil;}; separator="\n">
<[ruleDescriptor.tokenListLabels,ruleDescriptor.ruleListLabels]:{list_<it.label.text> := nil;}; separator="\n">
<ruleDescriptor.ruleLabels:ruleLabelDef(label=it); separator="\n">
<ruleDescriptor.ruleListLabels:{ll|<ll.label.text> := nil;}; separator="\n">
>>
ruleLabelDefVars() ::= <<
<[ruleDescriptor.tokenLabels,ruleDescriptor.tokenListLabels]:{<it.label.text>: I<labelType>;}; separator="\n">
<[ruleDescriptor.tokenListLabels,ruleDescriptor.ruleListLabels]:{list_<it.label.text>: IList\<IANTLRInterface\>;}; separator="\n">
<ruleDescriptor.ruleLabels:ruleLabelDefVar(label=it); separator="\n">
<ruleDescriptor.ruleListLabels:{ll|<ll.label.text>: <ruleLabelType(referencedRule=ll.referencedRule)>;}; separator="\n">
>>
lexerRuleLabelDefs() ::= <<
<[ruleDescriptor.tokenLabels,
ruleDescriptor.tokenListLabels,
ruleDescriptor.ruleLabels]
:{<it.label.text> := nil;}; separator="\n"
>
<ruleDescriptor.charLabels:{int <it.label.text>;}; separator="\n">
<[ruleDescriptor.tokenListLabels,
ruleDescriptor.ruleListLabels,
ruleDescriptor.ruleListLabels]
:{List_<it.label.text> := nil;}; separator="\n"
>
>>
lexerRuleLabelDefDeclarations() ::= <<
<[ruleDescriptor.tokenLabels,
ruleDescriptor.tokenListLabels,
ruleDescriptor.ruleLabels]
:{<it.label.text>: I<labelType>;}; separator="\n"
>
<ruleDescriptor.charLabels:{int <it.label.text>;}; separator="\n">
<[ruleDescriptor.tokenListLabels,
ruleDescriptor.ruleListLabels,
ruleDescriptor.ruleListLabels]
:{List_<it.label.text>: IList;}; separator="\n"
>
>>
ruleReturnValue() ::= <<
<if(!ruleDescriptor.isSynPred)>
<if(ruleDescriptor.hasReturnValue)>
<if(ruleDescriptor.hasSingleReturnValue)>
<ruleDescriptor.singleValueReturnName>
<else>
RetVal
<endif>
<else>
<! nil !>
<endif>
<endif>
>>
ruleCleanUp() ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
<if(!TREE_PARSER)>
RetVal.Stop := Input.LT(-1);
<endif>
<endif>
>>
memoize() ::= <<
<if(memoize)>
<if(backtracking)>
if (State.Backtracking > 0) then
Memoize(Input, <ruleDescriptor.index>, <ruleDescriptor.name>_StartIndex);
<endif>
<endif>
>>
/** How to generate a rule in the lexer; naked blocks are used for
* fragment rules.
*/
lexerRule(ruleName,nakedBlock,ruleDescriptor,block,memoize) ::= <<
// $ANTLR start "<ruleName>"
<ruleDescriptor.parameterScope>
procedure T<grammar.recognizerName>.m<ruleName>(<ruleDescriptor.parameterScope:parameterScope(scope=it)>);
var
<ruleDescriptor.actions.vars>
Locals: TLocalStorage;
TokenType, Channel: Integer;
Alt: array [0..<grammar.numberOfDecisions>] of Integer;
<lexerRuleLabelDefDeclarations()>
begin
Locals.Initialize;
try
<ruleAttributeScope(scope=ruleDescriptor.ruleScope)>
<if(trace)>TraceIn("<ruleName>", <ruleDescriptor.index>);<endif>
<ruleScopeSetUp()>
<ruleDeclarations()>
try
<if(nakedBlock)>
<ruleMemoization(name=ruleName)>
<lexerRuleLabelDefs()>
<ruleDescriptor.actions.init>
<block><\n>
<else>
TokenType := <ruleName>;
Channel := DEFAULT_TOKEN_CHANNEL;
<ruleMemoization(name=ruleName)>
<lexerRuleLabelDefs()>
<ruleDescriptor.actions.init>
<block>
<ruleCleanUp()>
State.TokenType := TokenType;
State.Channel := Channel;
<(ruleDescriptor.actions.after):execAction()>
<endif>
finally
<if(trace)>TraceOut("<ruleName>", <ruleDescriptor.index>);<endif>
<ruleScopeCleanUp()>
<memoize()>
end;
finally
Locals.Finalize;
end;
end;
// $ANTLR end "<ruleName>"
>>
/** How to generate code for the implicitly-defined lexer grammar rule
* that chooses between lexer rules.
