blob: 7f67daae197f9a24c25e00119f21e3cb1aadc80f [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/ParseContext.h"
#include <stdarg.h>
#include <stdio.h>
#include "compiler/preprocessor/SourceLocation.h"
#include "compiler/translator/Cache.h"
#include "compiler/translator/glslang.h"
#include "compiler/translator/ValidateSwitch.h"
#include "compiler/translator/ValidateGlobalInitializer.h"
#include "compiler/translator/util.h"
///////////////////////////////////////////////////////////////////////
//
// Sub- vector and matrix fields
//
////////////////////////////////////////////////////////////////////////
//
// Look at a '.' field selector string and change it into offsets
// for a vector.
//
bool TParseContext::parseVectorFields(const TString &compString,
int vecSize,
TVectorFields &fields,
const TSourceLoc &line)
{
fields.num = (int)compString.size();
if (fields.num > 4)
{
error(line, "illegal vector field selection", compString.c_str());
return false;
}
enum
{
exyzw,
ergba,
estpq
} fieldSet[4];
for (int i = 0; i < fields.num; ++i)
{
switch (compString[i])
{
case 'x':
fields.offsets[i] = 0;
fieldSet[i] = exyzw;
break;
case 'r':
fields.offsets[i] = 0;
fieldSet[i] = ergba;
break;
case 's':
fields.offsets[i] = 0;
fieldSet[i] = estpq;
break;
case 'y':
fields.offsets[i] = 1;
fieldSet[i] = exyzw;
break;
case 'g':
fields.offsets[i] = 1;
fieldSet[i] = ergba;
break;
case 't':
fields.offsets[i] = 1;
fieldSet[i] = estpq;
break;
case 'z':
fields.offsets[i] = 2;
fieldSet[i] = exyzw;
break;
case 'b':
fields.offsets[i] = 2;
fieldSet[i] = ergba;
break;
case 'p':
fields.offsets[i] = 2;
fieldSet[i] = estpq;
break;
case 'w':
fields.offsets[i] = 3;
fieldSet[i] = exyzw;
break;
case 'a':
fields.offsets[i] = 3;
fieldSet[i] = ergba;
break;
case 'q':
fields.offsets[i] = 3;
fieldSet[i] = estpq;
break;
default:
error(line, "illegal vector field selection", compString.c_str());
return false;
}
}
for (int i = 0; i < fields.num; ++i)
{
if (fields.offsets[i] >= vecSize)
{
error(line, "vector field selection out of range", compString.c_str());
return false;
}
if (i > 0)
{
if (fieldSet[i] != fieldSet[i - 1])
{
error(line, "illegal - vector component fields not from the same set",
compString.c_str());
return false;
}
}
}
return true;
}
///////////////////////////////////////////////////////////////////////
//
// Errors
//
////////////////////////////////////////////////////////////////////////
//
// Track whether errors have occurred.
//
void TParseContext::recover()
{
}
//
// Used by flex/bison to output all syntax and parsing errors.
//
void TParseContext::error(const TSourceLoc &loc,
const char *reason,
const char *token,
const char *extraInfo)
{
pp::SourceLocation srcLoc;
srcLoc.file = loc.first_file;
srcLoc.line = loc.first_line;
mDiagnostics.writeInfo(pp::Diagnostics::PP_ERROR, srcLoc, reason, token, extraInfo);
}
void TParseContext::warning(const TSourceLoc &loc,
const char *reason,
const char *token,
const char *extraInfo)
{
pp::SourceLocation srcLoc;
srcLoc.file = loc.first_file;
srcLoc.line = loc.first_line;
mDiagnostics.writeInfo(pp::Diagnostics::PP_WARNING, srcLoc, reason, token, extraInfo);
}
void TParseContext::outOfRangeError(bool isError,
const TSourceLoc &loc,
const char *reason,
const char *token,
const char *extraInfo)
{
if (isError)
{
error(loc, reason, token, extraInfo);
recover();
}
else
{
warning(loc, reason, token, extraInfo);
}
}
//
// Same error message for all places assignments don't work.
//
void TParseContext::assignError(const TSourceLoc &line, const char *op, TString left, TString right)
{
std::stringstream extraInfoStream;
extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
std::string extraInfo = extraInfoStream.str();
error(line, "", op, extraInfo.c_str());
}
//
// Same error message for all places unary operations don't work.
//
void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, TString operand)
{
std::stringstream extraInfoStream;
extraInfoStream << "no operation '" << op << "' exists that takes an operand of type "
<< operand << " (or there is no acceptable conversion)";
std::string extraInfo = extraInfoStream.str();
error(line, " wrong operand type", op, extraInfo.c_str());
}
//
// Same error message for all binary operations don't work.
//
void TParseContext::binaryOpError(const TSourceLoc &line,
const char *op,
TString left,
TString right)
{
std::stringstream extraInfoStream;
extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '"
<< left << "' and a right operand of type '" << right
<< "' (or there is no acceptable conversion)";
std::string extraInfo = extraInfoStream.str();
error(line, " wrong operand types ", op, extraInfo.c_str());
}
bool TParseContext::precisionErrorCheck(const TSourceLoc &line,
TPrecision precision,
TBasicType type)
{
if (!mChecksPrecisionErrors)
return false;
if (precision == EbpUndefined)
{
switch (type)
{
case EbtFloat:
error(line, "No precision specified for (float)", "");
return true;
case EbtInt:
case EbtUInt:
UNREACHABLE(); // there's always a predeclared qualifier
error(line, "No precision specified (int)", "");
return true;
default:
if (IsSampler(type))
{
error(line, "No precision specified (sampler)", "");
return true;
}
}
}
return false;
}
//
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
//
// Returns true if the was an error.
