blob: bfd7c44aa5ca08d0df86eed5bf3ea3b2b3084e12 [file] [log] [blame]
/*
[The "BSD license"]
Copyright (c) 2010 Matthew Lloyd
http://linkedin.com/in/matthewl
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
scalaTypeInitMap ::= [
"Int":"0",
"Long":"0",
"Float":"0.0f",
"Double":"0.0",
"Boolean":"false",
"Byte":"0",
"Short":"0",
"Char":"0",
default:"null" // anything other than an atomic type
]
/** The overall file structure of a recognizer; stores methods for rules
* and cyclic DFAs plus support code.
*/
outputFile(LEXER,PARSER,TREE_PARSER, actionScope, actions,
docComment, recognizer,
name, tokens, tokenNames, rules, cyclicDFAs,
bitsets, buildTemplate, buildAST, rewriteMode, profile,
backtracking, synpreds, memoize, numRules,
fileName, ANTLRVersion, generatedTimestamp, trace,
scopes, superClass, literals) ::=
<<
// $ANTLR <ANTLRVersion> <fileName> <generatedTimestamp>
<actions.(actionScope).header>
<@imports>
import org.antlr.runtime._
<if(TREE_PARSER)>
import org.antlr.runtime.tree._
<endif>
<@end>
<docComment>
<recognizer>
>>
lexer(grammar, name, tokens, scopes, rules, numRules, filterMode, labelType="CommonToken",
superClass="Lexer") ::= <<
object <grammar.recognizerName> {
<tokens:{it | val <it.name> = <it.type>}; separator="\n">
<cyclicDFAs:cyclicDFA()> <! dump tables for all DFA !>
}
class <grammar.recognizerName>(input: CharStream, state<grammar.delegators:{g|, <g.recognizerName> <g:delegateName()>}>: RecognizerSharedState) extends <@superClassName><superClass><@end>(input, state<grammar.delegators:{g|, <g.recognizerName> <g:delegateName()>}>) {
import <grammar.recognizerName>._
<actions.lexer.members>
// delegates
<grammar.delegates:
{g|<g.recognizerName> <g:delegateName()>}; separator="\n">
// delegators
<grammar.delegators:
{g|<g.recognizerName> <g:delegateName()>}; separator="\n">
<last(grammar.delegators):{g|public <g.recognizerName> gParent;}>
<scopes:{it | <if(it.isDynamicGlobalScope)><globalAttributeScope()><endif>}>
def this(input<grammar.delegators:{g|, <g.recognizerName> <g:delegateName()>}>: CharStream) =
this(input, new RecognizerSharedState()<grammar.delegators:{g|, <g:delegateName()>}>)
<if(memoize)>
<if(grammar.grammarIsRoot)>
state.ruleMemo = new Array[java.util.Map[_,_]](<numRules>+1)<\n> <! index from 1..n !>
<endif>
<endif>
<grammar.directDelegates:
{g|<g:delegateName()> = new <g.recognizerName>(input, state<trunc(g.delegators):{p|, <p:delegateName()>}>, this)}; separator="\n">
<grammar.delegators:
{g|this.<g:delegateName()> = <g:delegateName()>}; separator="\n">
<last(grammar.delegators):{g|gParent = <g:delegateName()>}>
override def getGrammarFileName = "<fileName>"
<if(filterMode)>
<filteringNextToken()>
<endif>
<rules; separator="\n\n">
<synpreds:{p | <lexerSynpred(p)>}>
<cyclicDFAs:{dfa | private val dfa<dfa.decisionNumber> = new <grammar.recognizerName>.DFA<dfa.decisionNumber>(this)}; separator="\n">
}
>>
/** A override of Lexer.nextToken() that backtracks over mTokens() looking
* for matches. No error can be generated upon error; just rewind, consume
* a token and then try again. backtracking needs to be set as well.
* Make rule memoization happen only at levels above 1 as we start mTokens
* at backtracking==1.
*/
filteringNextToken() ::= <<
override def nextToken(): Token = {
while (true) {
if ( input.LA(1)==CharStream.EOF ) {
var eof: Token = new CommonToken((CharStream)input,Token.EOF,
Token.DEFAULT_CHANNEL,
input.index(),input.index())
eof.setLine(getLine())
eof.setCharPositionInLine(getCharPositionInLine())
return eof
}
state.token = null
state.channel = Token.DEFAULT_CHANNEL
state.tokenStartCharIndex = input.index()
state.tokenStartCharPositionInLine = input.getCharPositionInLine()
state.tokenStartLine = input.getLine()
state.text = null
try {
val m = input.mark()
state.backtracking=1 <! means we won't throw slow exception !>
state.failed=false
mTokens()
state.backtracking=0
<! mTokens backtracks with synpred at backtracking==2
and we set the synpredgate to allow actions at level 1. !>
if ( state.failed ) {
input.rewind(m)
input.consume() <! advance one char and try again !>
}
else {
emit()
return state.token
}
}
catch {
case re: RecognitionException =>
// shouldn't happen in backtracking mode, but...