*/
tokensRule(ruleName,nakedBlock,args,block,ruleDescriptor) ::= <<
procedure T<grammar.recognizerName>.mTokens;
var
Alt: array [0..<grammar.numberOfDecisions>] of Integer;
begin
<block>
end;
procedure T<grammar.recognizerName>.DoTokens;
begin
mTokens;
end;
>>
// S U B R U L E S
/** A (...) subrule with multiple alternatives */
block(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
(* <fileName>:<description> *)
Alt[<decisionNumber>] := <maxAlt>;
<decls>
<@predecision()>
<decision>
<@postdecision()>
<@prebranch()>
case Alt[<decisionNumber>] of
<alts:altSwitchCase()>
end;
<@postbranch()>
>>
/** A rule block with multiple alternatives */
ruleBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
(* <fileName>:<description> *)
Alt[<decisionNumber>] := <maxAlt>;
<decls>
<@predecision()>
<decision>
<@postdecision()>
case Alt[<decisionNumber>] of
<alts:altSwitchCase()>
end;
>>
ruleBlockSingleAlt(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,description) ::= <<
(* <fileName>:<description> *)
<decls>
<@prealt()>
<alts>
<@postalt()>
>>
/** A special case of a (...) subrule with a single alternative */
blockSingleAlt(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,description) ::= <<
(* <fileName>:<description> *)
<decls>
<@prealt()>
<alts>
<@postalt()>
>>
/** A (..)+ block with 1 or more alternatives */
positiveClosureBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
(* <fileName>:<description> *)
FCnt[<decisionNumber>] := 0;
<decls>
<@preloop()>
while (True) do
begin
Alt[<decisionNumber>] := <maxAlt>;
<@predecision()>
<decision>
<@postdecision()>
case Alt[<decisionNumber>] of
<alts:altSwitchCase()>
else
begin
if (FCnt[<decisionNumber>] >= 1) then
Break;
<ruleBacktrackFailure()>
raise EEarlyExitException.Create(<decisionNumber>, Input);
<@earlyExitException()>
end;
end;
Inc(FCnt[<decisionNumber>]);
end;
<@postloop()>
>>
positiveClosureBlockSingleAlt ::= positiveClosureBlock
/** A (..)* block with 1 or more alternatives */
closureBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
(* <fileName>:<description> *)
<decls>
<@preloop()>
while (True) do
begin
Alt[<decisionNumber>] := <maxAlt>;
<@predecision()>
<decision>
<@postdecision()>
case Alt[<decisionNumber>] of
<alts:altSwitchCase()>
else
Break;
end;
end;
<@postloop()>
>>
closureBlockSingleAlt ::= closureBlock
/** Optional blocks (x)? are translated to (x|) by before code generation
* so we can just use the normal block template
*/
optionalBlock ::= block
optionalBlockSingleAlt ::= block
/** A case in a switch that jumps to an alternative given the alternative
* number. A DFA predicts the alternative and then a simple switch
* does the jump to the code that actually matches that alternative.
*/
altSwitchCase() ::= <<
<i>:
<@prealt()>
<it><\n>
>>
/** An alternative is just a list of elements; at outermost level */
alt(elements,altNum,description,autoAST,outerAlt,treeLevel,rew) ::= <<
(* <fileName>:<description> *)
begin
<@declarations()>
<elements:element()>
<rew>
<@cleanup()>
end;
>>
/** What to emit when there is no rewrite. For auto build
* mode, does nothing.