//
bool TParseContext::lValueErrorCheck(const TSourceLoc &line, const char *op, TIntermTyped *node)
{
TIntermSymbol *symNode = node->getAsSymbolNode();
TIntermBinary *binaryNode = node->getAsBinaryNode();
if (binaryNode)
{
bool errorReturn;
switch (binaryNode->getOp())
{
case EOpIndexDirect:
case EOpIndexIndirect:
case EOpIndexDirectStruct:
case EOpIndexDirectInterfaceBlock:
return lValueErrorCheck(line, op, binaryNode->getLeft());
case EOpVectorSwizzle:
errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
if (!errorReturn)
{
int offset[4] = {0, 0, 0, 0};
TIntermTyped *rightNode = binaryNode->getRight();
TIntermAggregate *aggrNode = rightNode->getAsAggregate();
for (TIntermSequence::iterator p = aggrNode->getSequence()->begin();
p != aggrNode->getSequence()->end(); p++)
{
int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0);
offset[value]++;
if (offset[value] > 1)
{
error(line, " l-value of swizzle cannot have duplicate components", op);
return true;
}
}
}
return errorReturn;
default:
break;
}
error(line, " l-value required", op);
return true;
}
const char *symbol = 0;
if (symNode != 0)
symbol = symNode->getSymbol().c_str();
const char *message = 0;
switch (node->getQualifier())
{
case EvqConst:
message = "can't modify a const";
break;
case EvqConstReadOnly:
message = "can't modify a const";
break;
case EvqAttribute:
message = "can't modify an attribute";
break;
case EvqFragmentIn:
message = "can't modify an input";
break;
case EvqVertexIn:
message = "can't modify an input";
break;
case EvqUniform:
message = "can't modify a uniform";
break;
case EvqVaryingIn:
message = "can't modify a varying";
break;
case EvqFragCoord:
message = "can't modify gl_FragCoord";
break;
case EvqFrontFacing:
message = "can't modify gl_FrontFacing";
break;
case EvqPointCoord:
message = "can't modify gl_PointCoord";
break;
default:
//
// Type that can't be written to?
//
if (node->getBasicType() == EbtVoid)
{
message = "can't modify void";
}
if (IsSampler(node->getBasicType()))
{
message = "can't modify a sampler";
}
}
if (message == 0 && binaryNode == 0 && symNode == 0)
{
error(line, " l-value required", op);
return true;
}
//
// Everything else is okay, no error.
//
if (message == 0)
return false;
//
// If we get here, we have an error and a message.
//
if (symNode)
{
std::stringstream extraInfoStream;
extraInfoStream << "\"" << symbol << "\" (" << message << ")";
std::string extraInfo = extraInfoStream.str();
error(line, " l-value required", op, extraInfo.c_str());
}
else
{
std::stringstream extraInfoStream;
extraInfoStream << "(" << message << ")";
std::string extraInfo = extraInfoStream.str();
error(line, " l-value required", op, extraInfo.c_str());
}
return true;
}
//
// Both test, and if necessary spit out an error, to see if the node is really
// a constant.
//
// Returns true if the was an error.
//
bool TParseContext::constErrorCheck(TIntermTyped *node)
{
if (node->getQualifier() == EvqConst)
return false;
error(node->getLine(), "constant expression required", "");
return true;
}
//
// Both test, and if necessary spit out an error, to see if the node is really
// an integer.
//
// Returns true if the was an error.
//
bool TParseContext::integerErrorCheck(TIntermTyped *node, const char *token)
{
if (node->isScalarInt())
return false;
error(node->getLine(), "integer expression required", token);
return true;
}
//
// Both test, and if necessary spit out an error, to see if we are currently
// globally scoped.
//
// Returns true if the was an error.
//
bool TParseContext::globalErrorCheck(const TSourceLoc &line, bool global, const char *token)
{
if (global)
return false;
error(line, "only allowed at global scope", token);
return true;
}
//
// For now, keep it simple: if it starts "gl_", it's reserved, independent
// of scope. Except, if the symbol table is at the built-in push-level,
// which is when we are parsing built-ins.
// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
// webgl shader.
//
// Returns true if there was an error.
//
bool TParseContext::reservedErrorCheck(const TSourceLoc &line, const TString &identifier)
{
static const char *reservedErrMsg = "reserved built-in name";
if (!symbolTable.atBuiltInLevel())
{
if (identifier.compare(0, 3, "gl_") == 0)
{
error(line, reservedErrMsg, "gl_");
return true;
}
if (IsWebGLBasedSpec(mShaderSpec))
{
if (identifier.compare(0, 6, "webgl_") == 0)
{
error(line, reservedErrMsg, "webgl_");
return true;
}
if (identifier.compare(0, 7, "_webgl_") == 0)
{
error(line, reservedErrMsg, "_webgl_");
return true;
}
if (mShaderSpec == SH_CSS_SHADERS_SPEC && identifier.compare(0, 4, "css_") == 0)
{
error(line, reservedErrMsg, "css_");
return true;
}
}
if (identifier.find("__") != TString::npos)
{
error(line,
"identifiers containing two consecutive underscores (__) are reserved as "
"possible future keywords",
identifier.c_str());
return true;
}
}
return false;
}
//
// Make sure there is enough data provided to the constructor to build
// something of the type of the constructor. Also returns the type of
// the constructor.
//
// Returns true if there was an error in construction.
//
bool TParseContext::constructorErrorCheck(const TSourceLoc &line,
TIntermNode *argumentsNode,
TFunction &function,
TOperator op,
TType *type)
{
*type = function.getReturnType();
bool constructingMatrix = false;
switch (op)
{
case EOpConstructMat2:
case EOpConstructMat2x3:
case EOpConstructMat2x4:
case EOpConstructMat3x2:
case EOpConstructMat3:
case EOpConstructMat3x4:
case EOpConstructMat4x2:
case EOpConstructMat4x3:
case EOpConstructMat4:
constructingMatrix = true;
break;
default:
break;
}
//
// Note: It's okay to have too many components available, but not okay to have unused
// arguments. 'full' will go to true when enough args have been seen. If we loop
// again, there is an extra argument, so 'overfull' will become true.
