blob: eb6270109356bb545abc75364b0c9ac69135f7ca [file] [log] [blame]
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// ProgramVk.cpp:
// Implements the class methods for ProgramVk.
//
#include "libANGLE/renderer/vulkan/ProgramVk.h"
#include "common/debug.h"
#include "libANGLE/Context.h"
#include "libANGLE/ProgramLinkedResources.h"
#include "libANGLE/renderer/renderer_utils.h"
#include "libANGLE/renderer/vulkan/BufferVk.h"
#include "libANGLE/renderer/vulkan/GlslangWrapper.h"
#include "libANGLE/renderer/vulkan/TextureVk.h"
namespace rx
{
namespace
{
constexpr size_t kUniformBlockDynamicBufferMinSize = 256 * 128;
void InitDefaultUniformBlock(const std::vector<sh::Uniform> &uniforms,
sh::BlockLayoutMap *blockLayoutMapOut,
size_t *blockSizeOut)
{
if (uniforms.empty())
{
*blockSizeOut = 0;
return;
}
sh::Std140BlockEncoder blockEncoder;
sh::GetUniformBlockInfo(uniforms, "", &blockEncoder, blockLayoutMapOut);
size_t blockSize = blockEncoder.getCurrentOffset();
// TODO(jmadill): I think we still need a valid block for the pipeline even if zero sized.
if (blockSize == 0)
{
*blockSizeOut = 0;
return;
}
*blockSizeOut = blockSize;
return;
}
template <typename T>
void UpdateDefaultUniformBlock(GLsizei count,
uint32_t arrayIndex,
int componentCount,
const T *v,
const sh::BlockMemberInfo &layoutInfo,
angle::MemoryBuffer *uniformData)
{
const int elementSize = sizeof(T) * componentCount;
uint8_t *dst = uniformData->data() + layoutInfo.offset;
if (layoutInfo.arrayStride == 0 || layoutInfo.arrayStride == elementSize)
{
uint32_t arrayOffset = arrayIndex * layoutInfo.arrayStride;
uint8_t *writePtr = dst + arrayOffset;
ASSERT(writePtr + (elementSize * count) <= uniformData->data() + uniformData->size());
memcpy(writePtr, v, elementSize * count);
}
else
{
// Have to respect the arrayStride between each element of the array.
int maxIndex = arrayIndex + count;
for (int writeIndex = arrayIndex, readIndex = 0; writeIndex < maxIndex;
writeIndex++, readIndex++)
{
const int arrayOffset = writeIndex * layoutInfo.arrayStride;
uint8_t *writePtr = dst + arrayOffset;
const T *readPtr = v + (readIndex * componentCount);
ASSERT(writePtr + elementSize <= uniformData->data() + uniformData->size());
memcpy(writePtr, readPtr, elementSize);
}
}
}
template <typename T>
void ReadFromDefaultUniformBlock(int componentCount,
uint32_t arrayIndex,
T *dst,
const sh::BlockMemberInfo &layoutInfo,
const angle::MemoryBuffer *uniformData)
{
ASSERT(layoutInfo.offset != -1);
const int elementSize = sizeof(T) * componentCount;
const uint8_t *source = uniformData->data() + layoutInfo.offset;
if (layoutInfo.arrayStride == 0 || layoutInfo.arrayStride == elementSize)
{
const uint8_t *readPtr = source + arrayIndex * layoutInfo.arrayStride;
memcpy(dst, readPtr, elementSize);
}
else
{
// Have to respect the arrayStride between each element of the array.
const int arrayOffset = arrayIndex * layoutInfo.arrayStride;
const uint8_t *readPtr = source + arrayOffset;
memcpy(dst, readPtr, elementSize);
}
}
angle::Result SyncDefaultUniformBlock(ContextVk *contextVk,
vk::DynamicBuffer *dynamicBuffer,
const angle::MemoryBuffer &bufferData,
uint32_t *outOffset,
bool *outBufferModified)
{
dynamicBuffer->releaseInFlightBuffers(contextVk);
ASSERT(!bufferData.empty());
uint8_t *data = nullptr;
VkBuffer *outBuffer = nullptr;
VkDeviceSize offset = 0;
ANGLE_TRY(dynamicBuffer->allocate(contextVk, bufferData.size(), &data, outBuffer, &offset,
outBufferModified));
*outOffset = static_cast<uint32_t>(offset);
memcpy(data, bufferData.data(), bufferData.size());
ANGLE_TRY(dynamicBuffer->flush(contextVk));
return angle::Result::Continue;
}
uint32_t GetInterfaceBlockArraySize(const std::vector<gl::InterfaceBlock> &blocks,
uint32_t bufferIndex)
{
const gl::InterfaceBlock &block = blocks[bufferIndex];
if (!block.isArray)
{
return 1;
}
ASSERT(block.arrayElement == 0);
// Search consecutively until all array indices of this block are visited.
uint32_t arraySize;
for (arraySize = 1; bufferIndex + arraySize < blocks.size(); ++arraySize)
{
const gl::InterfaceBlock &nextBlock = blocks[bufferIndex + arraySize];
if (nextBlock.arrayElement != arraySize)
{
break;
}
// It's unexpected for an array to start at a non-zero array size, so we can always rely on
// the sequential `arrayElement`s to belong to the same block.