*/
noRewrite(rewriteBlockLevel, treeLevel) ::= ""
// E L E M E N T S
/** Dump the elements one per line */
element() ::= <<
<@prematch()>
<it.el>
>>
/** match a token optionally with a label in front */
tokenRef(token,label,elementIndex,terminalOptions) ::= <<
<if(label)><label> := <endif>Match(Input, <token>, FOLLOW_<token>_in_<ruleName><elementIndex>)<if(label)> as I<labelType><endif>;<\n><checkRuleBacktrackFailure()>
>>
/** ids+=ID */
tokenRefAndListLabel(token,label,elementIndex,terminalOptions) ::= <<
<tokenRef(...)>
<listLabel(elem=label,...)>
>>
listLabel(label,elem) ::= <<
if (list_<label> = nil) then list_<label> := TList\<IANTLRInterface\>.Create;
list_<label>.Add(<elem>);<\n>
>>
/** match a character */
charRef(char,label) ::= <<
<if(label)>
<label> := Input.LA(1);<\n>
<endif>
Match(<char>); <checkRuleBacktrackFailure()>
>>
/** match a character range */
charRangeRef(a,b,label) ::= <<
<if(label)>
<label> := Input.LA(1);<\n>
<endif>
MatchRange(<a>, <b>); <checkRuleBacktrackFailure()>
>>
/** For now, sets are interval tests and must be tested inline */
matchSet(s,label,elementIndex,postmatchCode="") ::= <<
<if(label)>
<if(LEXER)>
<label> := Input.LA(1);<\n>
<else>
<label> := Input.LT(1) as I<labelType>;<\n>
<endif>
<endif>
if (<s>) then
begin
Input.Consume;
<postmatchCode>
<if(!LEXER)>
State.ErrorRecovery := False;<endif>
<if(backtracking)>State.Failed := False;<endif>
end
else
begin
<ruleBacktrackFailure()>
FException := EMismatchedSetException.Create(nil, Input);
<@mismatchedSetException()>
<if(LEXER)>
Recover(FException);
raise FException;<\n>
<else>
raise FException;
<! use following code to make it recover inline; remove throw mse;
RecoverFromMismatchedSet(input,mse,FOLLOW_set_in_<ruleName><elementIndex>);
!>
<endif>
end;<\n>
>>
matchRuleBlockSet ::= matchSet
matchSetAndListLabel(s,label,elementIndex,postmatchCode) ::= <<
<matchSet(...)>
<listLabel(elem=label,...)>
>>
/** Match a string literal */
lexerStringRef(string,label,elementIndex) ::= <<
<if(label)>
Locals.AsInteger['<label>Start'] := CharIndex;
Match(<string>); <checkRuleBacktrackFailure()>
<label> := TCommonToken.Create(Input, TToken.INVALID_TOKEN_TYPE, TToken.DEFAULT_CHANNEL, Locals.AsInteger['<label>Start'], CharIndex-1);
<else>
Match(<string>); <checkRuleBacktrackFailure()>
<endif>
>>
wildcard(label,elementIndex) ::= <<
<if(label)>
<label> := Input.LT(1) as I<labelType>;<\n>
<endif>
MatchAny(input); <checkRuleBacktrackFailure()>
>>
wildcardAndListLabel(label,elementIndex) ::= <<
<wildcard(...)>
<listLabel(elem=label,...)>
>>
/** Match . wildcard in lexer */
wildcardChar(label, elementIndex) ::= <<
<if(label)>
<label> := Input.LA(1);<\n>
<endif>
MatchAny(); <checkRuleBacktrackFailure()>
>>
wildcardCharListLabel(label, elementIndex) ::= <<
<wildcardChar(...)>
<listLabel(elem=label,...)>
>>
/** Match a rule reference by invoking it possibly with arguments
* and a return value or values. The 'rule' argument was the
* target rule name, but now is type Rule, whose toString is
* same: the rule name. Now though you can access full rule
* descriptor stuff.
*/
ruleRef(rule,label,elementIndex,args,scope) ::= <<
PushFollow(FOLLOW_<rule.name>_in_<ruleName><elementIndex>);
<if(label)>
<label> := <if(scope)><scope:delegateName()>.<endif><rule.name>(<args; separator=", ">);<\n>
<else>
<if(scope)>T<scope.recognizerName>(IANTLRObject(<scope:delegateName()>).Implementor).<endif><rule.name>(<args; separator=", ">);<\n>
<endif>
State.FollowingStackPointer := State.FollowingStackPointer - 1;
<checkRuleBacktrackFailure()>
>>
/** ids+=r */
ruleRefAndListLabel(rule,label,elementIndex,args,scope) ::= <<
<ruleRef(...)>
<listLabel(elem=label,...)>
>>
/** A lexer rule reference.
*
* The 'rule' argument was the target rule name, but now
* is type Rule, whose toString is same: the rule name.
* Now though you can access full rule descriptor stuff.
*/
lexerRuleRef(rule,label,args,elementIndex,scope) ::= <<
<if(label)>
Locals.AsInteger['<label>Start<elementIndex>'] := CharIndex;
<if(scope)><scope:delegateName()>.<endif>m<rule.name>(<args; separator=", ">); <checkRuleBacktrackFailure()>
<label> := TCommonToken.Create(Input, TToken.INVALID_TOKEN_TYPE, TToken.DEFAULT_CHANNEL,
Locals.AsInteger['<label>Start<elementIndex>'], CharIndex - 1);
<else>
<if(scope)>(<scope:delegateName()>.Implementor as T<scope.recognizerName>).<endif>m<rule.name>(<args; separator=", ">); <checkRuleBacktrackFailure()>
<endif>
>>
/** i+=INT in lexer */
lexerRuleRefAndListLabel(rule,label,args,elementIndex,scope) ::= <<
<lexerRuleRef(...)>
<listLabel(elem=label,...)>
>>
/** EOF in the lexer */
lexerMatchEOF(label,elementIndex) ::= <<
<if(label)>
Locals.AsInteger['<label>Start<elementIndex>'] := CharIndex;
Match(EOF); <checkRuleBacktrackFailure()>
Locals['<label>'] := TCommonToken.Create(Input, EOF, TToken.DEFAULT_CHANNEL, Locals.AsInteger['<label>Start<elementIndex>'], CharIndex-1);
<else>
Match(EOF); <checkRuleBacktrackFailure()>
<endif>
>>
/** match ^(root children) in tree parser */
tree(root, actionsAfterRoot, children, nullableChildList,
enclosingTreeLevel, treeLevel) ::= <<
<root:element()>
<actionsAfterRoot:element()>
<if(nullableChildList)>
if (Input.LA(1) = TToken.DOWN) then
begin
Match(Input, TToken.DOWN, nil); <checkRuleBacktrackFailure()>
<children:element()>
Match(Input, TToken.UP, nil); <checkRuleBacktrackFailure()>
end;
<else>
Match(Input, TToken.DOWN, nil); <checkRuleBacktrackFailure()>
<children:element()>
Match(Input, TToken.UP, nil);<\n><checkRuleBacktrackFailure()>
<endif>
>>
/** Every predicate is used as a validating predicate (even when it is
* also hoisted into a prediction expression).