//
size_t size = 0;
bool constType = true;
bool full = false;
bool overFull = false;
bool matrixInMatrix = false;
bool arrayArg = false;
for (size_t i = 0; i < function.getParamCount(); ++i)
{
const TConstParameter &param = function.getParam(i);
size += param.type->getObjectSize();
if (constructingMatrix && param.type->isMatrix())
matrixInMatrix = true;
if (full)
overFull = true;
if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
full = true;
if (param.type->getQualifier() != EvqConst)
constType = false;
if (param.type->isArray())
arrayArg = true;
}
if (constType)
type->setQualifier(EvqConst);
if (type->isArray())
{
if (type->isUnsizedArray())
{
type->setArraySize(static_cast<int>(function.getParamCount()));
}
else if (static_cast<size_t>(type->getArraySize()) != function.getParamCount())
{
error(line, "array constructor needs one argument per array element", "constructor");
return true;
}
}
if (arrayArg && op != EOpConstructStruct)
{
error(line, "constructing from a non-dereferenced array", "constructor");
return true;
}
if (matrixInMatrix && !type->isArray())
{
if (function.getParamCount() != 1)
{
error(line, "constructing matrix from matrix can only take one argument",
"constructor");
return true;
}
}
if (overFull)
{
error(line, "too many arguments", "constructor");
return true;
}
if (op == EOpConstructStruct && !type->isArray() &&
type->getStruct()->fields().size() != function.getParamCount())
{
error(line,
"Number of constructor parameters does not match the number of structure fields",
"constructor");
return true;
}
if (!type->isMatrix() || !matrixInMatrix)
{
if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
(op == EOpConstructStruct && size < type->getObjectSize()))
{
error(line, "not enough data provided for construction", "constructor");
return true;
}
}
if (argumentsNode == nullptr)
{
error(line, "constructor does not have any arguments", "constructor");
return true;
}
TIntermAggregate *argumentsAgg = argumentsNode->getAsAggregate();
for (TIntermNode *&argNode : *argumentsAgg->getSequence())
{
TIntermTyped *argTyped = argNode->getAsTyped();
ASSERT(argTyped != nullptr);
if (op != EOpConstructStruct && IsSampler(argTyped->getBasicType()))
{
error(line, "cannot convert a sampler", "constructor");
return true;
}
if (argTyped->getBasicType() == EbtVoid)
{
error(line, "cannot convert a void", "constructor");
return true;
}
}
return false;
}
// This function checks to see if a void variable has been declared and raise an error message for
// such a case
//
// returns true in case of an error
//
bool TParseContext::voidErrorCheck(const TSourceLoc &line,
const TString &identifier,
const TBasicType &type)
{
if (type == EbtVoid)
{
error(line, "illegal use of type 'void'", identifier.c_str());
return true;
}
return false;
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression
// or not
//
// returns true in case of an error
//
bool TParseContext::boolErrorCheck(const TSourceLoc &line, const TIntermTyped *type)
{
if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector())
{
error(line, "boolean expression expected", "");
return true;
}
return false;
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression
// or not
//
// returns true in case of an error
//
bool TParseContext::boolErrorCheck(const TSourceLoc &line, const TPublicType &pType)
{
if (pType.type != EbtBool || pType.isAggregate())
{
error(line, "boolean expression expected", "");
return true;
}
return false;
}
bool TParseContext::samplerErrorCheck(const TSourceLoc &line,
const TPublicType &pType,
const char *reason)
{
if (pType.type == EbtStruct)
{
if (containsSampler(*pType.userDef))
{
error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
return true;
}
return false;
}
else if (IsSampler(pType.type))
{
error(line, reason, getBasicString(pType.type));
return true;
}
return false;
}
bool TParseContext::locationDeclaratorListCheck(const TSourceLoc &line, const TPublicType &pType)
{
if (pType.layoutQualifier.location != -1)
{
error(line, "location must only be specified for a single input or output variable",
"location");
return true;
}
return false;
}
bool TParseContext::parameterSamplerErrorCheck(const TSourceLoc &line,
TQualifier qualifier,
const TType &type)
{
if ((qualifier == EvqOut || qualifier == EvqInOut) && type.getBasicType() != EbtStruct &&
IsSampler(type.getBasicType()))
{
error(line, "samplers cannot be output parameters", type.getBasicString());
return true;
}
return false;
}
bool TParseContext::containsSampler(const TType &type)
{
if (IsSampler(type.getBasicType()))
return true;
if (type.getBasicType() == EbtStruct || type.isInterfaceBlock())
{
const TFieldList &fields = type.getStruct()->fields();
for (unsigned int i = 0; i < fields.size(); ++i)
{
if (containsSampler(*fields[i]->type()))
return true;
}
}
return false;
}
//
// Do size checking for an array type's size.
//
// Returns true if there was an error.
//
bool TParseContext::arraySizeErrorCheck(const TSourceLoc &line, TIntermTyped *expr, int &size)
{
TIntermConstantUnion *constant = expr->getAsConstantUnion();
// TODO(oetuaho@nvidia.com): Get rid of the constant == nullptr check here once all constant
// expressions can be folded. Right now we don't allow constant expressions that ANGLE can't
// fold as array size.
if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt())
{
error(line, "array size must be a constant integer expression", "");
size = 1;
return true;
}
unsigned int unsignedSize = 0;
if (constant->getBasicType() == EbtUInt)
{
unsignedSize = constant->getUConst(0);
size = static_cast<int>(unsignedSize);
}
else
{
size = constant->getIConst(0);
if (size < 0)
{
error(line, "array size must be non-negative", "");
size = 1;
return true;
}
unsignedSize = static_cast<unsigned int>(size);
}
if (size == 0)
{
error(line, "array size must be greater than zero", "");
size = 1;
return true;
}
// The size of arrays is restricted here to prevent issues further down the
// compiler/translator/driver stack. Shader Model 5 generation hardware is limited to
// 4096 registers so this should be reasonable even for aggressively optimizable code.
const unsigned int sizeLimit = 65536;
if (unsignedSize > sizeLimit)
{
error(line, "array size too large", "");
size = 1;
return true;
}
return false;
}
//
// See if this qualifier can be an array.
//
// Returns true if there is an error.
//
bool TParseContext::arrayQualifierErrorCheck(const TSourceLoc &line, const TPublicType &type)
{
if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqVertexIn) ||
(type.qualifier == EvqConst && mShaderVersion < 300))
{
error(line, "cannot declare arrays of this qualifier",
TType(type).getCompleteString().c_str());
return true;
}
return false;
}
//
// See if this type can be an array.
//
// Returns true if there is an error.
//
bool TParseContext::arrayTypeErrorCheck(const TSourceLoc &line, const TPublicType &type)
{
//
// Can the type be an array?
//
if (type.array)
{
error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str());
return true;
}
// In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere.
// In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section
// 4.3.4).
if (mShaderVersion >= 300 && type.type == EbtStruct && sh::IsVarying(type.qualifier))
{
error(line, "cannot declare arrays of structs of this qualifier",
TType(type).getCompleteString().c_str());
return true;
}
return false;
}
//
// Enforce non-initializer type/qualifier rules.
//
// Returns true if there was an error.
//
bool TParseContext::nonInitErrorCheck(const TSourceLoc &line,
const TString &identifier,
TPublicType *type)
{
ASSERT(type != nullptr);
if (type->qualifier == EvqConst)
{
// Make the qualifier make sense.
type->qualifier = EvqTemporary;
// Generate informative error messages for ESSL1.
// In ESSL3 arrays and structures containing arrays can be constant.
if (mShaderVersion < 300 && type->isStructureContainingArrays())
{
error(line,
"structures containing arrays may not be declared constant since they cannot be "
"initialized",
identifier.c_str());
}
else
{
error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
}
return true;
}
if (type->isUnsizedArray())
{
error(line, "implicitly sized arrays need to be initialized", identifier.c_str());
return true;
}
return false;
}
// Do some simple checks that are shared between all variable declarations,
// and update the symbol table.
//
// Returns true if declaring the variable succeeded.