reportError(re)
recover(re)
}
}
}
override def memoize(input: IntStream,
ruleIndex: Int,
ruleStartIndex: Int) = {
if ( state.backtracking>1 ) super.memoize(input, ruleIndex, ruleStartIndex)
}
override def alreadyParsedRule(input: IntStream, ruleIndex: Int):Boolean {
if ( state.backtracking>1 ) return super.alreadyParsedRule(input, ruleIndex)
return false
}
>>
actionGate() ::= "state.backtracking==0"
filteringActionGate() ::= "state.backtracking==1"
/** How to generate a parser */
genericParser(grammar, name, scopes, tokens, tokenNames, rules, numRules,
bitsets, inputStreamType, superClass,
labelType, members, rewriteElementType,
filterMode, ASTLabelType="Object") ::= <<
object <grammar.recognizerName> {
<if(grammar.grammarIsRoot)>
val tokenNames = Array(
"\<invalid>", "\<EOR>", "\<DOWN>", "\<UP>", <tokenNames; separator=", ">
)<\n>
<endif>
<tokens:{it | val <it.name> = <it.type>}; separator="\n">
<cyclicDFAs:cyclicDFA()> <! dump tables for all DFA !>
<bitsets:{it | <bitset(name={FOLLOW_<it.name>_in_<it.inName><it.tokenIndex>},
words64=it.bits)>}>
}
class <grammar.recognizerName>(input: <inputStreamType>, state<grammar.delegators:{g|, <g.recognizerName> <g:delegateName()>}>: RecognizerSharedState) extends <@superClassName><superClass><@end>(input, state) {
import <grammar.recognizerName>._
// delegates
<grammar.delegates:
{g|public <g.recognizerName> <g:delegateName()>}; separator="\n">
// delegators
<grammar.delegators:
{g|public <g.recognizerName> <g:delegateName()>}; separator="\n">
<last(grammar.delegators):{g|public <g.recognizerName> gParent;}>
<scopes:{it | <if(it.isDynamicGlobalScope)><globalAttributeScope()><endif>}>
<@members>
<! WARNING. bug in ST: this is cut-n-paste into Dbg.stg !>
def this(input<grammar.delegators:{g|, <g.recognizerName> <g:delegateName()>}>: <inputStreamType>) =
this(input, new RecognizerSharedState()<grammar.delegators:{g|, <g:delegateName()>}>)
<parserCtorBody()>
<grammar.directDelegates:
{g|<g:delegateName()> = new <g.recognizerName>(input, state<trunc(g.delegators):{p|, <p:delegateName()>}>, this)}; separator="\n">
<grammar.indirectDelegates:{g | <g:delegateName()> = <g.delegator:delegateName()>.<g:delegateName()>}; separator="\n">
<last(grammar.delegators):{g|gParent = <g:delegateName()>}>
<@end>
override def getTokenNames: Array[String] = tokenNames
override def getGrammarFileName = "<fileName>"
<members>
<rules; separator="\n\n">
<! generate rule/method definitions for imported rules so they
appear to be defined in this recognizer. !>
// Delegated rules
<grammar.delegatedRules:{ruleDescriptor|
@throws(classOf[RecognitionException])
def <ruleDescriptor.name>(<ruleDescriptor.parameterScope:parameterScope()>): <returnType()> = \{ <if(ruleDescriptor.hasReturnValue)>return <endif><ruleDescriptor.grammar:delegateName()>.<ruleDescriptor.name>(<ruleDescriptor.parameterScope.attributes:{a|<a.name>}; separator=", ">) \}}; separator="\n">
<synpreds:{p | <synpred(p)>}>
<cyclicDFAs:{dfa | private val dfa<dfa.decisionNumber> = new <grammar.recognizerName>.DFA<dfa.decisionNumber>(this)}; separator="\n">
}
>>
parserCtorBody() ::= <<
<if(memoize)>
<if(grammar.grammarIsRoot)>
this.state.ruleMemo = new Array[java.util.Map[_,_]](<length(grammar.allImportedRules)>+1)<\n> <! index from 1..n !>
<endif>
<endif>
<grammar.delegators:
{g|this.<g:delegateName()> = <g:delegateName()>}; separator="\n">
>>
parser(grammar, name, scopes, tokens, tokenNames, rules, numRules, bitsets,
ASTLabelType="Object", superClass="Parser", labelType="Token",
members={<actions.parser.members>}) ::= <<
<genericParser(inputStreamType="TokenStream", rewriteElementType="Token", ...)>
>>
/** How to generate a tree parser; same as parser except the input
* stream is a different type.
*/
treeParser(grammar, name, scopes, tokens, tokenNames, globalAction, rules,
numRules, bitsets, filterMode, labelType={<ASTLabelType>}, ASTLabelType="Object",
superClass={<if(filterMode)><if(buildAST)>TreeRewriter<else>TreeFilter<endif><else>TreeParser<endif>},
members={<actions.treeparser.members>}
) ::= <<
<genericParser(inputStreamType="TreeNodeStream", rewriteElementType="Node", ...)>
>>
/** A simpler version of a rule template that is specific to the imaginary
* rules created for syntactic predicates. As they never have return values
* nor parameters etc..., just give simplest possible method. Don't do
* any of the normal memoization stuff in here either; it's a waste.
* As predicates cannot be inlined into the invoking rule, they need to
* be in a rule by themselves.
*/
synpredRule(ruleName, ruleDescriptor, block, description, nakedBlock) ::=
<<
// $ANTLR start <ruleName>
@throws(classOf[RecognitionException])
def <ruleName>_fragment(<ruleDescriptor.parameterScope:parameterScope()>): Unit = {
<ruleLabelDefs()>
<if(trace)>
traceIn("<ruleName>_fragment", <ruleDescriptor.index>)
try {
<block>
}
finally {
traceOut("<ruleName>_fragment", <ruleDescriptor.index>);
}
<else>
<block>
<endif>
}
// $ANTLR end <ruleName>
>>
synpred(name) ::= <<
final def <name>(): Boolean = {
state.backtracking+=1
<@start()>
val start = input.mark()
try {
<name>_fragment() // can never throw exception
} catch {
case re: RecognitionException =>
System.err.println("impossible: "+re)
}
val success = !state.failed
input.rewind(start)
<@stop()>
state.backtracking-=1
state.failed=false
success
}<\n>
>>
lexerSynpred(name) ::= <<
<synpred(name)>
>>
ruleMemoization(name) ::= <<
<if(memoize)>
if ( state.backtracking>0 && alreadyParsedRule(input, <ruleDescriptor.index>) ) { return <ruleReturnValue()> }
<endif>
>>
/** How to test for failure and return from rule */
checkRuleBacktrackFailure() ::= <<
<if(backtracking)>if (state.failed) return <ruleReturnValue()><endif>
>>
/** This rule has failed, exit indicating failure during backtrack */
ruleBacktrackFailure() ::= <<
<if(backtracking)>if (state.backtracking>0) {state.failed=true; return <ruleReturnValue()>}<endif>
>>
/** How to generate code for a rule. This includes any return type
* data aggregates required for multiple return values.