*/
validateSemanticPredicate(pred,description) ::= <<
if (not (<evalPredicate(...)>)) then
begin
<ruleBacktrackFailure()>
raise EFailedPredicateException.Create(Input, '<ruleName>', '<description>');
end;<\n>
>>
// F i x e d D F A (if-then-else)
dfaState(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
FLA[<decisionNumber>,<stateNumber>] := Input.LA(<k>);<\n>
<edges; separator="\nelse ">
else
begin
<if(eotPredictsAlt)>
Alt[<decisionNumber>] := <eotPredictsAlt>;<\n>
<else>
<ruleBacktrackFailure()>
raise ENoViableAltException.Create('<description>', <decisionNumber>, <stateNumber>, Input);<\n>
<endif>
end;
>>
/** Same as a normal DFA state except that we don't examine lookahead
* for the bypass alternative. It delays error detection but this
* is faster, smaller, and more what people expect. For (X)? people
* expect "if ( LA(1)==X ) match(X);" and that's it.
*/
dfaOptionalBlockState(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
FLA[<decisionNumber>,<stateNumber>] := Input.LA(<k>);<\n>
<edges; separator="\nelse ">;
>>
/** A DFA state that is actually the loopback decision of a closure
* loop. If end-of-token (EOT) predicts any of the targets then it
* should act like a default clause (i.e., no error can be generated).
* This is used only in the lexer so that for ('a')* on the end of a rule
* anything other than 'a' predicts exiting.
*/
dfaLoopbackState(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
FLA[<decisionNumber>,<stateNumber>] := Input.LA(<k>);
<edges; separator="\nelse ">;<\n>
<if(eotPredictsAlt)>
<if(!edges)>
Alt[<decisionNumber>] := <eotPredictsAlt>; <! if no edges, don't gen ELSE !>
<else>
else
begin
Alt[<decisionNumber>] := <eotPredictsAlt>;
end;<\n>
<endif>
<endif>
>>
/** An accept state indicates a unique alternative has been predicted */
dfaAcceptState(alt) ::= "Alt[<decisionNumber>] := <alt>;"
/** A simple edge with an expression. If the expression is satisfied,
* enter to the target state. To handle gated productions, we may
* have to evaluate some predicates for this edge.
*/
dfaEdge(labelExpr, targetState, predicates) ::= <<
if ((<labelExpr>)<if(predicates)> and (<predicates>)<endif>) then
begin
<targetState>
end <! no ; here !>
>>
// F i x e d D F A (switch case)
/** A DFA state where a SWITCH may be generated. The code generator
* decides if this is possible: CodeGenerator.canGenerateSwitch().
*/
dfaStateSwitch(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
case Input.LA(<k>) of
<edges; separator="\n">
else
begin
<if(eotPredictsAlt)>
Alt[<decisionNumber>] := <eotPredictsAlt>;
<else>
<ruleBacktrackFailure()>
<@noViableAltException()>
raise ENoViableAltException.Create('<description>', <decisionNumber>, <stateNumber>, Input);<\n>
<endif>
end;
end;<\n>
>>
dfaOptionalBlockStateSwitch(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
case Input.LA(<k>) of
<edges; separator="\n">
end;<\n>
>>
dfaLoopbackStateSwitch(k, edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
case Input.LA(<k>) of
<edges; separator="\n"><\n>
<if(eotPredictsAlt)>
else
Alt[<decisionNumber>] := <eotPredictsAlt>;<\n>
<endif>
end;<\n>
>>
dfaEdgeSwitch(labels, targetState) ::= <<
<labels:{<it>}; separator=",\n">:
begin
<targetState>
end;
>>
// C y c l i c D F A
/** The code to initiate execution of a cyclic DFA; this is used
* in the rule to predict an alt just like the fixed DFA case.