//
bool TParseContext::declareVariable(const TSourceLoc &line,
const TString &identifier,
const TType &type,
TVariable **variable)
{
ASSERT((*variable) == nullptr);
bool needsReservedErrorCheck = true;
// gl_LastFragData may be redeclared with a new precision qualifier
if (type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0)
{
const TVariable *maxDrawBuffers = static_cast<const TVariable *>(
symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion));
if (type.getArraySize() == maxDrawBuffers->getConstPointer()->getIConst())
{
if (TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion))
{
needsReservedErrorCheck = extensionErrorCheck(line, builtInSymbol->getExtension());
}
}
else
{
error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers",
identifier.c_str());
return false;
}
}
if (needsReservedErrorCheck && reservedErrorCheck(line, identifier))
return false;
(*variable) = new TVariable(&identifier, type);
if (!symbolTable.declare(*variable))
{
error(line, "redefinition", identifier.c_str());
*variable = nullptr;
return false;
}
if (voidErrorCheck(line, identifier, type.getBasicType()))
return false;
return true;
}
bool TParseContext::paramErrorCheck(const TSourceLoc &line,
TQualifier qualifier,
TQualifier paramQualifier,
TType *type)
{
if (qualifier != EvqConst && qualifier != EvqTemporary)
{
error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier));
return true;
}
if (qualifier == EvqConst && paramQualifier != EvqIn)
{
error(line, "qualifier not allowed with ", getQualifierString(qualifier),
getQualifierString(paramQualifier));
return true;
}
if (qualifier == EvqConst)
type->setQualifier(EvqConstReadOnly);
else
type->setQualifier(paramQualifier);
return false;
}
bool TParseContext::extensionErrorCheck(const TSourceLoc &line, const TString &extension)
{
const TExtensionBehavior &extBehavior = extensionBehavior();
TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
if (iter == extBehavior.end())
{
error(line, "extension", extension.c_str(), "is not supported");
return true;
}
// In GLSL ES, an extension's default behavior is "disable".
if (iter->second == EBhDisable || iter->second == EBhUndefined)
{
error(line, "extension", extension.c_str(), "is disabled");
return true;
}
if (iter->second == EBhWarn)
{
warning(line, "extension", extension.c_str(), "is being used");
return false;
}
return false;
}
// These checks are common for all declarations starting a declarator list, and declarators that
// follow an empty declaration.
//
bool TParseContext::singleDeclarationErrorCheck(const TPublicType &publicType,
const TSourceLoc &identifierLocation)
{
switch (publicType.qualifier)
{
case EvqVaryingIn:
case EvqVaryingOut:
case EvqAttribute:
case EvqVertexIn:
case EvqFragmentOut:
if (publicType.type == EbtStruct)
{
error(identifierLocation, "cannot be used with a structure",
getQualifierString(publicType.qualifier));
return true;
}
default:
break;
}
if (publicType.qualifier != EvqUniform &&
samplerErrorCheck(identifierLocation, publicType, "samplers must be uniform"))
{
return true;
}
// check for layout qualifier issues
const TLayoutQualifier layoutQualifier = publicType.layoutQualifier;
if (layoutQualifier.matrixPacking != EmpUnspecified)
{
error(identifierLocation, "layout qualifier",
getMatrixPackingString(layoutQualifier.matrixPacking),
"only valid for interface blocks");
return true;
}
if (layoutQualifier.blockStorage != EbsUnspecified)
{
error(identifierLocation, "layout qualifier",
getBlockStorageString(layoutQualifier.blockStorage),
"only valid for interface blocks");
return true;
}
if (publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut &&
layoutLocationErrorCheck(identifierLocation, publicType.layoutQualifier))
{
return true;
}
return false;
}
bool TParseContext::layoutLocationErrorCheck(const TSourceLoc &location,
const TLayoutQualifier &layoutQualifier)
{
if (layoutQualifier.location != -1)
{
error(location, "invalid layout qualifier:", "location",
"only valid on program inputs and outputs");
return true;
}
return false;
}
bool TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate,
TIntermAggregate *aggregate)
{
for (size_t i = 0; i < fnCandidate->getParamCount(); ++i)
{
TQualifier qual = fnCandidate->getParam(i).type->getQualifier();
if (qual == EvqOut || qual == EvqInOut)
{
TIntermTyped *node = (*(aggregate->getSequence()))[i]->getAsTyped();
if (lValueErrorCheck(node->getLine(), "assign", node))
{
error(node->getLine(),
"Constant value cannot be passed for 'out' or 'inout' parameters.", "Error");
recover();
return true;
}
}
}
return false;
}
void TParseContext::es3InvariantErrorCheck(const TQualifier qualifier,
const TSourceLoc &invariantLocation)
{
if (!sh::IsVaryingOut(qualifier) && qualifier != EvqFragmentOut)
{
error(invariantLocation, "Only out variables can be invariant.", "invariant");
recover();
}
}
bool TParseContext::supportsExtension(const char *extension)
{
const TExtensionBehavior &extbehavior = extensionBehavior();
TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
return (iter != extbehavior.end());
}
bool TParseContext::isExtensionEnabled(const char *extension) const
{
return ::IsExtensionEnabled(extensionBehavior(), extension);
}
void TParseContext::handleExtensionDirective(const TSourceLoc &loc,
const char *extName,
const char *behavior)
{
pp::SourceLocation srcLoc;
srcLoc.file = loc.first_file;
srcLoc.line = loc.first_line;
mDirectiveHandler.handleExtension(srcLoc, extName, behavior);
}
void TParseContext::handlePragmaDirective(const TSourceLoc &loc,
const char *name,
const char *value,
bool stdgl)
{
pp::SourceLocation srcLoc;
srcLoc.file = loc.first_file;
srcLoc.line = loc.first_line;
mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl);
}
/////////////////////////////////////////////////////////////////////////////////
//
// Non-Errors.