*/
rule(ruleName,ruleDescriptor,block,emptyRule,description,exceptions,finally,memoize) ::= <<
<ruleAttributeScope(scope=ruleDescriptor.ruleScope)>
<returnScope(scope=ruleDescriptor.returnScope)>
// $ANTLR start "<ruleName>"
// <fileName>:<description>
@throws(classOf[RecognitionException])
final def <ruleName>(<ruleDescriptor.parameterScope:parameterScope()>): <returnType()> = {
<if(trace)>traceIn("<ruleName>", <ruleDescriptor.index>)<endif>
<ruleScopeSetUp()>
<ruleDeclarations()>
<ruleLabelDefs()>
<ruleDescriptor.actions.init>
<@preamble()>
try {
<ruleMemoization(name=ruleName)>
<block>
<ruleCleanUp()>
<(ruleDescriptor.actions.after):execAction()>
}
<if(exceptions)>
<exceptions:{e|<catch(decl=e.decl,action=e.action)><\n>}>
<else>
<if(!emptyRule)>
<if(actions.(actionScope).rulecatch)>
<actions.(actionScope).rulecatch>
<else>
catch {
case re: RecognitionException =>
reportError(re)
recover(input,re)
<@setErrorReturnValue()>
}<\n>
<endif>
<endif>
<endif>
finally {
<if(trace)>traceOut("<ruleName>", <ruleDescriptor.index>);<endif>
<memoize()>
<ruleScopeCleanUp()>
<finally>
}
<@postamble()>
return <ruleReturnValue()>
}
// $ANTLR end "<ruleName>"
>>
catch(decl,action) ::= <<
catch (<e.decl>) {
<e.action>
}
>>
ruleDeclarations() ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
val retval = new <returnType()>()
retval.start = input.LT(1)<\n>
<else>
<ruleDescriptor.returnScope.attributes:{ a |
var <a.name>: <a.type> = <if(a.initValue)><a.initValue><else><initValue(a.type)><endif>
}>
<endif>
<if(memoize)>
val <ruleDescriptor.name>_StartIndex = input.index()
<endif>
>>
ruleScopeSetUp() ::= <<
<ruleDescriptor.useScopes:{it | <it>_stack.push(new <it>_scope())}; separator="\n">
<ruleDescriptor.ruleScope:{it | <it.name>_stack.push(new <it.name>_scope())}; separator="\n">
>>
ruleScopeCleanUp() ::= <<
<ruleDescriptor.useScopes:{it | <it>_stack.pop()}; separator="\n">
<ruleDescriptor.ruleScope:{it | <it.name>_stack.pop()}; separator="\n">
>>
ruleLabelDefs() ::= <<
<[ruleDescriptor.tokenLabels,ruleDescriptor.tokenListLabels,
ruleDescriptor.wildcardTreeLabels,ruleDescriptor.wildcardTreeListLabels]
:{it | var <it.label.text>: <labelType> = null}; separator="\n"
>
<[ruleDescriptor.tokenListLabels,ruleDescriptor.ruleListLabels,ruleDescriptor.wildcardTreeListLabels]
:{it | var list_<it.label.text>: java.util.List=null}; separator="\n"
>
<ruleDescriptor.ruleLabels:ruleLabelDef(); separator="\n">
<ruleDescriptor.ruleListLabels:{ll|var <ll.label.text>: RuleReturnScope = null}; separator="\n">
>>
lexerRuleLabelDefs() ::= <<
<[ruleDescriptor.tokenLabels,
ruleDescriptor.tokenListLabels,
ruleDescriptor.ruleLabels]
:{it | var <it.label.text>: <labelType>=null}; separator="\n"
>
<ruleDescriptor.charLabels:{it | int <it.label.text>;}; separator="\n">
<[ruleDescriptor.tokenListLabels,
ruleDescriptor.ruleListLabels]
:{it | var list_<it.label.text>: java.util.List=null}; separator="\n"
>
>>
ruleReturnValue() ::= <<
<if(!ruleDescriptor.isSynPred)>
<if(ruleDescriptor.hasReturnValue)>
<if(ruleDescriptor.hasSingleReturnValue)>
<ruleDescriptor.singleValueReturnName>
<else>
retval
<endif>
<endif>
<endif>
>>
ruleCleanUp() ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
<if(!TREE_PARSER)>
retval.stop = input.LT(-1)<\n>
<endif>
<endif>
>>
memoize() ::= <<
<if(memoize)>
<if(backtracking)>
if ( state.backtracking>0 ) { memoize(input, <ruleDescriptor.index>, <ruleDescriptor.name>_StartIndex) }
<endif>
<endif>
>>
/** How to generate a rule in the lexer; naked blocks are used for
* fragment rules.
*/
lexerRule(ruleName,nakedBlock,ruleDescriptor,block,memoize) ::= <<
// $ANTLR start "<ruleName>"
@throws(classOf[RecognitionException])
final def m<ruleName>(<ruleDescriptor.parameterScope:parameterScope()>): Unit = {
<if(trace)>traceIn("<ruleName>", <ruleDescriptor.index>)<endif>
<ruleScopeSetUp()>
<ruleDeclarations()>
try {
<if(nakedBlock)>
<ruleMemoization(name=ruleName)>
<lexerRuleLabelDefs()>
<ruleDescriptor.actions.init>
try <block><\n>
<else>
var _type = <ruleName>
var _channel = BaseRecognizer.DEFAULT_TOKEN_CHANNEL
<ruleMemoization(name=ruleName)>
<lexerRuleLabelDefs()>
<ruleDescriptor.actions.init>
try <block>
<ruleCleanUp()>
state.`type` = _type
state.channel = _channel
<(ruleDescriptor.actions.after):execAction()>
<endif>
}
finally {
<if(trace)>traceOut("<ruleName>", <ruleDescriptor.index>)<endif>
<ruleScopeCleanUp()>
<memoize()>
}
}
// $ANTLR end "<ruleName>"
>>
/** How to generate code for the implicitly-defined lexer grammar rule
* that chooses between lexer rules.