ASSERT(nextBlock.name == block.name);
ASSERT(nextBlock.isArray);
}
return arraySize;
}
void AddInterfaceBlockDescriptorSetDesc(const std::vector<gl::InterfaceBlock> &blocks,
uint32_t bindingStart,
VkDescriptorType descType,
vk::DescriptorSetLayoutDesc *descOut)
{
uint32_t bindingIndex = 0;
for (uint32_t bufferIndex = 0; bufferIndex < blocks.size();)
{
const uint32_t arraySize = GetInterfaceBlockArraySize(blocks, bufferIndex);
VkShaderStageFlags activeStages =
gl_vk::GetShaderStageFlags(blocks[bufferIndex].activeShaders());
descOut->update(bindingStart + bindingIndex, descType, arraySize, activeStages);
bufferIndex += arraySize;
++bindingIndex;
}
}
class Std140BlockLayoutEncoderFactory : public gl::CustomBlockLayoutEncoderFactory
{
public:
sh::BlockLayoutEncoder *makeEncoder() override { return new sh::Std140BlockEncoder(); }
};
} // anonymous namespace
// ProgramVk::ShaderInfo implementation.
ProgramVk::ShaderInfo::ShaderInfo() {}
ProgramVk::ShaderInfo::~ShaderInfo() = default;
angle::Result ProgramVk::ShaderInfo::initShaders(ContextVk *contextVk,
const gl::ShaderMap<std::string> &shaderSources,
bool enableLineRasterEmulation)
{
ASSERT(!valid());
gl::ShaderMap<std::vector<uint32_t>> shaderCodes;
ANGLE_TRY(GlslangWrapper::GetShaderCode(
contextVk, contextVk->getCaps(), enableLineRasterEmulation, shaderSources, &shaderCodes));
for (const gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (!shaderSources[shaderType].empty())
{
ANGLE_TRY(vk::InitShaderAndSerial(contextVk, &mShaders[shaderType].get(),
shaderCodes[shaderType].data(),
shaderCodes[shaderType].size() * sizeof(uint32_t)));
mProgramHelper.setShader(shaderType, &mShaders[shaderType]);
}
}
return angle::Result::Continue;
}
angle::Result ProgramVk::loadShaderSource(ContextVk *contextVk, gl::BinaryInputStream *stream)
{
// Read in shader sources for all shader types
for (const gl::ShaderType shaderType : gl::AllShaderTypes())
{
mShaderSources[shaderType] = stream->readString();
}
return angle::Result::Continue;
}
void ProgramVk::saveShaderSource(gl::BinaryOutputStream *stream)
{
// Write out shader sources for all shader types
for (const gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->writeString(mShaderSources[shaderType]);
}
}
void ProgramVk::ShaderInfo::release(ContextVk *contextVk)
{
mProgramHelper.release(contextVk);
for (vk::RefCounted<vk::ShaderAndSerial> &shader : mShaders)
{
shader.get().destroy(contextVk->getDevice());
}
}
// ProgramVk implementation.
ProgramVk::DefaultUniformBlock::DefaultUniformBlock() {}
ProgramVk::DefaultUniformBlock::~DefaultUniformBlock() = default;
ProgramVk::ProgramVk(const gl::ProgramState &state)
: ProgramImpl(state), mDynamicBufferOffsets{}, mStorageBlockBindingsOffset(0)
{}
ProgramVk::~ProgramVk() = default;
void ProgramVk::destroy(const gl::Context *context)
{
ContextVk *contextVk = vk::GetImpl(context);
reset(contextVk);
}
void ProgramVk::reset(ContextVk *contextVk)
{
for (auto &descriptorSetLayout : mDescriptorSetLayouts)
{
descriptorSetLayout.reset();
}
mPipelineLayout.reset();
for (auto &uniformBlock : mDefaultUniformBlocks)
{
uniformBlock.storage.release(contextVk);
}
mDefaultShaderInfo.release(contextVk);
mLineRasterShaderInfo.release(contextVk);
mEmptyUniformBlockStorage.release(contextVk);
mDescriptorSets.clear();
mEmptyDescriptorSets.fill(VK_NULL_HANDLE);
for (vk::RefCountedDescriptorPoolBinding &binding : mDescriptorPoolBindings)
{
binding.reset();
}
for (vk::DynamicDescriptorPool &descriptorPool : mDynamicDescriptorPools)
{
descriptorPool.release(contextVk);
}
mTextureDescriptorsCache.clear();
}
std::unique_ptr<rx::LinkEvent> ProgramVk::load(const gl::Context *context,
gl::BinaryInputStream *stream,
gl::InfoLog &infoLog)
{
ContextVk *contextVk = vk::GetImpl(context);
angle::Result status = loadShaderSource(contextVk, stream);
if (status != angle::Result::Continue)
{
return std::make_unique<LinkEventDone>(status);
}
return std::make_unique<LinkEventDone>(linkImpl(context, infoLog));
}
void ProgramVk::save(const gl::Context *context, gl::BinaryOutputStream *stream)
{
// (geofflang): Look into saving shader modules in ShaderInfo objects (keep in mind that we
// compile shaders lazily)
saveShaderSource(stream);
}
void ProgramVk::setBinaryRetrievableHint(bool retrievable)
{
UNIMPLEMENTED();
}
void ProgramVk::setSeparable(bool separable)
{
UNIMPLEMENTED();
}
std::unique_ptr<LinkEvent> ProgramVk::link(const gl::Context *context,
const gl::ProgramLinkedResources &resources,
gl::InfoLog &infoLog)
{
// Link resources before calling GetShaderSource to make sure they are ready for the set/binding
// assignment done in that function.
linkResources(resources);
GlslangWrapper::GetShaderSource(mState, resources, &mShaderSources);
// TODO(jie.a.chen@intel.com): Parallelize linking.
// http://crbug.com/849576
return std::make_unique<LinkEventDone>(linkImpl(context, infoLog));
}
angle::Result ProgramVk::linkImpl(const gl::Context *glContext, gl::InfoLog &infoLog)
{
const gl::State &glState = glContext->getState();
ContextVk *contextVk = vk::GetImpl(glContext);
RendererVk *renderer = contextVk->getRenderer();
gl::TransformFeedback *transformFeedback = glState.getCurrentTransformFeedback();
reset(contextVk);
updateBindingOffsets();
ANGLE_TRY(initDefaultUniformBlocks(glContext));
// Store a reference to the pipeline and descriptor set layouts. This will create them if they
// don't already exist in the cache.