//
/////////////////////////////////////////////////////////////////////////////////
const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location,
const TString *name,
const TSymbol *symbol)
{
const TVariable *variable = NULL;
if (!symbol)
{
error(location, "undeclared identifier", name->c_str());
recover();
}
else if (!symbol->isVariable())
{
error(location, "variable expected", name->c_str());
recover();
}
else
{
variable = static_cast<const TVariable *>(symbol);
if (symbolTable.findBuiltIn(variable->getName(), mShaderVersion) &&
!variable->getExtension().empty() &&
extensionErrorCheck(location, variable->getExtension()))
{
recover();
}
// Reject shaders using both gl_FragData and gl_FragColor
TQualifier qualifier = variable->getType().getQualifier();
if (qualifier == EvqFragData || qualifier == EvqSecondaryFragDataEXT)
{
mUsesFragData = true;
}
else if (qualifier == EvqFragColor || qualifier == EvqSecondaryFragColorEXT)
{
mUsesFragColor = true;
}
if (qualifier == EvqSecondaryFragDataEXT || qualifier == EvqSecondaryFragColorEXT)
{
mUsesSecondaryOutputs = true;
}
// This validation is not quite correct - it's only an error to write to
// both FragData and FragColor. For simplicity, and because users shouldn't
// be rewarded for reading from undefined varaibles, return an error
// if they are both referenced, rather than assigned.
if (mUsesFragData && mUsesFragColor)
{
const char *errorMessage = "cannot use both gl_FragData and gl_FragColor";
if (mUsesSecondaryOutputs)
{
errorMessage =
"cannot use both output variable sets (gl_FragData, gl_SecondaryFragDataEXT)"
" and (gl_FragColor, gl_SecondaryFragColorEXT)";
}
error(location, errorMessage, name->c_str());
recover();
}
}
if (!variable)
{
TType type(EbtFloat, EbpUndefined);
TVariable *fakeVariable = new TVariable(name, type);
symbolTable.declare(fakeVariable);
variable = fakeVariable;
}
return variable;
}
TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location,
const TString *name,
const TSymbol *symbol)
{
const TVariable *variable = getNamedVariable(location, name, symbol);
if (variable->getConstPointer())
{
const TConstantUnion *constArray = variable->getConstPointer();
return intermediate.addConstantUnion(constArray, variable->getType(), location);
}
else
{
return intermediate.addSymbol(variable->getUniqueId(), variable->getName(),
variable->getType(), location);
}
}
//
// Look up a function name in the symbol table, and make sure it is a function.
//
// Return the function symbol if found, otherwise 0.
//
const TFunction *TParseContext::findFunction(const TSourceLoc &line,
TFunction *call,
int inputShaderVersion,
bool *builtIn)
{
// First find by unmangled name to check whether the function name has been
// hidden by a variable name or struct typename.
// If a function is found, check for one with a matching argument list.
const TSymbol *symbol = symbolTable.find(call->getName(), inputShaderVersion, builtIn);
if (symbol == 0 || symbol->isFunction())
{
symbol = symbolTable.find(call->getMangledName(), inputShaderVersion, builtIn);
}
if (symbol == 0)
{
error(line, "no matching overloaded function found", call->getName().c_str());
return 0;
}
if (!symbol->isFunction())
{
error(line, "function name expected", call->getName().c_str());
return 0;
}
return static_cast<const TFunction *>(symbol);
}
//
// Initializers show up in several places in the grammar. Have one set of
// code to handle them here.
//
// Returns true on error, false if no error
//
bool TParseContext::executeInitializer(const TSourceLoc &line,
const TString &identifier,
const TPublicType &pType,
TIntermTyped *initializer,
TIntermNode **intermNode)
{
ASSERT(intermNode != nullptr);
TType type = TType(pType);
TVariable *variable = nullptr;
if (type.isUnsizedArray())
{
type.setArraySize(initializer->getArraySize());
}
if (!declareVariable(line, identifier, type, &variable))
{
return true;
}
bool globalInitWarning = false;
if (symbolTable.atGlobalLevel() &&
!ValidateGlobalInitializer(initializer, this, &globalInitWarning))
{
// Error message does not completely match behavior with ESSL 1.00, but
// we want to steer developers towards only using constant expressions.
error(line, "global variable initializers must be constant expressions", "=");
return true;
}
if (globalInitWarning)
{
warning(
line,
"global variable initializers should be constant expressions "
"(uniforms and globals are allowed in global initializers for legacy compatibility)",
"=");
}
//
// identifier must be of type constant, a global, or a temporary
//
TQualifier qualifier = variable->getType().getQualifier();
if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst))
{
error(line, " cannot initialize this type of qualifier ",
variable->getType().getQualifierString());
return true;
}
//
// test for and propagate constant
//
if (qualifier == EvqConst)
{
if (qualifier != initializer->getType().getQualifier())
{
std::stringstream extraInfoStream;
extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
std::string extraInfo = extraInfoStream.str();
error(line, " assigning non-constant to", "=", extraInfo.c_str());
variable->getType().setQualifier(EvqTemporary);
return true;
}
if (type != initializer->getType())
{
error(line, " non-matching types for const initializer ",
variable->getType().getQualifierString());
variable->getType().setQualifier(EvqTemporary);
return true;
}
// Save the constant folded value to the variable if possible. For example array
// initializers are not folded, since that way copying the array literal to multiple places
// in the shader is avoided.
// TODO(oetuaho@nvidia.com): Consider constant folding array initialization in cases where
// it would be beneficial.
if (initializer->getAsConstantUnion())
{
variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
*intermNode = nullptr;
return false;
}
else if (initializer->getAsSymbolNode())
{
const TSymbol *symbol =
symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0);
const TVariable *tVar = static_cast<const TVariable *>(symbol);
const TConstantUnion *constArray = tVar->getConstPointer();
if (constArray)
{
variable->shareConstPointer(constArray);
*intermNode = nullptr;
return false;
}
}
}
TIntermSymbol *intermSymbol = intermediate.addSymbol(
variable->getUniqueId(), variable->getName(), variable->getType(), line);
*intermNode = createAssign(EOpInitialize, intermSymbol, initializer, line);
if (*intermNode == nullptr)
{
assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
return true;
}
return false;
}
TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier,
bool invariant,
TLayoutQualifier layoutQualifier,
const TPublicType &typeSpecifier)
{
TPublicType returnType = typeSpecifier;
returnType.qualifier = qualifier;
returnType.invariant = invariant;
returnType.layoutQualifier = layoutQualifier;
if (mShaderVersion < 300)
{
if (typeSpecifier.array)
{
error(typeSpecifier.line, "not supported", "first-class array");
recover();
returnType.clearArrayness();
}
if (qualifier == EvqAttribute &&
(typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt))
{
error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier));
recover();
}
if ((qualifier == EvqVaryingIn || qualifier == EvqVaryingOut) &&
(typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt))
{
error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier));
recover();
}
}
else
{
if (!layoutQualifier.isEmpty())
{
if (globalErrorCheck(typeSpecifier.line, symbolTable.atGlobalLevel(), "layout"))
{
recover();
}
}
if (sh::IsVarying(qualifier) || qualifier == EvqVertexIn || qualifier == EvqFragmentOut)
{
es3InputOutputTypeCheck(qualifier, typeSpecifier, typeSpecifier.line);
}
}
return returnType;
}
void TParseContext::es3InputOutputTypeCheck(const TQualifier qualifier,
const TPublicType &type,
const TSourceLoc &qualifierLocation)
{
// An input/output variable can never be bool or a sampler. Samplers are checked elsewhere.