*/
tokensRule(ruleName,nakedBlock,args,block,ruleDescriptor) ::= <<
@throws(classOf[RecognitionException])
def mTokens(): Unit = {
<block><\n>
}
>>
// S U B R U L E S
/** A (...) subrule with multiple alternatives */
block(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
// <fileName>:<description>
var alt<decisionNumber> = <maxAlt>
<decls>
<@predecision()>
<decision>
<@postdecision()>
<@prebranch()>
alt<decisionNumber> match {
<alts:{a | <altSwitchCase(i,a)>}>
case _ =>
}
<@postbranch()>
>>
/** A rule block with multiple alternatives */
ruleBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
// <fileName>:<description>
var alt<decisionNumber> = <maxAlt>
<decls>
<@predecision()>
<decision>
<@postdecision()>
alt<decisionNumber> match {
<alts:{a | <altSwitchCase(i,a)>}>
case _ =>
}
>>
ruleBlockSingleAlt(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,description) ::= <<
// <fileName>:<description>
<decls>
<@prealt()>
<alts>
<@postalt()>
>>
/** A special case of a (...) subrule with a single alternative */
blockSingleAlt(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,description) ::= <<
// <fileName>:<description>
<decls>
<@prealt()>
<alts>
<@postalt()>
>>
/** A (..)+ block with 1 or more alternatives */
positiveClosureBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
// <fileName>:<description>
var cnt<decisionNumber>: Int = 0
<decls>
<@preloop()>
var loop<decisionNumber>_quitflag = false
while (!loop<decisionNumber>_quitflag) {
var alt<decisionNumber>:Int = <maxAlt>
<@predecision()>
<decision>
<@postdecision()>
alt<decisionNumber> match {
<alts:{a | <altSwitchCase(i,a)>}>
case _ =>
if ( cnt<decisionNumber> >= 1 ) loop<decisionNumber>_quitflag = true
else {
<ruleBacktrackFailure()>
val eee = new EarlyExitException(<decisionNumber>, input)
<@earlyExitException()>
throw eee
}
}
cnt<decisionNumber>+=1
}
<@postloop()>
>>
positiveClosureBlockSingleAlt ::= positiveClosureBlock
/** A (..)* block with 1 or more alternatives */
closureBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
// <fileName>:<description>
<decls>
<@preloop()>
var loop<decisionNumber>_quitflag = false
while (!loop<decisionNumber>_quitflag) {
var alt<decisionNumber>:Int = <maxAlt>
<@predecision()>
<decision>
<@postdecision()>
alt<decisionNumber> match {
<alts:{a | <altSwitchCase(i,a)>}>
case _ => loop<decisionNumber>_quitflag = true
}
}
<@postloop()>
>>
closureBlockSingleAlt ::= closureBlock
/** Optional blocks (x)? are translated to (x|) by before code generation
* so we can just use the normal block template
*/
optionalBlock ::= block
optionalBlockSingleAlt ::= block
/** A case in a switch that jumps to an alternative given the alternative
* number. A DFA predicts the alternative and then a simple switch
* does the jump to the code that actually matches that alternative.
*/
altSwitchCase(altNum, alt) ::= <<
case <altNum> =>
<@prealt()>
<alt>
>>
/** An alternative is just a list of elements; at outermost level */
alt(elements,altNum,description,autoAST,outerAlt,treeLevel,rew) ::= <<
// <fileName>:<description>
{
<@declarations()>
<elements:element()>
<rew>
<@cleanup()>
}
>>
/** What to emit when there is no rewrite. For auto build
* mode, does nothing.
*/
noRewrite(rewriteBlockLevel, treeLevel) ::= ""
// E L E M E N T S
/** Dump the elements one per line */
element(e) ::= <<
<@prematch()>
<e.el><\n>
>>
/** match a token optionally with a label in front */
tokenRef(token,label,elementIndex,terminalOptions) ::= <<
<if(label)><label>=<endif>`match`(input,<token>,FOLLOW_<token>_in_<ruleName><elementIndex>)<if(label)>.asInstanceOf[<labelType>]<endif>
<checkRuleBacktrackFailure()>
>>
/** ids+=ID */
tokenRefAndListLabel(token,label,elementIndex,terminalOptions) ::= <<
<tokenRef(...)>
<listLabel(elem=label,...)>
>>
listLabel(label,elem) ::= <<
if (list_<label>==null) list_<label>=new java.util.ArrayList()
list_<label>.add(<elem>)<\n>
>>
/** match a character */
charRef(char,label) ::= <<
<if(label)>
<label> = input.LA(1)<\n>
<endif>
`match`(<char>)
<checkRuleBacktrackFailure()>
>>
/** match a character range */
charRangeRef(a,b,label) ::= <<
<if(label)>
<label> = input.LA(1)<\n>
<endif>
matchRange(<a>,<b>); <checkRuleBacktrackFailure()>
>>
/** For now, sets are interval tests and must be tested inline */
matchSet(s,label,elementIndex,terminalOptions,postmatchCode="") ::= <<
<if(label)>
<if(LEXER)>
<label>= input.LA(1)<\n>
<else>
<label>=input.LT(1).asInstanceOf[<labelType>]<\n>
<endif>
<endif>
if ( <s> ) {
input.consume()
<postmatchCode>
<if(!LEXER)>
state.errorRecovery=false<\n>
<endif>
<if(backtracking)>state.failed=false<endif>
}
else {
<ruleBacktrackFailure()>
val mse = new MismatchedSetException(null,input)
<@mismatchedSetException()>
<if(LEXER)>
recover(mse)
throw mse
<else>
throw mse
<! use following code to make it recover inline; remove throw mse;
recoverFromMismatchedSet(input,mse,FOLLOW_set_in_<ruleName><elementIndex>)
!>
<endif>
}<\n>
>>
matchRuleBlockSet ::= matchSet
matchSetAndListLabel(s,label,elementIndex,postmatchCode) ::= <<
<matchSet(...)>
<listLabel(elem=label,...)>
>>
/** Match a string literal */
lexerStringRef(string,label,elementIndex="0") ::= <<
<if(label)>
val <label>Start = getCharIndex()
`match`(<string>)
<checkRuleBacktrackFailure()>
val <label>StartLine<elementIndex> = getLine()
val <label>StartCharPos<elementIndex> = getCharPositionInLine()
<label> = new <labelType>(input, Token.INVALID_TOKEN_TYPE, Token.DEFAULT_CHANNEL, <label>Start, getCharIndex()-1)
<label>.setLine(<label>StartLine<elementIndex>)
<label>.setCharPositionInLine(<label>StartCharPos<elementIndex>)
<else>
`match`(<string>)
<checkRuleBacktrackFailure()><\n>
<endif>
>>
wildcard(token,label,elementIndex,terminalOptions) ::= <<
<if(label)>
<label>=input.LT(1).asInstanceOf[<labelType>]<\n>
<endif>
matchAny(input)
<checkRuleBacktrackFailure()>
>>
wildcardAndListLabel(token,label,elementIndex,terminalOptions) ::= <<
<wildcard(...)>
<listLabel(elem=label,...)>
>>
/** Match . wildcard in lexer */
wildcardChar(label, elementIndex) ::= <<
<if(label)>
<label> = input.LA(1)<\n>
<endif>
matchAny()
<checkRuleBacktrackFailure()>
>>
wildcardCharListLabel(label, elementIndex) ::= <<
<wildcardChar(...)>
<listLabel(elem=label,...)>
>>
/** Match a rule reference by invoking it possibly with arguments
* and a return value or values. The 'rule' argument was the
* target rule name, but now is type Rule, whose toString is
* same: the rule name. Now though you can access full rule
* descriptor stuff.