* The <name> attribute is inherited via the parser, lexer, ...
*/
dfaDecision(decisionNumber,description) ::= <<
Alt[<decisionNumber>] := FDFA<decisionNumber>.Predict(Input);
>>
/* Dump DFA tables.
*/
cyclicDFADeclaration(dfa) ::= <<
strict protected
type
TDFA<dfa.decisionNumber> = class(TDFA)
protected
{ IDFA }
function Description: String; override;
public
constructor Create(const ARecognizer: IBaseRecognizer);
end;
var
FDFA<dfa.decisionNumber>: IDFA;
<if(dfa.specialStateSTs)>
strict protected
function DFA<dfa.decisionNumber>_SpecialStateTransition(const DFA: IDFA; S: Integer;
const AInput: IIntStream): Integer;<endif>
>>
cyclicDFA(dfa) ::= <<
{ T<grammar.recognizerName>.TDFA<dfa.decisionNumber> }
constructor T<grammar.recognizerName>.TDFA<dfa.decisionNumber>.Create(const ARecognizer: IBaseRecognizer);
const
DFA<dfa.decisionNumber>_EOT = '<dfa.javaCompressedEOT; wrap="'+\n '">';
DFA<dfa.decisionNumber>_EOF = '<dfa.javaCompressedEOF; wrap="'+\n '">';
DFA<dfa.decisionNumber>_MIN = '<dfa.javaCompressedMin; wrap="'+\n '">';
DFA<dfa.decisionNumber>_MAX = '<dfa.javaCompressedMax; wrap="'+\n '">';
DFA<dfa.decisionNumber>_ACCEPT = '<dfa.javaCompressedAccept; wrap="'+\n '">';
DFA<dfa.decisionNumber>_SPECIAL = '<dfa.javaCompressedSpecial; wrap="'+\n '">';
DFA<dfa.decisionNumber>_TRANSITION: array [0..<length(dfa.javaCompressedTransition)>-1] of String = (
<dfa.javaCompressedTransition:{s|'<s; wrap="'+\n'">'}; separator=",\n">);
begin
inherited Create;
Recognizer := ARecognizer;
DecisionNumber := <dfa.decisionNumber>;
EOT := TDFA.UnpackEncodedString(DFA<dfa.decisionNumber>_EOT);
EOF := TDFA.UnpackEncodedString(DFA<dfa.decisionNumber>_EOF);
Min := TDFA.UnpackEncodedStringToUnsignedChars(DFA<dfa.decisionNumber>_MIN);
Max := TDFA.UnpackEncodedStringToUnsignedChars(DFA<dfa.decisionNumber>_MAX);
Accept := TDFA.UnpackEncodedString(DFA<dfa.decisionNumber>_ACCEPT);
Special := TDFA.UnpackEncodedString(DFA<dfa.decisionNumber>_SPECIAL);
Transition := TDFA.UnpackEncodedStringArray(DFA<dfa.decisionNumber>_TRANSITION);
end;
function T<grammar.recognizerName>.TDFA<dfa.decisionNumber>.Description: String;
begin
Result := '<dfa.description>';
end;<\n>
<if(dfa.specialStateSTs)>
function T<grammar.recognizerName>.DFA<dfa.decisionNumber>_SpecialStateTransition(const DFA: IDFA; S: Integer;
const AInput: IIntStream): Integer;
var
Locals: TLocalStorage;
<if(LEXER)>
Input: IIntStream;
<endif>
<if(PARSER)>
Input: ITokenStream;
<endif>
<if(TREE_PARSER)>
Input: ITreeNodeStream;
<endif>
_S: Integer;
NVAE: ENoViableAltException;
begin
Result := -1;
Locals.Initialize;
try
<if(LEXER)>
Input := AInput;
<endif>
<if(PARSER)>
Input := AInput as ITokenStream;
<endif>
<if(TREE_PARSER)>
Input := AInput as ITreeNodeStream;
<endif>
_S := S;
case S of
<dfa.specialStateSTs:{state | <i0>: begin<! compressed special state numbers 0..n-1 !>
<state> <\n> end;}; separator="\n">
end;
<if(backtracking)>
if (State.Backtracking > 0) then
begin
State.Failed := True;
Exit(-1);
end;<\n>
<endif>
NVAE := ENoViableAltException.Create(DFA.Description, <dfa.decisionNumber>, _S, Input);
DFA.Error(NVAE);
raise NVAE;
finally
Locals.Finalize;
end;
end;<\n>
<endif>
>>
/** A state in a cyclic DFA; it's a special state and part of a big switch on
* state.