if (type.type == EbtBool)
{
error(qualifierLocation, "cannot be bool", getQualifierString(qualifier));
recover();
}
// Specific restrictions apply for vertex shader inputs and fragment shader outputs.
switch (qualifier)
{
case EvqVertexIn:
// ESSL 3.00 section 4.3.4
if (type.array)
{
error(qualifierLocation, "cannot be array", getQualifierString(qualifier));
recover();
}
// Vertex inputs with a struct type are disallowed in singleDeclarationErrorCheck
return;
case EvqFragmentOut:
// ESSL 3.00 section 4.3.6
if (type.isMatrix())
{
error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier));
recover();
}
// Fragment outputs with a struct type are disallowed in singleDeclarationErrorCheck
return;
default:
break;
}
// Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of
// restrictions.
bool typeContainsIntegers =
(type.type == EbtInt || type.type == EbtUInt || type.isStructureContainingType(EbtInt) ||
type.isStructureContainingType(EbtUInt));
if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut)
{
error(qualifierLocation, "must use 'flat' interpolation here",
getQualifierString(qualifier));
recover();
}
if (type.type == EbtStruct)
{
// ESSL 3.00 sections 4.3.4 and 4.3.6.
// These restrictions are only implied by the ESSL 3.00 spec, but
// the ESSL 3.10 spec lists these restrictions explicitly.
if (type.array)
{
error(qualifierLocation, "cannot be an array of structures",
getQualifierString(qualifier));
recover();
}
if (type.isStructureContainingArrays())
{
error(qualifierLocation, "cannot be a structure containing an array",
getQualifierString(qualifier));
recover();
}
if (type.isStructureContainingType(EbtStruct))
{
error(qualifierLocation, "cannot be a structure containing a structure",
getQualifierString(qualifier));
recover();
}
if (type.isStructureContainingType(EbtBool))
{
error(qualifierLocation, "cannot be a structure containing a bool",
getQualifierString(qualifier));
recover();
}
}
}
TIntermAggregate *TParseContext::parseSingleDeclaration(TPublicType &publicType,
const TSourceLoc &identifierOrTypeLocation,
const TString &identifier)
{
TIntermSymbol *symbol =
intermediate.addSymbol(0, identifier, TType(publicType), identifierOrTypeLocation);
bool emptyDeclaration = (identifier == "");
mDeferredSingleDeclarationErrorCheck = emptyDeclaration;
if (emptyDeclaration)
{
if (publicType.isUnsizedArray())
{
// ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an
// error. It is assumed that this applies to empty declarations as well.
error(identifierOrTypeLocation, "empty array declaration needs to specify a size",
identifier.c_str());
}
}
else
{
if (singleDeclarationErrorCheck(publicType, identifierOrTypeLocation))
recover();
if (nonInitErrorCheck(identifierOrTypeLocation, identifier, &publicType))
recover();
TVariable *variable = nullptr;
if (!declareVariable(identifierOrTypeLocation, identifier, TType(publicType), &variable))
recover();
if (variable && symbol)
symbol->setId(variable->getUniqueId());
}
return intermediate.makeAggregate(symbol, identifierOrTypeLocation);
}
TIntermAggregate *TParseContext::parseSingleArrayDeclaration(TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
TIntermTyped *indexExpression)
{
mDeferredSingleDeclarationErrorCheck = false;
if (singleDeclarationErrorCheck(publicType, identifierLocation))
recover();
if (nonInitErrorCheck(identifierLocation, identifier, &publicType))
recover();
if (arrayTypeErrorCheck(indexLocation, publicType) ||
arrayQualifierErrorCheck(indexLocation, publicType))
{
recover();
}
TType arrayType(publicType);
int size;
if (arraySizeErrorCheck(identifierLocation, indexExpression, size))
{
recover();
}
// Make the type an array even if size check failed.
// This ensures useless error messages regarding the variable's non-arrayness won't follow.
arrayType.setArraySize(size);
TVariable *variable = nullptr;
if (!declareVariable(identifierLocation, identifier, arrayType, &variable))
recover();
TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation);
if (variable && symbol)
symbol->setId(variable->getUniqueId());
return intermediate.makeAggregate(symbol, identifierLocation);
}
TIntermAggregate *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &initLocation,
TIntermTyped *initializer)
{
mDeferredSingleDeclarationErrorCheck = false;
if (singleDeclarationErrorCheck(publicType, identifierLocation))
recover();
TIntermNode *intermNode = nullptr;
if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode))
{
//
// Build intermediate representation
//
return intermNode ? intermediate.makeAggregate(intermNode, initLocation) : nullptr;
}
else
{
recover();
return nullptr;
}
}
TIntermAggregate *TParseContext::parseSingleArrayInitDeclaration(
TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
TIntermTyped *indexExpression,
const TSourceLoc &initLocation,
TIntermTyped *initializer)
{
mDeferredSingleDeclarationErrorCheck = false;
if (singleDeclarationErrorCheck(publicType, identifierLocation))
recover();
if (arrayTypeErrorCheck(indexLocation, publicType) ||
arrayQualifierErrorCheck(indexLocation, publicType))
{
recover();
}
TPublicType arrayType(publicType);
int size = 0;
// If indexExpression is nullptr, then the array will eventually get its size implicitly from
// the initializer.
if (indexExpression != nullptr &&
arraySizeErrorCheck(identifierLocation, indexExpression, size))
{
recover();
}
// Make the type an array even if size check failed.
// This ensures useless error messages regarding the variable's non-arrayness won't follow.
arrayType.setArraySize(size);
// initNode will correspond to the whole of "type b[n] = initializer".