*/
ruleRef(rule,label,elementIndex,args,scope) ::= <<
pushFollow(FOLLOW_<rule.name>_in_<ruleName><elementIndex>)
<if(label)><label>=<endif><if(scope)><scope:delegateName()>.<endif><rule.name>(<args; separator=", ">)<\n>
state._fsp-=1
<checkRuleBacktrackFailure()>
>>
/** ids+=r */
ruleRefAndListLabel(rule,label,elementIndex,args,scope) ::= <<
<ruleRef(...)>
<listLabel(elem=label,...)>
>>
/** A lexer rule reference.
*
* The 'rule' argument was the target rule name, but now
* is type Rule, whose toString is same: the rule name.
* Now though you can access full rule descriptor stuff.
*/
lexerRuleRef(rule,label,args,elementIndex,scope) ::= <<
<if(label)>
val <label>Start<elementIndex> = getCharIndex()
val <label>StartLine<elementIndex> = getLine()
val <label>StartCharPos<elementIndex> = getCharPositionInLine()
<if(scope)><scope:delegateName()>.<endif>m<rule.name>(<args; separator=", ">)
<checkRuleBacktrackFailure()>
<label> = new <labelType>(input, Token.INVALID_TOKEN_TYPE, Token.DEFAULT_CHANNEL, <label>Start<elementIndex>, getCharIndex()-1)
<label>.setLine(<label>StartLine<elementIndex>)
<label>.setCharPositionInLine(<label>StartCharPos<elementIndex>)
<else>
<if(scope)><scope:delegateName()>.<endif>m<rule.name>(<args; separator=", ">)
<checkRuleBacktrackFailure()>
<endif>
>>
/** i+=INT in lexer */
lexerRuleRefAndListLabel(rule,label,args,elementIndex,scope) ::= <<
<lexerRuleRef(...)>
<listLabel(elem=label,...)>
>>
/** EOF in the lexer */
lexerMatchEOF(label,elementIndex) ::= <<
<if(label)>
val <label>Start<elementIndex> = getCharIndex()
val <label>StartLine<elementIndex> = getLine()
val <label>StartCharPos<elementIndex> = getCharPositionInLine()
`match`(EOF)
<checkRuleBacktrackFailure()>
val <label> = new <labelType>(input, EOF, Token.DEFAULT_CHANNEL, <label>Start<elementIndex>, getCharIndex()-1)
<label>.setLine(<label>StartLine<elementIndex>)
<label>.setCharPositionInLine(<label>StartCharPos<elementIndex>)
<else>
`match`(EOF)
<checkRuleBacktrackFailure()>
<endif>
>>
// used for left-recursive rules
recRuleDefArg() ::= "int <recRuleArg()>"
recRuleArg() ::= "_p"
recRuleAltPredicate(ruleName,opPrec) ::= "<recRuleArg()> \<= <opPrec>"
recRuleSetResultAction() ::= "root_0=$<ruleName>_primary.tree;"
recRuleSetReturnAction(src,name) ::= "$<name>=$<src>.<name>;"
/** match ^(root children) in tree parser */
tree(root, actionsAfterRoot, children, nullableChildList,
enclosingTreeLevel, treeLevel) ::= <<
<root:element()>
<actionsAfterRoot:element()>
<if(nullableChildList)>
if ( input.LA(1)==Token.DOWN ) {
`match`(input, Token.DOWN, null)
<checkRuleBacktrackFailure()>
<children:element()>
`match`(input, Token.UP, null)
<checkRuleBacktrackFailure()>
}
<else>
`match`(input, Token.DOWN, null)
<checkRuleBacktrackFailure()>
<children:element()>
`match`(input, Token.UP, null)
<checkRuleBacktrackFailure()>
<endif>
>>
/** Every predicate is used as a validating predicate (even when it is
* also hoisted into a prediction expression).
*/
validateSemanticPredicate(pred,description) ::= <<
if ( !(<evalPredicate(...)>) ) {
<ruleBacktrackFailure()>
throw new FailedPredicateException(input, "<ruleName>", "<description>")
}
>>
// F i x e d D F A (if-then-else)
dfaState(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
val LA<decisionNumber>_<stateNumber> = input.LA(<k>)<\n>
<edges; separator="\nelse ">
else {
<if(eotPredictsAlt)>
alt<decisionNumber>=<eotPredictsAlt>
<else>
<ruleBacktrackFailure()>
val nvae = new NoViableAltException("<description>", <decisionNumber>, <stateNumber>, input)<\n>
<@noViableAltException()>
throw nvae<\n>
<endif>
}
>>
/** Same as a normal DFA state except that we don't examine lookahead
* for the bypass alternative. It delays error detection but this
* is faster, smaller, and more what people expect. For (X)? people
* expect "if ( LA(1)==X ) match(X);" and that's it.
*/
dfaOptionalBlockState(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
val LA<decisionNumber>_<stateNumber> = input.LA(<k>)<\n>
<edges; separator="\nelse ">
>>
/** A DFA state that is actually the loopback decision of a closure
* loop. If end-of-token (EOT) predicts any of the targets then it
* should act like a default clause (i.e., no error can be generated).
* This is used only in the lexer so that for ('a')* on the end of a rule
* anything other than 'a' predicts exiting.
*/
dfaLoopbackState(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
val LA<decisionNumber>_<stateNumber> = input.LA(<k>)<\n>
<edges; separator="\nelse "><\n>
<if(eotPredictsAlt)>
<if(!edges)>
alt<decisionNumber>=<eotPredictsAlt> <! if no edges, don't gen ELSE !>
<else>
else {
alt<decisionNumber>=<eotPredictsAlt>
}<\n>
<endif>
<endif>
>>
/** An accept state indicates a unique alternative has been predicted */
dfaAcceptState(alt) ::= "alt<decisionNumber>=<alt>"
/** A simple edge with an expression. If the expression is satisfied,
* enter to the target state. To handle gated productions, we may
* have to evaluate some predicates for this edge.