// Default uniforms and transform feedback:
vk::DescriptorSetLayoutDesc uniformsAndXfbSetDesc;
uint32_t uniformBindingIndex = 0;
for (const gl::ShaderType shaderType : mState.getLinkedShaderStages())
{
uniformsAndXfbSetDesc.update(uniformBindingIndex++,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1,
gl_vk::kShaderStageMap[shaderType]);
}
if (mState.hasLinkedShaderStage(gl::ShaderType::Vertex) && transformFeedback &&
!mState.getLinkedTransformFeedbackVaryings().empty())
{
vk::GetImpl(transformFeedback)->updateDescriptorSetLayout(mState, &uniformsAndXfbSetDesc);
}
ANGLE_TRY(renderer->getDescriptorSetLayout(
contextVk, uniformsAndXfbSetDesc,
&mDescriptorSetLayouts[kUniformsAndXfbDescriptorSetIndex]));
// Uniform and storage buffers:
vk::DescriptorSetLayoutDesc buffersSetDesc;
AddInterfaceBlockDescriptorSetDesc(mState.getUniformBlocks(), getUniformBlockBindingsOffset(),
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, &buffersSetDesc);
AddInterfaceBlockDescriptorSetDesc(mState.getShaderStorageBlocks(),
getStorageBlockBindingsOffset(),
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &buffersSetDesc);
ANGLE_TRY(renderer->getDescriptorSetLayout(contextVk, buffersSetDesc,
&mDescriptorSetLayouts[kBufferDescriptorSetIndex]));
// Textures:
vk::DescriptorSetLayoutDesc texturesSetDesc;
for (uint32_t textureIndex = 0; textureIndex < mState.getSamplerBindings().size();
++textureIndex)
{
const gl::SamplerBinding &samplerBinding = mState.getSamplerBindings()[textureIndex];
uint32_t uniformIndex = mState.getUniformIndexFromSamplerIndex(textureIndex);
const gl::LinkedUniform &samplerUniform = mState.getUniforms()[uniformIndex];
// The front-end always binds array sampler units sequentially.
const uint32_t arraySize = static_cast<uint32_t>(samplerBinding.boundTextureUnits.size());
VkShaderStageFlags activeStages =
gl_vk::GetShaderStageFlags(samplerUniform.activeShaders());
texturesSetDesc.update(textureIndex, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, arraySize,
activeStages);
}
ANGLE_TRY(renderer->getDescriptorSetLayout(contextVk, texturesSetDesc,
&mDescriptorSetLayouts[kTextureDescriptorSetIndex]));
vk::DescriptorSetLayoutDesc driverUniformsSetDesc =
contextVk->getDriverUniformsDescriptorSetDesc();
ANGLE_TRY(renderer->getDescriptorSetLayout(
contextVk, driverUniformsSetDesc,
&mDescriptorSetLayouts[kDriverUniformsDescriptorSetIndex]));
vk::PipelineLayoutDesc pipelineLayoutDesc;
pipelineLayoutDesc.updateDescriptorSetLayout(kUniformsAndXfbDescriptorSetIndex,
uniformsAndXfbSetDesc);
pipelineLayoutDesc.updateDescriptorSetLayout(kBufferDescriptorSetIndex, buffersSetDesc);
pipelineLayoutDesc.updateDescriptorSetLayout(kTextureDescriptorSetIndex, texturesSetDesc);
pipelineLayoutDesc.updateDescriptorSetLayout(kDriverUniformsDescriptorSetIndex,
driverUniformsSetDesc);
ANGLE_TRY(renderer->getPipelineLayout(contextVk, pipelineLayoutDesc, mDescriptorSetLayouts,
&mPipelineLayout));
std::array<VkDescriptorPoolSize, 2> uniformAndXfbSetSize = {
{{VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
static_cast<uint32_t>(mState.getLinkedShaderStageCount())},
{VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS}}};
uint32_t uniformBlockCount = static_cast<uint32_t>(mState.getUniformBlocks().size());
uint32_t storageBlockCount = static_cast<uint32_t>(mState.getShaderStorageBlocks().size());
uint32_t textureCount = static_cast<uint32_t>(mState.getSamplerBindings().size());
if (renderer->getFeatures().bindEmptyForUnusedDescriptorSets.enabled)
{
// For this workaround, we have to create an empty descriptor set for each descriptor set
// index, so make sure their pools are initialized.
uniformBlockCount = std::max(uniformBlockCount, 1u);
textureCount = std::max(textureCount, 1u);
}
angle::FixedVector<VkDescriptorPoolSize, 2> bufferSetSize;
if (uniformBlockCount > 0)
{
bufferSetSize.push_back({VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, uniformBlockCount});
}
if (storageBlockCount > 0)
{
bufferSetSize.push_back({VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, storageBlockCount});
}
VkDescriptorPoolSize textureSetSize = {VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, textureCount};
ANGLE_TRY(mDynamicDescriptorPools[kUniformsAndXfbDescriptorSetIndex].init(
contextVk, uniformAndXfbSetSize.data(), uniformAndXfbSetSize.size()));
if (bufferSetSize.size() > 0)
{
ANGLE_TRY(mDynamicDescriptorPools[kBufferDescriptorSetIndex].init(
contextVk, bufferSetSize.data(), bufferSetSize.size()));
}
if (textureCount > 0)
{
ANGLE_TRY(mDynamicDescriptorPools[kTextureDescriptorSetIndex].init(contextVk,
&textureSetSize, 1));
}
mDynamicBufferOffsets.resize(mState.getLinkedShaderStageCount());
return angle::Result::Continue;
}
void ProgramVk::updateBindingOffsets()
{
mStorageBlockBindingsOffset = mState.getUniqueUniformBlockCount();
}
void ProgramVk::linkResources(const gl::ProgramLinkedResources &resources)
{
Std140BlockLayoutEncoderFactory std140EncoderFactory;
gl::ProgramLinkedResourcesLinker linker(&std140EncoderFactory);
linker.linkResources(mState, resources);
}
angle::Result ProgramVk::initDefaultUniformBlocks(const gl::Context *glContext)
{
ContextVk *contextVk = vk::GetImpl(glContext);
RendererVk *renderer = contextVk->getRenderer();
// Process vertex and fragment uniforms into std140 packing.