TIntermNode *initNode = nullptr;
if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
{
return initNode ? intermediate.makeAggregate(initNode, initLocation) : nullptr;
}
else
{
recover();
return nullptr;
}
}
TIntermAggregate *TParseContext::parseInvariantDeclaration(const TSourceLoc &invariantLoc,
const TSourceLoc &identifierLoc,
const TString *identifier,
const TSymbol *symbol)
{
// invariant declaration
if (globalErrorCheck(invariantLoc, symbolTable.atGlobalLevel(), "invariant varying"))
{
recover();
}
if (!symbol)
{
error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str());
recover();
return nullptr;
}
else
{
const TString kGlFrontFacing("gl_FrontFacing");
if (*identifier == kGlFrontFacing)
{
error(identifierLoc, "identifier should not be declared as invariant",
identifier->c_str());
recover();
return nullptr;
}
symbolTable.addInvariantVarying(std::string(identifier->c_str()));
const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol);
ASSERT(variable);
const TType &type = variable->getType();
TIntermSymbol *intermSymbol =
intermediate.addSymbol(variable->getUniqueId(), *identifier, type, identifierLoc);
TIntermAggregate *aggregate = intermediate.makeAggregate(intermSymbol, identifierLoc);
aggregate->setOp(EOpInvariantDeclaration);
return aggregate;
}
}
TIntermAggregate *TParseContext::parseDeclarator(TPublicType &publicType,
TIntermAggregate *aggregateDeclaration,
const TSourceLoc &identifierLocation,
const TString &identifier)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredSingleDeclarationErrorCheck)
{
if (singleDeclarationErrorCheck(publicType, identifierLocation))
recover();
mDeferredSingleDeclarationErrorCheck = false;
}
if (locationDeclaratorListCheck(identifierLocation, publicType))
recover();
if (nonInitErrorCheck(identifierLocation, identifier, &publicType))
recover();
TVariable *variable = nullptr;
if (!declareVariable(identifierLocation, identifier, TType(publicType), &variable))
recover();
TIntermSymbol *symbol =
intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation);
if (variable && symbol)
symbol->setId(variable->getUniqueId());
return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation);
}
TIntermAggregate *TParseContext::parseArrayDeclarator(TPublicType &publicType,
TIntermAggregate *aggregateDeclaration,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &arrayLocation,
TIntermTyped *indexExpression)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredSingleDeclarationErrorCheck)
{
if (singleDeclarationErrorCheck(publicType, identifierLocation))
recover();
mDeferredSingleDeclarationErrorCheck = false;
}
if (locationDeclaratorListCheck(identifierLocation, publicType))
recover();
if (nonInitErrorCheck(identifierLocation, identifier, &publicType))
recover();
if (arrayTypeErrorCheck(arrayLocation, publicType) ||
arrayQualifierErrorCheck(arrayLocation, publicType))
{
recover();
}
else
{
TType arrayType = TType(publicType);
int size;
if (arraySizeErrorCheck(arrayLocation, indexExpression, size))
{
recover();
}
arrayType.setArraySize(size);
TVariable *variable = nullptr;
if (!declareVariable(identifierLocation, identifier, arrayType, &variable))
recover();
TIntermSymbol *symbol =
intermediate.addSymbol(0, identifier, arrayType, identifierLocation);
if (variable && symbol)
symbol->setId(variable->getUniqueId());
return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation);
}
return nullptr;
}
TIntermAggregate *TParseContext::parseInitDeclarator(const TPublicType &publicType,
TIntermAggregate *aggregateDeclaration,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &initLocation,
TIntermTyped *initializer)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredSingleDeclarationErrorCheck)
{
if (singleDeclarationErrorCheck(publicType, identifierLocation))
recover();
mDeferredSingleDeclarationErrorCheck = false;
}
if (locationDeclaratorListCheck(identifierLocation, publicType))
recover();
TIntermNode *intermNode = nullptr;
if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode))
{
//
// build the intermediate representation
//
if (intermNode)
{
return intermediate.growAggregate(aggregateDeclaration, intermNode, initLocation);
}
else
{
return aggregateDeclaration;
}
}
else
{
recover();
return nullptr;
}
}
TIntermAggregate *TParseContext::parseArrayInitDeclarator(const TPublicType &publicType,
TIntermAggregate *aggregateDeclaration,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
TIntermTyped *indexExpression,
const TSourceLoc &initLocation,
TIntermTyped *initializer)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredSingleDeclarationErrorCheck)
{
if (singleDeclarationErrorCheck(publicType, identifierLocation))
recover();
mDeferredSingleDeclarationErrorCheck = false;
}
if (locationDeclaratorListCheck(identifierLocation, publicType))
recover();
if (arrayTypeErrorCheck(indexLocation, publicType) ||
arrayQualifierErrorCheck(indexLocation, publicType))
{
recover();
}
TPublicType arrayType(publicType);
int size = 0;
// If indexExpression is nullptr, then the array will eventually get its size implicitly from
// the initializer.
if (indexExpression != nullptr &&
arraySizeErrorCheck(identifierLocation, indexExpression, size))
{
recover();
}
// Make the type an array even if size check failed.
// This ensures useless error messages regarding the variable's non-arrayness won't follow.
arrayType.setArraySize(size);
// initNode will correspond to the whole of "b[n] = initializer".
TIntermNode *initNode = nullptr;
if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
{
if (initNode)
{
return intermediate.growAggregate(aggregateDeclaration, initNode, initLocation);
}
else
{
return aggregateDeclaration;
}
}
else
{
recover();
return nullptr;
}
}
void TParseContext::parseGlobalLayoutQualifier(const TPublicType &typeQualifier)
{
if (typeQualifier.qualifier != EvqUniform)
{
error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier),
"global layout must be uniform");
recover();
return;
}
const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier;
ASSERT(!layoutQualifier.isEmpty());
if (mShaderVersion < 300)
{
error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 only", "layout");
recover();
return;
}
if (layoutLocationErrorCheck(typeQualifier.line, typeQualifier.layoutQualifier))
{
recover();
return;
}
if (layoutQualifier.matrixPacking != EmpUnspecified)
{
mDefaultMatrixPacking = layoutQualifier.matrixPacking;
}
if (layoutQualifier.blockStorage != EbsUnspecified)
{
mDefaultBlockStorage = layoutQualifier.blockStorage;
}
}
TIntermAggregate *TParseContext::addFunctionPrototypeDeclaration(const TFunction &function,
const TSourceLoc &location)
{
// Note: symbolTableFunction could be the same as function if this is the first declaration.
// Either way the instance in the symbol table is used to track whether the function is declared
// multiple times.
TFunction *symbolTableFunction =
static_cast<TFunction *>(symbolTable.find(function.getMangledName(), getShaderVersion()));
if (symbolTableFunction->hasPrototypeDeclaration() && mShaderVersion == 100)
{
// ESSL 1.00.17 section 4.2.7.
// Doesn't apply to ESSL 3.00.4: see section 4.2.3.
error(location, "duplicate function prototype declarations are not allowed", "function");
recover();
}
symbolTableFunction->setHasPrototypeDeclaration();
TIntermAggregate *prototype = new TIntermAggregate;
prototype->setType(function.getReturnType());
prototype->setName(function.getMangledName());
prototype->setFunctionId(function.getUniqueId());
for (size_t i = 0; i < function.getParamCount(); i++)
{
const TConstParameter &param = function.getParam(i);
if (param.name != 0)
{
TVariable variable(param.name, *param.type);
TIntermSymbol *paramSymbol = intermediate.addSymbol(
variable.getUniqueId(), variable.getName(), variable.getType(), location);
prototype = intermediate.growAggregate(prototype, paramSymbol, location);
}
else
{
TIntermSymbol *paramSymbol = intermediate.addSymbol(0, "", *param.type, location);
prototype = intermediate.growAggregate(prototype, paramSymbol, location);
}
}
prototype->setOp(EOpPrototype);
symbolTable.pop();
if (!symbolTable.atGlobalLevel())
{
// ESSL 3.00.4 section 4.2.4.
error(location, "local function prototype declarations are not allowed", "function");
recover();
}
return prototype;
}
TIntermAggregate *TParseContext::addFunctionDefinition(const TFunction &function,
TIntermAggregate *functionPrototype,
TIntermAggregate *functionBody,
const TSourceLoc &location)
{
//?? Check that all paths return a value if return type != void ?