*/
dfaEdge(labelExpr, targetState, predicates) ::= <<
if ( (<labelExpr>) <if(predicates)>&& (<predicates>)<endif>) {
<targetState>
}
>>
// F i x e d D F A (switch case)
/** A DFA state where a SWITCH may be generated. The code generator
* decides if this is possible: CodeGenerator.canGenerateSwitch().
*/
dfaStateSwitch(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
input.LA(<k>) match {
<edges; separator="\n">
case _ =>
<if(eotPredictsAlt)>
alt<decisionNumber>=<eotPredictsAlt>
<else>
<ruleBacktrackFailure()>
val nvae = new NoViableAltException("<description>", <decisionNumber>, <stateNumber>, input)<\n>
<@noViableAltException()>
throw nvae<\n>
<endif>
}<\n>
>>
dfaOptionalBlockStateSwitch(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
input.LA(<k>) match {
<edges; separator="\n">
case _ =>
}<\n>
>>
dfaLoopbackStateSwitch(k, edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
input.LA(<k>) match {
<edges; separator="\n"><\n>
case _ =>
<if(eotPredictsAlt)>
alt<decisionNumber>=<eotPredictsAlt>;
<endif>
}<\n>
>>
dfaEdgeSwitch(labels, targetState) ::= <<
case <labels:{it | <it>}; separator=" | "> =>
{
<targetState>
}
>>
// C y c l i c D F A
/** The code to initiate execution of a cyclic DFA; this is used
* in the rule to predict an alt just like the fixed DFA case.
* The <name> attribute is inherited via the parser, lexer, ...
*/
dfaDecision(decisionNumber,description) ::= <<
alt<decisionNumber> = dfa<decisionNumber>.predict(input)
>>
/* Dump DFA tables as run-length-encoded Strings of octal values.
* Can't use hex as compiler translates them before compilation.
* These strings are split into multiple, concatenated strings.
* Java puts them back together at compile time thankfully.
* Java cannot handle large static arrays, so we're stuck with this
* encode/decode approach. See analysis and runtime DFA for
* the encoding methods.
*/
cyclicDFA(dfa) ::= <<
val DFA<dfa.decisionNumber>_eotS =
"<dfa.javaCompressedEOT; wrap="\"+\n \"">"
val DFA<dfa.decisionNumber>_eofS =
"<dfa.javaCompressedEOF; wrap="\"+\n \"">"
val DFA<dfa.decisionNumber>_minS =
"<dfa.javaCompressedMin; wrap="\"+\n \"">"
val DFA<dfa.decisionNumber>_maxS =
"<dfa.javaCompressedMax; wrap="\"+\n \"">"
val DFA<dfa.decisionNumber>_acceptS =
"<dfa.javaCompressedAccept; wrap="\"+\n \"">"
val DFA<dfa.decisionNumber>_specialS =
"<dfa.javaCompressedSpecial; wrap="\"+\n \"">}>"
val DFA<dfa.decisionNumber>_transitionS: Array[String] = Array(
<dfa.javaCompressedTransition:{s|"<s; wrap="\"+\n\"">"}; separator=",\n">
)
val DFA<dfa.decisionNumber>_eot: Array[Short] = DFA.unpackEncodedString(DFA<dfa.decisionNumber>_eotS)
val DFA<dfa.decisionNumber>_eof: Array[Short] = DFA.unpackEncodedString(DFA<dfa.decisionNumber>_eofS)
val DFA<dfa.decisionNumber>_min: Array[Char] = DFA.unpackEncodedStringToUnsignedChars(DFA<dfa.decisionNumber>_minS)
val DFA<dfa.decisionNumber>_max: Array[Char] = DFA.unpackEncodedStringToUnsignedChars(DFA<dfa.decisionNumber>_maxS)
val DFA<dfa.decisionNumber>_accept: Array[Short] = DFA.unpackEncodedString(DFA<dfa.decisionNumber>_acceptS)
val DFA<dfa.decisionNumber>_special: Array[Short] = DFA.unpackEncodedString(DFA<dfa.decisionNumber>_specialS)
val DFA<dfa.decisionNumber>_transition = new Array[Array[Short]](DFA<dfa.decisionNumber>_transitionS.length)
for (i \<- DFA<dfa.decisionNumber>_transition.indices) {
DFA<dfa.decisionNumber>_transition(i) = DFA.unpackEncodedString(DFA<dfa.decisionNumber>_transitionS(i))
}
class DFA<dfa.decisionNumber> extends DFA {
def this(recognizer: BaseRecognizer) = {
this()
this.recognizer = recognizer
this.decisionNumber = <dfa.decisionNumber>
this.eot = DFA<dfa.decisionNumber>_eot
this.eof = DFA<dfa.decisionNumber>_eof
this.min = DFA<dfa.decisionNumber>_min
this.max = DFA<dfa.decisionNumber>_max
this.accept = DFA<dfa.decisionNumber>_accept
this.special = DFA<dfa.decisionNumber>_special
this.transition = DFA<dfa.decisionNumber>_transition
}
override def getDescription = "<dfa.description>"
<@errorMethod()>
<if(dfa.specialStateSTs)>
@throws(classOf[NoViableAltException])
override def specialStateTransition(s: Int, _input: IntStream):Int = {
<if(LEXER)>
val input = _input
<endif>
<if(PARSER)>
val input = _input.asInstanceOf[TokenStream]
<endif>
<if(TREE_PARSER)>
val input = _input.asInstanceOf[TreeNodeStream]
<endif>
val _s = s
s match {
<dfa.specialStateSTs:{state |
case <i0> => <! compressed special state numbers 0..n-1 !>
<state>}; separator="\n">
case _ =>
}
<if(backtracking)>
if (state.backtracking>0) {state.failed=true; return -1}<\n>
<endif>
val nvae = new NoViableAltException(getDescription(), <dfa.decisionNumber>, _s, input)
error(nvae)
throw nvae
}<\n>
<endif>
}<\n>
>>
/** A state in a cyclic DFA; it's a special state and part of a big switch on
* state.