*/
cyclicDFAState(decisionNumber,stateNumber,edges,needErrorClause,semPredState) ::= <<
FLA[<decisionNumber>,<stateNumber>] := Input.LA(1);<\n>
<if(semPredState)> <! get next lookahead symbol to test edges, then rewind !>
Locals.AsInteger['index<decisionNumber>_<stateNumber>'] := Input.Index;
Input.Rewind;<\n>
<endif>
S := -1;
<edges; separator="\nelse ">;
<if(semPredState)> <! return input cursor to state before we rewound !>
Input.Seek(Locals.AsInteger['index<decisionNumber>_<stateNumber>']);<\n>
<endif>
if (S >= 0) then
Exit(S);
>>
/** Just like a fixed DFA edge, test the lookahead and indicate what
* state to jump to next if successful.
*/
cyclicDFAEdge(labelExpr, targetStateNumber, edgeNumber, predicates) ::= <<
if ((<labelExpr>)<if(predicates)> and (<predicates>)<endif>) then
S := <targetStateNumber>
>>
/** An edge pointing at end-of-token; essentially matches any char;
* always jump to the target.
*/
eotDFAEdge(targetStateNumber,edgeNumber, predicates) ::= <<
S := <targetStateNumber>;<\n>
>>
// D F A E X P R E S S I O N S
andPredicates(left,right) ::= "((<left>) and (<right>))"
orPredicates(operands) ::= "((<first(operands)>)<rest(operands):{o | or (<o>)}>)"
notPredicate(pred) ::= "!(<evalPredicate(...)>)"
evalPredicate(pred,description) ::= "(<pred>)"
evalSynPredicate(pred,description) ::= "<pred>()"
lookaheadTest(atom,k,atomAsInt) ::= "FLA[<decisionNumber>,<stateNumber>] = <atomAsInt>"
/** Sometimes a lookahead test cannot assume that LA(k) is in a temp variable
* somewhere. Must ask for the lookahead directly.
*/
isolatedLookaheadTest(atom,k,atomAsInt) ::= "Input.LA(<k>) = <atomAsInt>"
lookaheadRangeTest(lower,upper,k,rangeNumber,lowerAsInt,upperAsInt) ::= <<
((FLA[<decisionNumber>,<stateNumber>] \>= <lowerAsInt>) and (FLA[<decisionNumber>,<stateNumber>] \<= <upperAsInt>))
>>
isolatedLookaheadRangeTest(lower,upper,k,rangeNumber,lowerAsInt,upperAsInt) ::= "(Input.LA(<k>) \>= <lowerAsInt>) and (Input.LA(<k>) \<= <upperAsInt>)"
setTest(ranges) ::= "<ranges; separator=\") or (\">"
// A T T R I B U T E S
globalAttributeScope(scope) ::= <<
<scope.name>Stack := TStackList\<I<scope.name>Scope\>.Create;<\n>
<endif>
>>
globalAttributeScopeDeclaration(scope) ::= <<
<if(scope.attributes)>
strict protected
type
I<scope.name>Scope = interface(IANTLRObject)
end;
T<scope.name>Scope = class(TANTLRObject, I<scope.name>Scope)
protected
<scope.attributes:{<it.name>: <it.type>;}; separator="\n">
end;
strict protected
<scope.name>Stack: IStackList\<I<scope.name>Scope\>;
<endif>
>>
ruleAttributeScopeDeclaration(scope) ::= <<
<if(scope.attributes)>
strict protected
type
I<scope.name>Scope = interface(IANTLRObject)
end;
T<scope.name>Scope = class(TANTLRObject, I<scope.name>Scope)
protected
<scope.attributes:{<it.name>: <it.type>;}; separator="\n">
end;
strict protected
<scope.name>Stack: IStackList\<I<scope.name>Scope\>;
<endif>
>>
ruleAttributeScope(scope) ::= <<
<! protected Stack <scope.name>Stack = new Stack();<\n> !>
>>
ruleAttributeScopeInit(scope) ::= <<
<if(scope)>
<scope.name>Stack := TStackList\<I<scope.name>Scope\>.Create;<\n>
<endif>
>>
returnStructName() ::= "<it.name>_return"
returnType() ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
<ruleDescriptor:returnStructName()>
<! I<if(TREE_PARSER)>Tree<else>Parser<endif>RuleReturnScope !>
<else>
<if(ruleDescriptor.hasSingleReturnValue)>
<ruleDescriptor.singleValueReturnType>
<else>
<! Pointer/void !>
<endif>
<endif>
>>
/** Generate the C# type associated with a single or multiple return
* values.