gl::ShaderMap<sh::BlockLayoutMap> layoutMap;
gl::ShaderMap<size_t> requiredBufferSize;
requiredBufferSize.fill(0);
for (const gl::ShaderType shaderType : mState.getLinkedShaderStages())
{
gl::Shader *shader = mState.getAttachedShader(shaderType);
if (shader)
{
const std::vector<sh::Uniform> &uniforms = shader->getUniforms();
InitDefaultUniformBlock(uniforms, &layoutMap[shaderType],
&requiredBufferSize[shaderType]);
}
}
// Init the default block layout info.
const auto &uniforms = mState.getUniforms();
for (const gl::VariableLocation &location : mState.getUniformLocations())
{
gl::ShaderMap<sh::BlockMemberInfo> layoutInfo;
if (location.used() && !location.ignored)
{
const auto &uniform = uniforms[location.index];
if (uniform.isInDefaultBlock() && !uniform.isSampler())
{
std::string uniformName = uniform.name;
if (uniform.isArray())
{
// Gets the uniform name without the [0] at the end.
uniformName = gl::ParseResourceName(uniformName, nullptr);
}
bool found = false;
for (const gl::ShaderType shaderType : mState.getLinkedShaderStages())
{
auto it = layoutMap[shaderType].find(uniformName);
if (it != layoutMap[shaderType].end())
{
found = true;
layoutInfo[shaderType] = it->second;
}
}
ASSERT(found);
}
}
for (const gl::ShaderType shaderType : mState.getLinkedShaderStages())
{
mDefaultUniformBlocks[shaderType].uniformLayout.push_back(layoutInfo[shaderType]);
}
}
for (const gl::ShaderType shaderType : mState.getLinkedShaderStages())
{
if (requiredBufferSize[shaderType] > 0)
{
if (!mDefaultUniformBlocks[shaderType].uniformData.resize(
requiredBufferSize[shaderType]))
{
ANGLE_VK_CHECK(contextVk, false, VK_ERROR_OUT_OF_HOST_MEMORY);
}
size_t minAlignment = static_cast<size_t>(
renderer->getPhysicalDeviceProperties().limits.minUniformBufferOffsetAlignment);
mDefaultUniformBlocks[shaderType].storage.init(
renderer, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
minAlignment, kUniformBlockDynamicBufferMinSize, true);
// Initialize uniform buffer memory to zero by default.
mDefaultUniformBlocks[shaderType].uniformData.fill(0);
mDefaultUniformBlocksDirty.set(shaderType);
}
}
if (mDefaultUniformBlocksDirty.any() || mState.getTransformFeedbackBufferCount() > 0)
{
// Initialize the "empty" uniform block if necessary.
if (!mDefaultUniformBlocksDirty.all())
{
VkBufferCreateInfo uniformBufferInfo = {};
uniformBufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
uniformBufferInfo.flags = 0;
uniformBufferInfo.size = 1;
uniformBufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
uniformBufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
uniformBufferInfo.queueFamilyIndexCount = 0;
uniformBufferInfo.pQueueFamilyIndices = nullptr;
constexpr VkMemoryPropertyFlags kMemoryType = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
ANGLE_TRY(mEmptyUniformBlockStorage.init(contextVk, uniformBufferInfo, kMemoryType));
}
}
return angle::Result::Continue;
}
GLboolean ProgramVk::validate(const gl::Caps &caps, gl::InfoLog *infoLog)
{
// No-op. The spec is very vague about the behavior of validation.
return GL_TRUE;
}
template <typename T>
void ProgramVk::setUniformImpl(GLint location, GLsizei count, const T *v, GLenum entryPointType)
{
const gl::VariableLocation &locationInfo = mState.getUniformLocations()[location];
const gl::LinkedUniform &linkedUniform = mState.getUniforms()[locationInfo.index];
if (linkedUniform.isSampler())
{
// We could potentially cache some indexing here. For now this is a no-op since the mapping
// is handled entirely in ContextVk.
return;
}
if (linkedUniform.typeInfo->type == entryPointType)
{
for (const gl::ShaderType shaderType : mState.getLinkedShaderStages())
{
DefaultUniformBlock &uniformBlock = mDefaultUniformBlocks[shaderType];
const sh::BlockMemberInfo &layoutInfo = uniformBlock.uniformLayout[location];
// Assume an offset of -1 means the block is unused.
if (layoutInfo.offset == -1)
{
continue;
}
const GLint componentCount = linkedUniform.typeInfo->componentCount;
UpdateDefaultUniformBlock(count, locationInfo.arrayIndex, componentCount, v, layoutInfo,
&uniformBlock.uniformData);
mDefaultUniformBlocksDirty.set(shaderType);
}
}
else
{
for (const gl::ShaderType shaderType : mState.getLinkedShaderStages())
{
DefaultUniformBlock &uniformBlock = mDefaultUniformBlocks[shaderType];
const sh::BlockMemberInfo &layoutInfo = uniformBlock.uniformLayout[location];
// Assume an offset of -1 means the block is unused.