*/
cyclicDFAState(decisionNumber,stateNumber,edges,needErrorClause,semPredState) ::= <<
val LA<decisionNumber>_<stateNumber>: Int = input.LA(1)<\n>
<if(semPredState)> <! get next lookahead symbol to test edges, then rewind !>
val index<decisionNumber>_<stateNumber>: Int = input.index()
input.rewind()<\n>
<endif>
s = -1
<edges; separator="\nelse ">
<if(semPredState)> <! return input cursor to state before we rewound !>
input.seek(index<decisionNumber>_<stateNumber>)<\n>
<endif>
if ( s>=0 ) return s
>>
/** Just like a fixed DFA edge, test the lookahead and indicate what
* state to jump to next if successful.
*/
cyclicDFAEdge(labelExpr, targetStateNumber, edgeNumber, predicates) ::= <<
if ( (<labelExpr>) <if(predicates)>&& (<predicates>)<endif>) {s = <targetStateNumber>}<\n>
>>
/** An edge pointing at end-of-token; essentially matches any char;
* always jump to the target.
*/
eotDFAEdge(targetStateNumber,edgeNumber, predicates) ::= <<
s = <targetStateNumber><\n>
>>
// D F A E X P R E S S I O N S
andPredicates(left,right) ::= "(<left>&&<right>)"
orPredicates(operands) ::= "(<operands; separator=\"||\">)"
notPredicate(pred) ::= "!(<evalPredicate(pred,\"\")>)"
evalPredicate(pred,description) ::= "(<pred>)"
evalSynPredicate(pred,description) ::= "<pred>()"
lookaheadTest(atom,k,atomAsInt) ::= "LA<decisionNumber>_<stateNumber>==<atom>"
/** Sometimes a lookahead test cannot assume that LA(k) is in a temp variable
* somewhere. Must ask for the lookahead directly.
*/
isolatedLookaheadTest(atom,k,atomAsInt) ::= "input.LA(<k>)==<atom>"
lookaheadRangeTest(lower,upper,k,rangeNumber,lowerAsInt,upperAsInt) ::= <<
(LA<decisionNumber>_<stateNumber> >= <lower> && LA<decisionNumber>_<stateNumber> \<= <upper>)
>>
isolatedLookaheadRangeTest(lower,upper,k,rangeNumber,lowerAsInt,upperAsInt) ::= "(input.LA(<k>) >=<lower> && input.LA(<k>) \<= <upper>)"
setTest(ranges) ::= "<ranges; separator=\"||\">"
// A T T R I B U T E S
globalAttributeScope(scope) ::= <<
<if(scope.attributes)>
class <scope.name>_scope {
<scope.attributes:{it | var <it.name>: <it.type> = _}; separator="\n">
}
val <scope.name>_stack = new collection.mutable.Stack[<scope.name>_scope]<\n>
<endif>
>>
ruleAttributeScope(scope) ::= <<
<if(scope.attributes)>
class <scope.name>_scope {
<scope.attributes:{it | var <it.name>: <it.type> = _}; separator="\n">
}
val <scope.name>_stack = new collection.mutable.Stack[<scope.name>_scope]<\n>
<endif>
>>
returnStructName(r) ::= "<r.name>_return"
returnType() ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
<ruleDescriptor:returnStructName()>
<else>
<if(ruleDescriptor.hasSingleReturnValue)>
<ruleDescriptor.singleValueReturnType>
<else>
Unit
<endif>
<endif>
>>
/** Generate the Java type associated with a single or multiple return
* values.
*/
ruleLabelType(referencedRule) ::= <<
<if(referencedRule.hasMultipleReturnValues)>
<referencedRule.name>_return
<else>
<if(referencedRule.hasSingleReturnValue)>
<referencedRule.singleValueReturnType>
<else>
Unit
<endif>
<endif>
>>
delegateName(d) ::= <<
<if(d.label)><d.label><else>g<d.name><endif>
>>
/** Using a type to init value map, try to init a type; if not in table
* must be an object, default value is "null".
*/
initValue(typeName) ::= <<
<scalaTypeInitMap.(typeName)>
>>
/** Define a rule label including default value */
ruleLabelDef(label) ::= <<
var <label.label.text>: <ruleLabelType(referencedRule=label.referencedRule)> = <initValue(typeName=ruleLabelType(referencedRule=label.referencedRule))><\n>
>>
/** Define a return struct for a rule if the code needs to access its
* start/stop tokens, tree stuff, attributes, ... Leave a hole for
* subgroups to stick in members.
* TODO(matthewlloyd): make this static
*/
returnScope(scope) ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
final class <ruleDescriptor:returnStructName()> extends <if(TREE_PARSER)>Tree<else>Parser<endif>RuleReturnScope {
<scope.attributes:{it | var <it.name>: <it.type> = _}; separator="\n">
<@ruleReturnMembers()>
}
<endif>
>>
parameterScope(scope) ::= <<
<scope.attributes:{it | <it.name>: <it.type>}; separator=", ">
>>
parameterAttributeRef(attr) ::= "<attr.name>"
parameterSetAttributeRef(attr,expr) ::= "<attr.name> =<expr>"
scopeAttributeRef(scope,attr,index,negIndex) ::= <%
<if(negIndex)>
<scope>_stack(<scope>_stack.size-<negIndex>-1).<attr.name>
<else>
<if(index)>
<scope>_stack(<index>).<attr.name>
<else>
<scope>_stack.top.<attr.name>
<endif>
<endif>
%>
scopeSetAttributeRef(scope,attr,expr,index,negIndex) ::= <%
<if(negIndex)>
<scope>_stack(<scope>_stack.size-<negIndex>-1).<attr.name> = <expr>
<else>
<if(index)>
<scope>_stack(<index>).<attr.name> = <expr>
<else>
<scope>_stack.top.<attr.name> = <expr>
<endif>
<endif>
%>
/** $x is either global scope or x is rule with dynamic scope; refers
* to stack itself not top of stack. This is useful for predicates
* like {$function.size()>0 && $function::name.equals("foo")}?