*/
ruleLabelType(referencedRule) ::= <<
<if(referencedRule.hasMultipleReturnValues)>
I<referencedRule.name>_return
<else>
<if(referencedRule.hasSingleReturnValue)>
<referencedRule.singleValueReturnType>
<else>
void
<endif>
<endif>
>>
delegateName() ::= <<
<if(it.label)><it.label><else>g<it.name><endif>
>>
/** Using a type to init value map, try to init a type; if not in table
* must be an object, default value is "null".
*/
initValue(typeName) ::= <<
<csharpTypeInitMap.(typeName)>
>>
/** Define a rule label including default value */
ruleLabelDef(label) ::= <<
<label.label.text> := <initValue(typeName=ruleLabelType(referencedRule=label.referencedRule))>;<\n>
>>
ruleLabelDefVar(label) ::= <<
<label.label.text>: <ruleLabelType(referencedRule=label.referencedRule)>;
>>
/** Define a return struct for a rule if the code needs to access its
* start/stop tokens, tree stuff, attributes, ... Leave a hole for
* subgroups to stick in members.
*/
returnScope(scope) ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
{ T<ruleDescriptor:returnStructName()> }
<scope.attributes:{public <it.decl>;}; separator="\n">
<@ruleReturnMembers()>
<endif>
>>
returnScopeDeclaration(scope) ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
public
type
T<ruleDescriptor:returnStructName()> = class(T<if(TREE_PARSER)>Tree<else>Parser<endif>RuleReturnScope, I<ruleDescriptor:returnStructName()>)
<scope.attributes:{public <it.decl>;}; separator="\n">
<@ruleReturnMembers()>
end;
<endif>
>>
parameterScope(scope) ::= <<
<scope.attributes:{<it.decl>}; separator=", ">
>>
parameterAttributeRef(attr) ::= "<attr.name>"
parameterSetAttributeRef(attr,expr) ::= "<attr.name> := <expr>;"
scopeAttributeRef(scope,attr,index,negIndex) ::= <<
<if(negIndex)>
(<scope>Stack[<scope>Stack.Count-<negIndex>-1] as T<scope>Scope).<attr.name>
<else>
<if(index)>
(<scope>Stack[<index>] as T<scope>Scope).<attr.name>
((<scope>_scope)<scope>_stack[<index>]).<attr.name>
<else>
(<scope>Stack.Peek.Implementor as T<scope>Scope).<attr.name>
<endif>
<endif>
>>
scopeSetAttributeRef(scope,attr,expr,index,negIndex) ::= <<
<if(negIndex)>
(<scope>Stack[<scope>Stack.Count-<negIndex>-1] as T<scope>Scope).<attr.name> := <expr>;<\n>
<else>
<if(index)>
(<scope>Stack[<index>] as T<scope>Scope).<attr.name> := <expr>;<\n>
<else>
(<scope>Stack.Peek.Implementor as T<scope>Scope).<attr.name> := <expr>;<\n>
<endif>
<endif>
>>
/** $x is either global scope or x is rule with dynamic scope; refers
* to stack itself not top of stack. This is useful for predicates
* like {$function.size()>0 && $function::name.equals("foo")}?
*/
isolatedDynamicScopeRef(scope) ::= "<scope>Stack"
/** reference an attribute of rule; might only have single return value */
ruleLabelRef(referencedRule,scope,attr) ::= <<
<if(referencedRule.hasMultipleReturnValues)>
(IfThen(Assigned(<scope>),Def(<scope>).<attr.name>,<initValue(attr.type)>))
<else>
<scope>
<endif>
>>
returnAttributeRef(ruleDescriptor,attr) ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
RetVal.<attr.name>
<else>
<attr.name>
<endif>
>>
returnSetAttributeRef(ruleDescriptor,attr,expr) ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
RetVal.<attr.name> := <expr>;
<else>
<attr.name> := <expr>;
<endif>
>>
/** How to translate $tokenLabel */
tokenLabelRef(label) ::= "<label>"
/** ids+=ID {$ids} or e+=expr {$e} */
listLabelRef(label) ::= "list_<label>"
// not sure the next are the right approach
tokenLabelPropertyRef_text(scope,attr) ::= "(Def(<scope>).Text)"
tokenLabelPropertyRef_type(scope,attr) ::= "(Def(<scope>).TokenType)"
tokenLabelPropertyRef_line(scope,attr) ::= "(Def(<scope>).Line)"
tokenLabelPropertyRef_pos(scope,attr) ::= "(Def(<scope>).CharPositionInLine)"