if (layoutInfo.offset == -1)
{
continue;
}
const GLint componentCount = linkedUniform.typeInfo->componentCount;
ASSERT(linkedUniform.typeInfo->type == gl::VariableBoolVectorType(entryPointType));
GLint initialArrayOffset =
locationInfo.arrayIndex * layoutInfo.arrayStride + layoutInfo.offset;
for (GLint i = 0; i < count; i++)
{
GLint elementOffset = i * layoutInfo.arrayStride + initialArrayOffset;
GLint *dest =
reinterpret_cast<GLint *>(uniformBlock.uniformData.data() + elementOffset);
const T *source = v + i * componentCount;
for (int c = 0; c < componentCount; c++)
{
dest[c] = (source[c] == static_cast<T>(0)) ? GL_FALSE : GL_TRUE;
}
}
mDefaultUniformBlocksDirty.set(shaderType);
}
}
}
template <typename T>
void ProgramVk::getUniformImpl(GLint location, T *v, GLenum entryPointType) const
{
const gl::VariableLocation &locationInfo = mState.getUniformLocations()[location];
const gl::LinkedUniform &linkedUniform = mState.getUniforms()[locationInfo.index];
ASSERT(!linkedUniform.isSampler());
const gl::ShaderType shaderType = linkedUniform.getFirstShaderTypeWhereActive();
ASSERT(shaderType != gl::ShaderType::InvalidEnum);
const DefaultUniformBlock &uniformBlock = mDefaultUniformBlocks[shaderType];
const sh::BlockMemberInfo &layoutInfo = uniformBlock.uniformLayout[location];
ASSERT(linkedUniform.typeInfo->componentType == entryPointType ||
linkedUniform.typeInfo->componentType == gl::VariableBoolVectorType(entryPointType));
if (gl::IsMatrixType(linkedUniform.type))
{
const uint8_t *ptrToElement = uniformBlock.uniformData.data() + layoutInfo.offset +
(locationInfo.arrayIndex * layoutInfo.arrayStride);
GetMatrixUniform(linkedUniform.type, v, reinterpret_cast<const T *>(ptrToElement), false);
}
else
{
ReadFromDefaultUniformBlock(linkedUniform.typeInfo->componentCount, locationInfo.arrayIndex,
v, layoutInfo, &uniformBlock.uniformData);
}
}
void ProgramVk::setUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformImpl(location, count, v, GL_FLOAT);
}
void ProgramVk::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformImpl(location, count, v, GL_FLOAT_VEC2);
}
void ProgramVk::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformImpl(location, count, v, GL_FLOAT_VEC3);
}
void ProgramVk::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformImpl(location, count, v, GL_FLOAT_VEC4);
}
void ProgramVk::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
setUniformImpl(location, count, v, GL_INT);
}
void ProgramVk::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
setUniformImpl(location, count, v, GL_INT_VEC2);
}
void ProgramVk::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
setUniformImpl(location, count, v, GL_INT_VEC3);
}
void ProgramVk::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
setUniformImpl(location, count, v, GL_INT_VEC4);
}
void ProgramVk::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformImpl(location, count, v, GL_UNSIGNED_INT);
}
void ProgramVk::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformImpl(location, count, v, GL_UNSIGNED_INT_VEC2);
}
void ProgramVk::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformImpl(location, count, v, GL_UNSIGNED_INT_VEC3);
}
void ProgramVk::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformImpl(location, count, v, GL_UNSIGNED_INT_VEC4);
}
template <int cols, int rows>
void ProgramVk::setUniformMatrixfv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
const gl::VariableLocation &locationInfo = mState.getUniformLocations()[location];
const gl::LinkedUniform &linkedUniform = mState.getUniforms()[locationInfo.index];
for (const gl::ShaderType shaderType : mState.getLinkedShaderStages())
{
DefaultUniformBlock &uniformBlock = mDefaultUniformBlocks[shaderType];
const sh::BlockMemberInfo &layoutInfo = uniformBlock.uniformLayout[location];
// Assume an offset of -1 means the block is unused.
if (layoutInfo.offset == -1)
{
continue;
}
bool updated = SetFloatUniformMatrixGLSL<cols, rows>(
locationInfo.arrayIndex, linkedUniform.getArraySizeProduct(), count, transpose, value,
uniformBlock.uniformData.data() + layoutInfo.offset);
// If the uniformsDirty flag was true, we don't want to flip it to false here if the
// setter did not update any data. We still want the uniform to be included when we'll
// update the descriptor sets.