*/
isolatedDynamicScopeRef(scope) ::= "<scope>_stack"
/** reference an attribute of rule; might only have single return value */
ruleLabelRef(referencedRule,scope,attr) ::= <%
<if(referencedRule.hasMultipleReturnValues)>
(if (<scope>!=null) <scope>.<attr.name> else <initValue(attr.type)>)
<else>
<scope>
<endif>
%>
returnAttributeRef(ruleDescriptor,attr) ::= <%
<if(ruleDescriptor.hasMultipleReturnValues)>
retval.<attr.name>
<else>
<attr.name>
<endif>
%>
returnSetAttributeRef(ruleDescriptor,attr,expr) ::= <%
<if(ruleDescriptor.hasMultipleReturnValues)>
retval.<attr.name> =<expr>
<else>
<attr.name> =<expr>
<endif>
%>
/** How to translate $tokenLabel */
tokenLabelRef(label) ::= "<label>"
/** ids+=ID {$ids} or e+=expr {$e} */
listLabelRef(label) ::= "list_<label>"
// not sure the next are the right approach
tokenLabelPropertyRef_text(scope,attr) ::= "(if (<scope>!=null) <scope>.getText() else null)"
tokenLabelPropertyRef_type(scope,attr) ::= "(if (<scope>!=null) <scope>.getType() else 0)"
tokenLabelPropertyRef_line(scope,attr) ::= "(if (<scope>!=null) <scope>.getLine() else 0)"
tokenLabelPropertyRef_pos(scope,attr) ::= "(if (<scope>!=null) <scope>.getCharPositionInLine() else 0)"
tokenLabelPropertyRef_channel(scope,attr) ::= "(if (<scope>!=null) <scope>.getChannel() else 0)"
tokenLabelPropertyRef_index(scope,attr) ::= "(if (<scope>!=null) <scope>.getTokenIndex() else 0)"
tokenLabelPropertyRef_tree(scope,attr) ::= "<scope>_tree"
tokenLabelPropertyRef_int(scope,attr) ::= "(if (<scope>!=null) Integer.valueOf(<scope>.getText()) else 0)"
ruleLabelPropertyRef_start(scope,attr) ::= "(if (<scope>!=null) <scope>.start.asInstanceOf[<labelType>] else null)"
ruleLabelPropertyRef_stop(scope,attr) ::= "(if (<scope>!=null) <scope>.stop.asInstanceOf[<labelType>] else null)"
ruleLabelPropertyRef_tree(scope,attr) ::= "(if (<scope>!=null) <scope>.tree.asInstanceOf[<ASTLabelType>] else null)"
ruleLabelPropertyRef_text(scope,attr) ::= <<
<if(TREE_PARSER)>
(if (<scope>!=null) (input.getTokenStream().toString(
input.getTreeAdaptor().getTokenStartIndex(<scope>.start),
input.getTreeAdaptor().getTokenStopIndex(<scope>.start))) else null)
<else>
(if (<scope>!=null) input.toString(<scope>.start,<scope>.stop) else null)
<endif>
>>
ruleLabelPropertyRef_st(scope,attr) ::= "(if (<scope>!=null) <scope>.st else null)"
/** Isolated $RULE ref ok in lexer as it's a Token */
lexerRuleLabel(label) ::= "<label>"
lexerRuleLabelPropertyRef_type(scope,attr) ::=
"(if (<scope>!=null) <scope>.getType() else 0)"
lexerRuleLabelPropertyRef_line(scope,attr) ::=
"(if (<scope>!=null) <scope>.getLine() else 0)"
lexerRuleLabelPropertyRef_pos(scope,attr) ::=
"(if (<scope>!=null) <scope>.getCharPositionInLine() else -1)"
lexerRuleLabelPropertyRef_channel(scope,attr) ::=
"(if (<scope>!=null) <scope>.getChannel() else 0)"
lexerRuleLabelPropertyRef_index(scope,attr) ::=
"(if (<scope>!=null) <scope>.getTokenIndex() else 0)"
lexerRuleLabelPropertyRef_text(scope,attr) ::=
"(if (<scope>!=null) <scope>.getText() else null)"
lexerRuleLabelPropertyRef_int(scope,attr) ::=
"(if (<scope>!=null) Integer.valueOf(<scope>.getText()) else 0)"
// Somebody may ref $template or $tree or $stop within a rule:
rulePropertyRef_start(scope,attr) ::= "(retval.start.asInstanceOf[<labelType>])"
rulePropertyRef_stop(scope,attr) ::= "(retval.stop.asInstanceOf[<labelType>])"
rulePropertyRef_tree(scope,attr) ::= "(retval.tree.asInstanceOf[<ASTLabelType>])"
rulePropertyRef_text(scope,attr) ::= <<
<if(TREE_PARSER)>
input.getTokenStream().toString(
input.getTreeAdaptor().getTokenStartIndex(retval.start),
input.getTreeAdaptor().getTokenStopIndex(retval.start))
<else>
input.toString(retval.start,input.LT(-1))
<endif>
>>
rulePropertyRef_st(scope,attr) ::= "retval.st"
lexerRulePropertyRef_text(scope,attr) ::= "getText()"
lexerRulePropertyRef_type(scope,attr) ::= "_type"
lexerRulePropertyRef_line(scope,attr) ::= "state.tokenStartLine"
lexerRulePropertyRef_pos(scope,attr) ::= "state.tokenStartCharPositionInLine"
lexerRulePropertyRef_index(scope,attr) ::= "-1" // undefined token index in lexer
lexerRulePropertyRef_channel(scope,attr) ::= "_channel"
lexerRulePropertyRef_start(scope,attr) ::= "state.tokenStartCharIndex"
lexerRulePropertyRef_stop(scope,attr) ::= "(getCharIndex()-1)"
lexerRulePropertyRef_int(scope,attr) ::= "Integer.valueOf(<scope>.getText())"
// setting $st and $tree is allowed in local rule. everything else
// is flagged as error
ruleSetPropertyRef_tree(scope,attr,expr) ::= "retval.tree =<expr>"
ruleSetPropertyRef_st(scope,attr,expr) ::= "retval.st =<expr>"
/** How to execute an action (only when not backtracking) */
execAction(action) ::= <<
<if(backtracking)>
if ( <actions.(actionScope).synpredgate> ) {
<action>
}
<else>
<action>
<endif>
>>
/** How to always execute an action even when backtracking */
execForcedAction(action) ::= "<action>"
// M I S C (properties, etc...)
bitset(name, words64) ::= <<
val <name> = new BitSet(Array[Long](<words64:{it | <it>L};separator=",">))<\n>
>>
codeFileExtension() ::= ".scala"
true_value() ::= "true"
false_value() ::= "false"