tokenLabelPropertyRef_channel(scope,attr) ::= "(Def(<scope>).Channel)"
tokenLabelPropertyRef_index(scope,attr) ::= "(Def(<scope>).TokenIndex)"
tokenLabelPropertyRef_tree(scope,attr) ::= "<scope>_tree"
tokenLabelPropertyRef_int(scope,attr) ::= "(StrToIntDef(Def(<scope>).Text,0))"
ruleLabelPropertyRef_start(scope,attr) ::= "(IfThen(Assigned(<scope>), Def(<scope>).Start, nil) as I<labelType>)"
ruleLabelPropertyRef_stop(scope,attr) ::= "(Def(<scope>).Stop as I<labelType>)"
ruleLabelPropertyRef_tree(scope,attr) ::= "(Def(Def(<scope>).Tree as I<ASTLabelType>))"
ruleLabelPropertyRef_text(scope,attr) ::= <<
<if(TREE_PARSER)>
IfThen(Assigned(<scope>), Input.TokenStream.ToString(
Input.TreeAdaptor.GetTokenStartIndex(Def(<scope>).Start),
Input.TreeAdaptor.GetTokenStopIndex(Def(<scope>).Start)), '')
<else>
IfThen(Assigned(<scope>), Input.ToString(
(Def(<scope>).Start) as IToken,(Def(<scope>).Stop) as IToken), '')
<endif>
>>
ruleLabelPropertyRef_st(scope,attr) ::= "((<scope> != null) ? <scope>.ST : null)"
/** Isolated $RULE ref ok in lexer as it's a Token */
lexerRuleLabel(label) ::= "<label>"
lexerRuleLabelPropertyRef_type(scope,attr) ::= "(Def(<scope>).TokenType)"
lexerRuleLabelPropertyRef_line(scope,attr) ::= "(Def(<scope>).Line)"
lexerRuleLabelPropertyRef_pos(scope,attr) ::= "(IfThen(Assigned(<scope>),Def(<scope>).CharPositionInLine,-1))"
lexerRuleLabelPropertyRef_channel(scope,attr) ::= "(Def(<scope>).Channel)"
lexerRuleLabelPropertyRef_index(scope,attr) ::= "(Def(<scope>).TokenIndex)"
lexerRuleLabelPropertyRef_text(scope,attr) ::= "(Def(<scope>).Text)"
lexerRuleLabelPropertyRef_int(scope,attr) ::= "(StrToIntDef(Def(<scope>).Text,0))"
// Somebody may ref $template or $tree or $stop within a rule:
rulePropertyRef_start(scope,attr) ::= "(RetVal.Start as I<labelType>)"
rulePropertyRef_stop(scope,attr) ::= "(RetVal.Stop as I<labelType>)"
rulePropertyRef_tree(scope,attr) ::= "(RetVal.Tree as I<ASTLabelType>)"
rulePropertyRef_text(scope,attr) ::= <<
<if(TREE_PARSER)>
Input.TokenStream.ToString(
Input.TreeAdaptor.GetTokenStartIndex(RetVal.Start),
Input.TreeAdaptor.GetTokenStopIndex(RetVal.Start))
<else>
Input.ToString(RetVal.Start as IToken,Input.LT(-1))
<endif>
>>
rulePropertyRef_st(scope,attr) ::= "RetVal.ST"
lexerRulePropertyRef_text(scope,attr) ::= "Text"
lexerRulePropertyRef_type(scope,attr) ::= "TokenType"
lexerRulePropertyRef_line(scope,attr) ::= "State.TokenStartLine"
lexerRulePropertyRef_pos(scope,attr) ::= "State.TokenStartCharPositionInLine"
lexerRulePropertyRef_index(scope,attr) ::= "-1" // undefined token index in lexer
lexerRulePropertyRef_channel(scope,attr) ::= "Channel"
lexerRulePropertyRef_start(scope,attr) ::= "State.TokenStartCharIndex"
lexerRulePropertyRef_stop(scope,attr) ::= "(CharIndex-1)"
lexerRulePropertyRef_int(scope,attr) ::= "StrToInt(<scope>.Text)"
// setting $st and $tree is allowed in local rule. everything else
// is flagged as error
ruleSetPropertyRef_tree(scope,attr,expr) ::= "RetVal.Tree := <expr>;"
ruleSetPropertyRef_st(scope,attr,expr) ::= "RetVal.ST := <expr>;"
/** How to execute an action (only when not backtracking) */
execAction(action) ::= <<
<if(backtracking)>
<if(actions.(actionScope).synpredgate)>
if (<actions.(actionScope).synpredgate>) then
begin
<action>
end;
<else>
if (State.Backtracking = 0) then
begin
<action>
end;<\n>
<endif>
<else>
<action>
<endif>
>>
/** How to always execute an action even when backtracking */
execForcedAction(action) ::= "<action>"
// M I S C (properties, etc...)
bitset(name, words64) ::= <<
<name> := TBitSet.Create([<words64:{<it>};separator=",">]);<\n>
>>
bitsetDecl(name) ::= <<
<name>: IBitSet;<\n>
>>
codeFileExtension() ::= ".pas"
true() ::= "True"
false() ::= "False"