if (updated)
{
mDefaultUniformBlocksDirty.set(shaderType);
}
}
}
void ProgramVk::setUniformMatrix2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<2, 2>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<3, 3>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<4, 4>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix2x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<2, 3>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix3x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<3, 2>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix2x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<2, 4>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix4x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<4, 2>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix3x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<3, 4>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix4x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<4, 3>(location, count, transpose, value);
}
void ProgramVk::setPathFragmentInputGen(const std::string &inputName,
GLenum genMode,
GLint components,
const GLfloat *coeffs)
{
UNIMPLEMENTED();
}
angle::Result ProgramVk::allocateDescriptorSet(ContextVk *contextVk, uint32_t descriptorSetIndex)
{
bool ignoreNewPoolAllocated;
return allocateDescriptorSetAndGetInfo(contextVk, descriptorSetIndex, &ignoreNewPoolAllocated);
}
angle::Result ProgramVk::allocateDescriptorSetAndGetInfo(ContextVk *contextVk,
uint32_t descriptorSetIndex,
bool *newPoolAllocatedOut)
{
vk::DynamicDescriptorPool &dynamicDescriptorPool = mDynamicDescriptorPools[descriptorSetIndex];
uint32_t potentialNewCount = descriptorSetIndex + 1;
if (potentialNewCount > mDescriptorSets.size())
{
mDescriptorSets.resize(potentialNewCount, VK_NULL_HANDLE);
}
const vk::DescriptorSetLayout &descriptorSetLayout =
mDescriptorSetLayouts[descriptorSetIndex].get();
ANGLE_TRY(dynamicDescriptorPool.allocateSetsAndGetInfo(
contextVk, descriptorSetLayout.ptr(), 1, &mDescriptorPoolBindings[descriptorSetIndex],
&mDescriptorSets[descriptorSetIndex], newPoolAllocatedOut));
mEmptyDescriptorSets[descriptorSetIndex] = VK_NULL_HANDLE;
return angle::Result::Continue;
}
void ProgramVk::getUniformfv(const gl::Context *context, GLint location, GLfloat *params) const
{
getUniformImpl(location, params, GL_FLOAT);
}
void ProgramVk::getUniformiv(const gl::Context *context, GLint location, GLint *params) const
{
getUniformImpl(location, params, GL_INT);
}
void ProgramVk::getUniformuiv(const gl::Context *context, GLint location, GLuint *params) const
{
getUniformImpl(location, params, GL_UNSIGNED_INT);
}
angle::Result ProgramVk::updateUniforms(ContextVk *contextVk)
{
ASSERT(dirtyUniforms());
bool anyNewBufferAllocated = false;
uint32_t offsetIndex = 0;
// Update buffer memory by immediate mapping. This immediate update only works once.
for (gl::ShaderType shaderType : mState.getLinkedShaderStages())
{
DefaultUniformBlock &uniformBlock = mDefaultUniformBlocks[shaderType];
if (mDefaultUniformBlocksDirty[shaderType])
{
bool bufferModified = false;
ANGLE_TRY(
SyncDefaultUniformBlock(contextVk, &uniformBlock.storage, uniformBlock.uniformData,
&mDynamicBufferOffsets[offsetIndex], &bufferModified));
mDefaultUniformBlocksDirty.reset(shaderType);
if (bufferModified)
{
anyNewBufferAllocated = true;
}
}
++offsetIndex;
}
if (anyNewBufferAllocated)
{
// We need to reinitialize the descriptor sets if we newly allocated buffers since we can't
// modify the descriptor sets once initialized.
ANGLE_TRY(allocateDescriptorSet(contextVk, kUniformsAndXfbDescriptorSetIndex));
updateDefaultUniformsDescriptorSet(contextVk);
updateTransformFeedbackDescriptorSetImpl(contextVk);
}
return angle::Result::Continue;
}
void ProgramVk::updateDefaultUniformsDescriptorSet(ContextVk *contextVk)
{
size_t shaderStageCount = mState.getLinkedShaderStageCount();
gl::ShaderVector<VkDescriptorBufferInfo> descriptorBufferInfo(shaderStageCount);
gl::ShaderVector<VkWriteDescriptorSet> writeDescriptorInfo(shaderStageCount);
uint32_t bindingIndex = 0;
// Write default uniforms for each shader type.
for (const gl::ShaderType shaderType : mState.getLinkedShaderStages())
{
DefaultUniformBlock &uniformBlock = mDefaultUniformBlocks[shaderType];
VkDescriptorBufferInfo &bufferInfo = descriptorBufferInfo[bindingIndex];
VkWriteDescriptorSet &writeInfo = writeDescriptorInfo[bindingIndex];
if (!uniformBlock.uniformData.empty())
{
const vk::BufferHelper *bufferHelper = uniformBlock.storage.getCurrentBuffer();
bufferInfo.buffer = bufferHelper->getBuffer().getHandle();
}
else
{
bufferInfo.buffer = mEmptyUniformBlockStorage.getBuffer().getHandle();
}
bufferInfo.offset = 0;
bufferInfo.range = VK_WHOLE_SIZE;
writeInfo.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeInfo.pNext = nullptr;
writeInfo.dstSet = mDescriptorSets[kUniformsAndXfbDescriptorSetIndex];
writeInfo.dstBinding = bindingIndex;
writeInfo.dstArrayElement = 0;
writeInfo.descriptorCount = 1;
writeInfo.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
writeInfo.pImageInfo = nullptr;
writeInfo.pBufferInfo = &bufferInfo;
writeInfo.pTexelBufferView = nullptr;
++bindingIndex;
}
VkDevice device = contextVk->getDevice();
ASSERT(bindingIndex == shaderStageCount);
ASSERT(shaderStageCount <= kReservedDefaultUniformBindingCount);
vkUpdateDescriptorSets(device, shaderStageCount, writeDescriptorInfo.data(), 0, nullptr);
}
void ProgramVk::updateBuffersDescriptorSet(ContextVk *contextVk,
vk::CommandGraphResource *recorder,
const std::vector<gl::InterfaceBlock> &blocks,
VkDescriptorType descriptorType)
{
VkDescriptorSet descriptorSet = mDescriptorSets[kBufferDescriptorSetIndex];
ASSERT(descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER ||
descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
const bool isStorageBuffer = descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
const uint32_t bindingStart =
isStorageBuffer ? getStorageBlockBindingsOffset() : getUniformBlockBindingsOffset();
static_assert(
gl::IMPLEMENTATION_MAX_SHADER_STORAGE_BUFFER_BINDINGS >=
gl::IMPLEMENTATION_MAX_UNIFORM_BUFFER_BINDINGS,
"The descriptor arrays here would have inadequate size for uniform buffer objects");
gl::StorageBuffersArray<VkDescriptorBufferInfo> descriptorBufferInfo;
gl::StorageBuffersArray<VkWriteDescriptorSet> writeDescriptorInfo;
uint32_t writeCount = 0;
// The binding is incremented every time arrayElement 0 is encountered, which means there will
// be an increment right at the start. Start from -1 to get 0 as the first binding.
