blob: e5da266947c1c833ef36873291ce003052fe9aa1 [file] [log] [blame]
/*
* [The "BSD license"]
* Copyright (c) 2010 Terence Parr
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.antlr.analysis;
import org.antlr.misc.IntSet;
import org.antlr.runtime.CommonToken;
import org.antlr.runtime.Token;
import org.antlr.tool.Grammar;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
public class MachineProbe {
DFA dfa;
public MachineProbe(DFA dfa) {
this.dfa = dfa;
}
List<DFAState> getAnyDFAPathToTarget(DFAState targetState) {
Set<DFAState> visited = new HashSet<DFAState>();
return getAnyDFAPathToTarget(dfa.startState, targetState, visited);
}
public List<DFAState> getAnyDFAPathToTarget(DFAState startState,
DFAState targetState, Set<DFAState> visited) {
List<DFAState> dfaStates = new ArrayList<DFAState>();
visited.add(startState);
if (startState.equals(targetState)) {
dfaStates.add(targetState);
return dfaStates;
}
// for (Edge e : startState.edges) { // walk edges looking for valid
// path
for (int i = 0; i < startState.getNumberOfTransitions(); i++) {
Transition e = startState.getTransition(i);
if (!visited.contains(e.target)) {
List<DFAState> path = getAnyDFAPathToTarget(
(DFAState) e.target, targetState, visited);
if (path != null) { // found path, we're done
dfaStates.add(startState);
dfaStates.addAll(path);
return dfaStates;
}
}
}
return null;
}
/** Return a list of edge labels from start state to targetState. */
public List<IntSet> getEdgeLabels(DFAState targetState) {
List<DFAState> dfaStates = getAnyDFAPathToTarget(targetState);
List<IntSet> labels = new ArrayList<IntSet>();
for (int i = 0; i < dfaStates.size() - 1; i++) {
DFAState d = dfaStates.get(i);
DFAState nextState = dfaStates.get(i + 1);
// walk looking for edge whose target is next dfa state
for (int j = 0; j < d.getNumberOfTransitions(); j++) {
Transition e = d.getTransition(j);
if (e.target.stateNumber == nextState.stateNumber) {
labels.add(e.label.getSet());
}
}
}
return labels;
}
/**
* Given List<IntSet>, return a String with a useful representation of the
* associated input string. One could show something different for lexers
* and parsers, for example.
*/
public String getInputSequenceDisplay(Grammar g, List<IntSet> labels) {
List<String> tokens = new ArrayList<String>();
for (IntSet label : labels)
tokens.add(label.toString(g));
return tokens.toString();
}
/**
* Given an alternative associated with a DFA state, return the list of
* tokens (from grammar) associated with path through NFA following the
* labels sequence. The nfaStates gives the set of NFA states associated
* with alt that take us from start to stop. One of the NFA states in
* nfaStates[i] will have an edge intersecting with labels[i].
*/
public List<Token> getGrammarLocationsForInputSequence(
List<Set<NFAState>> nfaStates, List<IntSet> labels) {
List<Token> tokens = new ArrayList<Token>();
for (int i = 0; i < nfaStates.size() - 1; i++) {
Set<NFAState> cur = nfaStates.get(i);
Set<NFAState> next = nfaStates.get(i + 1);
IntSet label = labels.get(i);
// find NFA state with edge whose label matches labels[i]
nfaConfigLoop:
for (NFAState p : cur) {
// walk p's transitions, looking for label
for (int j = 0; j < p.getNumberOfTransitions(); j++) {
Transition t = p.transition(j);
if (!t.isEpsilon() && !t.label.getSet().and(label).isNil()
&& next.contains(t.target)) {
if (p.associatedASTNode != null) {
Token oldtoken = p.associatedASTNode.token;
CommonToken token = new CommonToken(oldtoken
.getType(), oldtoken.getText());
token.setLine(oldtoken.getLine());
token.setCharPositionInLine(oldtoken.getCharPositionInLine());
tokens.add(token);
break nfaConfigLoop; // found path, move to next
// NFAState set
}
}
}
}
}
return tokens;
}
// /** Used to find paths through syntactically ambiguous DFA. If we've
// * seen statement number before, what did we learn?
// */
// protected Map<Integer, Integer> stateReachable;
//
// public Map<DFAState, Set<DFAState>> getReachSets(Collection<DFAState>
// targets) {
// Map<DFAState, Set<DFAState>> reaches = new HashMap<DFAState,
// Set<DFAState>>();
// // targets can reach themselves
// for (final DFAState d : targets) {
// reaches.put(d,new HashSet<DFAState>() {{add(d);}});
// }
//
// boolean changed = true;
// while ( changed ) {
// changed = false;
// for (DFAState d : dfa.states.values()) {
// if ( d.getNumberOfEdges()==0 ) continue;
// Set<DFAState> r = reaches.get(d);
// if ( r==null ) {
// r = new HashSet<DFAState>();
// reaches.put(d, r);
// }
// int before = r.size();
// // add all reaches from all edge targets
// for (Edge e : d.edges) {
// //if ( targets.contains(e.target) ) r.add(e.target);
// r.addAll( reaches.get(e.target) );
// }
// int after = r.size();
// if ( after>before) changed = true;
// }
// }
// return reaches;
// }
}