int32_t currentBinding = -1;
// Write uniform or storage buffers.
const gl::State &glState = contextVk->getState();
for (uint32_t bufferIndex = 0; bufferIndex < blocks.size(); ++bufferIndex)
{
const gl::InterfaceBlock &block = blocks[bufferIndex];
const gl::OffsetBindingPointer<gl::Buffer> &bufferBinding =
isStorageBuffer ? glState.getIndexedShaderStorageBuffer(block.binding)
: glState.getIndexedUniformBuffer(block.binding);
if (!block.isArray || block.arrayElement == 0)
{
// Array indices of the same buffer binding are placed sequentially in `blocks`.
// Thus, the block binding is updated only when array index 0 is encountered.
++currentBinding;
}
if (bufferBinding.get() == nullptr)
{
continue;
}
gl::Buffer *buffer = bufferBinding.get();
ASSERT(buffer != nullptr);
// Make sure there's no possible under/overflow with binding size.
static_assert(sizeof(VkDeviceSize) >= sizeof(bufferBinding.getSize()),
"VkDeviceSize too small");
ASSERT(bufferBinding.getSize() >= 0);
BufferVk *bufferVk = vk::GetImpl(buffer);
GLintptr offset = bufferBinding.getOffset();
VkDeviceSize size = bufferBinding.getSize();
VkDeviceSize blockSize = block.dataSize;
vk::BufferHelper &bufferHelper = bufferVk->getBuffer();
if (isStorageBuffer)
{
bufferHelper.onWrite(contextVk, recorder, VK_ACCESS_SHADER_READ_BIT,
VK_ACCESS_SHADER_WRITE_BIT);
}
else
{
bufferHelper.onRead(recorder, VK_ACCESS_UNIFORM_READ_BIT);
}
// If size is 0, we can't always use VK_WHOLE_SIZE (or bufferHelper.getSize()), as the
// backing buffer may be larger than max*BufferRange. In that case, we use the minimum of
// the backing buffer size (what's left after offset) and the buffer size as defined by the
// shader. That latter is only valid for UBOs, as SSBOs may have variable length arrays.
size = size > 0 ? size : (bufferHelper.getSize() - offset);
if (!isStorageBuffer)
{
size = std::min(size, blockSize);
}
VkDescriptorBufferInfo &bufferInfo = descriptorBufferInfo[writeCount];
bufferInfo.buffer = bufferHelper.getBuffer().getHandle();
bufferInfo.offset = offset;
bufferInfo.range = size;
VkWriteDescriptorSet &writeInfo = writeDescriptorInfo[writeCount];
writeInfo.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeInfo.pNext = nullptr;
writeInfo.dstSet = descriptorSet;
writeInfo.dstBinding = bindingStart + currentBinding;
writeInfo.dstArrayElement = block.isArray ? block.arrayElement : 0;
writeInfo.descriptorCount = 1;
writeInfo.descriptorType = descriptorType;
writeInfo.pImageInfo = nullptr;
writeInfo.pBufferInfo = &bufferInfo;
writeInfo.pTexelBufferView = nullptr;
ASSERT(writeInfo.pBufferInfo[0].buffer != VK_NULL_HANDLE);
++writeCount;
}
VkDevice device = contextVk->getDevice();
vkUpdateDescriptorSets(device, writeCount, writeDescriptorInfo.data(), 0, nullptr);
}
angle::Result ProgramVk::updateUniformAndStorageBuffersDescriptorSet(
ContextVk *contextVk,
vk::CommandGraphResource *recorder)
{
ANGLE_TRY(allocateDescriptorSet(contextVk, kBufferDescriptorSetIndex));
updateBuffersDescriptorSet(contextVk, recorder, mState.getUniformBlocks(),
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
updateBuffersDescriptorSet(contextVk, recorder, mState.getShaderStorageBlocks(),
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
return angle::Result::Continue;
}
angle::Result ProgramVk::updateTransformFeedbackDescriptorSet(ContextVk *contextVk,
vk::FramebufferHelper *framebuffer)
{
const gl::State &glState = contextVk->getState();
ASSERT(hasTransformFeedbackOutput());
TransformFeedbackVk *transformFeedbackVk = vk::GetImpl(glState.getCurrentTransformFeedback());
transformFeedbackVk->addFramebufferDependency(contextVk, mState, framebuffer);
ANGLE_TRY(allocateDescriptorSet(contextVk, kUniformsAndXfbDescriptorSetIndex));
updateDefaultUniformsDescriptorSet(contextVk);
updateTransformFeedbackDescriptorSetImpl(contextVk);
return angle::Result::Continue;
}
void ProgramVk::updateTransformFeedbackDescriptorSetImpl(ContextVk *contextVk)
{
const gl::State &glState = contextVk->getState();
if (!hasTransformFeedbackOutput())
{
// NOTE(syoussefi): a possible optimization is to skip this if transform feedback is
// paused. However, even if paused, |updateDescriptorSet| must be called at least once for
// the sake of validation.
return;
}
TransformFeedbackVk *transformFeedbackVk = vk::GetImpl(glState.getCurrentTransformFeedback());
transformFeedbackVk->updateDescriptorSet(contextVk, mState,
mDescriptorSets[kUniformsAndXfbDescriptorSetIndex]);
}
angle::Result ProgramVk::updateTexturesDescriptorSet(ContextVk *contextVk)
{
const vk::TextureDescriptorDesc &texturesDesc = contextVk->getActiveTexturesDesc();
auto iter = mTextureDescriptorsCache.find(texturesDesc);
if (iter != mTextureDescriptorsCache.end())
{
mDescriptorSets[kTextureDescriptorSetIndex] = iter->second;
return angle::Result::Continue;
}
ASSERT(hasTextures());
bool newPoolAllocated;
ANGLE_TRY(
allocateDescriptorSetAndGetInfo(contextVk, kTextureDescriptorSetIndex, &newPoolAllocated));
// Clear descriptor set cache. It may no longer be valid.
if (newPoolAllocated)
{
mTextureDescriptorsCache.clear();
}
VkDescriptorSet descriptorSet = mDescriptorSets[kTextureDescriptorSetIndex];
gl::ActiveTextureArray<VkDescriptorImageInfo> descriptorImageInfo;
gl::ActiveTextureArray<VkWriteDescriptorSet> writeDescriptorInfo;
uint32_t writeCount = 0;
const gl::ActiveTextureArray<TextureVk *> &activeTextures = contextVk->getActiveTextures();
for (uint32_t textureIndex = 0; textureIndex < mState.getSamplerBindings().size();
++textureIndex)
{
const gl::SamplerBinding &samplerBinding = mState.getSamplerBindings()[textureIndex];
ASSERT(!samplerBinding.unreferenced);
for (uint32_t arrayElement = 0; arrayElement < samplerBinding.boundTextureUnits.size();
++arrayElement)
{
GLuint textureUnit = samplerBinding.boundTextureUnits[arrayElement];
TextureVk *textureVk = activeTextures[textureUnit];
vk::ImageHelper &image = textureVk->getImage();
VkDescriptorImageInfo &imageInfo = descriptorImageInfo[writeCount];
imageInfo.sampler = textureVk->getSampler().getHandle();
imageInfo.imageView = textureVk->getReadImageView().getHandle();
imageInfo.imageLayout = image.getCurrentLayout();
VkWriteDescriptorSet &writeInfo = writeDescriptorInfo[writeCount];
writeInfo.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeInfo.pNext = nullptr;
writeInfo.dstSet = descriptorSet;
writeInfo.dstBinding = textureIndex;
writeInfo.dstArrayElement = arrayElement;
writeInfo.descriptorCount = 1;
writeInfo.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writeInfo.pImageInfo = &imageInfo;
writeInfo.pBufferInfo = nullptr;
writeInfo.pTexelBufferView = nullptr;
++writeCount;
}
}
VkDevice device = contextVk->getDevice();
ASSERT(writeCount > 0);
vkUpdateDescriptorSets(device, writeCount, writeDescriptorInfo.data(), 0, nullptr);
mTextureDescriptorsCache.emplace(texturesDesc, descriptorSet);
return angle::Result::Continue;
}
void ProgramVk::setDefaultUniformBlocksMinSizeForTesting(size_t minSize)
{
for (DefaultUniformBlock &block : mDefaultUniformBlocks)
{
block.storage.setMinimumSizeForTesting(minSize);
}
}
angle::Result ProgramVk::updateDescriptorSets(ContextVk *contextVk,
vk::CommandBuffer *commandBuffer)
{
// Can probably use better dirty bits here.
if (mDescriptorSets.empty())
return angle::Result::Continue;
// Find the maximum non-null descriptor set. This is used in conjunction with a driver
// workaround to bind empty descriptor sets only for gaps in between 0 and max and avoid
// binding unnecessary empty descriptor sets for the sets beyond max.
size_t descriptorSetRange = 0;
for (size_t descriptorSetIndex = 0; descriptorSetIndex < mDescriptorSets.size();
++descriptorSetIndex)
{
if (mDescriptorSets[descriptorSetIndex] != VK_NULL_HANDLE)
{
descriptorSetRange = descriptorSetIndex + 1;
}
}
const VkPipelineBindPoint pipelineBindPoint =
mState.isCompute() ? VK_PIPELINE_BIND_POINT_COMPUTE : VK_PIPELINE_BIND_POINT_GRAPHICS;
for (size_t descriptorSetIndex = 0; descriptorSetIndex < descriptorSetRange;
++descriptorSetIndex)
{
VkDescriptorSet descSet = mDescriptorSets[descriptorSetIndex];
if (descSet == VK_NULL_HANDLE)
{
if (!contextVk->getRenderer()->getFeatures().bindEmptyForUnusedDescriptorSets.enabled)
{
continue;
}
// Workaround a driver bug where missing (though unused) descriptor sets indices cause
// later sets to misbehave.
if (mEmptyDescriptorSets[descriptorSetIndex] == VK_NULL_HANDLE)
{
const vk::DescriptorSetLayout &descriptorSetLayout =
mDescriptorSetLayouts[descriptorSetIndex].get();
ANGLE_TRY(mDynamicDescriptorPools[descriptorSetIndex].allocateSets(
contextVk, descriptorSetLayout.ptr(), 1,
&mDescriptorPoolBindings[descriptorSetIndex],
&mEmptyDescriptorSets[descriptorSetIndex]));
}
descSet = mEmptyDescriptorSets[descriptorSetIndex];
}
// Default uniforms are encompassed in a block per shader stage, and they are assigned
// through dynamic uniform buffers (requiring dynamic offsets). No other descriptor
// requires a dynamic offset.
const uint32_t uniformBlockOffsetCount =
descriptorSetIndex == kUniformsAndXfbDescriptorSetIndex ? mDynamicBufferOffsets.size()
: 0;
commandBuffer->bindDescriptorSets(mPipelineLayout.get(), pipelineBindPoint,
descriptorSetIndex, 1, &descSet, uniformBlockOffsetCount,
mDynamicBufferOffsets.data());
}
return angle::Result::Continue;
}
} // namespace rx