// May be best done as post process phase on intermediate code
if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue)
{
error(location, "function does not return a value:", "", function.getName().c_str());
recover();
}
TIntermAggregate *aggregate =
intermediate.growAggregate(functionPrototype, functionBody, location);
intermediate.setAggregateOperator(aggregate, EOpFunction, location);
aggregate->setName(function.getMangledName().c_str());
aggregate->setType(function.getReturnType());
aggregate->setFunctionId(function.getUniqueId());
symbolTable.pop();
return aggregate;
}
void TParseContext::parseFunctionPrototype(const TSourceLoc &location,
TFunction *function,
TIntermAggregate **aggregateOut)
{
const TSymbol *builtIn =
symbolTable.findBuiltIn(function->getMangledName(), getShaderVersion());
if (builtIn)
{
error(location, "built-in functions cannot be redefined", function->getName().c_str());
recover();
}
TFunction *prevDec =
static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion()));
//
// Note: 'prevDec' could be 'function' if this is the first time we've seen function
// as it would have just been put in the symbol table. Otherwise, we're looking up
// an earlier occurance.
//
if (prevDec->isDefined())
{
// Then this function already has a body.
error(location, "function already has a body", function->getName().c_str());
recover();
}
prevDec->setDefined();
//
// Overload the unique ID of the definition to be the same unique ID as the declaration.
// Eventually we will probably want to have only a single definition and just swap the
// arguments to be the definition's arguments.
//
function->setUniqueId(prevDec->getUniqueId());
// Raise error message if main function takes any parameters or return anything other than void
if (function->getName() == "main")
{
if (function->getParamCount() > 0)
{
error(location, "function cannot take any parameter(s)", function->getName().c_str());
recover();
}
if (function->getReturnType().getBasicType() != EbtVoid)
{
error(location, "", function->getReturnType().getBasicString(),
"main function cannot return a value");
recover();
}
}
//
// Remember the return type for later checking for RETURN statements.
//
mCurrentFunctionType = &(prevDec->getReturnType());
mFunctionReturnsValue = false;
//
// Insert parameters into the symbol table.
// If the parameter has no name, it's not an error, just don't insert it
// (could be used for unused args).
//
// Also, accumulate the list of parameters into the HIL, so lower level code
// knows where to find parameters.
//
TIntermAggregate *paramNodes = new TIntermAggregate;
for (size_t i = 0; i < function->getParamCount(); i++)
{
const TConstParameter &param = function->getParam(i);
if (param.name != 0)
{
TVariable *variable = new TVariable(param.name, *param.type);
//
// Insert the parameters with name in the symbol table.
//
if (!symbolTable.declare(variable))
{
error(location, "redefinition", variable->getName().c_str());
recover();
paramNodes = intermediate.growAggregate(
paramNodes, intermediate.addSymbol(0, "", *param.type, location), location);
continue;
}
//
// Add the parameter to the HIL
//
TIntermSymbol *symbol = intermediate.addSymbol(
variable->getUniqueId(), variable->getName(), variable->getType(), location);
paramNodes = intermediate.growAggregate(paramNodes, symbol, location);
}
else
{
paramNodes = intermediate.growAggregate(
paramNodes, intermediate.addSymbol(0, "", *param.type, location), location);
}
}
intermediate.setAggregateOperator(paramNodes, EOpParameters, location);
*aggregateOut = paramNodes;
setLoopNestingLevel(0);
}
TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function)
{
//
// We don't know at this point whether this is a function definition or a prototype.
// The definition production code will check for redefinitions.
// In the case of ESSL 1.00 the prototype production code will also check for redeclarations.
//
// Return types and parameter qualifiers must match in all redeclarations, so those are checked
// here.
//
TFunction *prevDec =
static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion()));
if (getShaderVersion() >= 300 && symbolTable.hasUnmangledBuiltIn(function->getName().c_str()))
{
// With ESSL 3.00, names of built-in functions cannot be redeclared as functions.
// Therefore overloading or redefining builtin functions is an error.
error(location, "Name of a built-in function cannot be redeclared as function",
function->getName().c_str());
recover();
}
else if (prevDec)
{
if (prevDec->getReturnType() != function->getReturnType())
{
error(location, "overloaded functions must have the same return type",
function->getReturnType().getBasicString());
recover();
}
for (size_t i = 0; i < prevDec->getParamCount(); ++i)
{
if (prevDec->getParam(i).type->getQualifier() !=
function->getParam(i).type->getQualifier())
{
error(location, "overloaded functions must have the same parameter qualifiers",
function->getParam(i).type->getQualifierString());
recover();
}
}
}
//
// Check for previously declared variables using the same name.
//
TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion());
if (prevSym)
{
if (!prevSym->isFunction())
{
error(location, "redefinition", function->getName().c_str(), "function");
recover();
}
}
else
{
// Insert the unmangled name to detect potential future redefinition as a variable.
TFunction *newFunction =
new TFunction(NewPoolTString(function->getName().c_str()), &function->getReturnType());
symbolTable.getOuterLevel()->insertUnmangled(newFunction);
}
// We're at the inner scope level of the function's arguments and body statement.
// Add the function prototype to the surrounding scope instead.
symbolTable.getOuterLevel()->insert(function);
//
// If this is a redeclaration, it could also be a definition, in which case, we want to use the
// variable names from this one, and not the one that's
// being redeclared. So, pass back up this declaration, not the one in the symbol table.
//
return function;
}
TFunction *TParseContext::addConstructorFunc(const TPublicType &publicTypeIn)
{
TPublicType publicType = publicTypeIn;
if (publicType.isStructSpecifier)
{
error(publicType.line, "constructor can't be a structure definition",
getBasicString(publicType.type));
recover();
}
TOperator op = EOpNull;
if (publicType.userDef)
{
op = EOpConstructStruct;
}
else
{
switch (publicType.type)
{
case EbtFloat:
if (publicType.isMatrix())
{
switch (publicType.getCols())
{
case 2:
switch (publicType.getRows())
{
case 2:
op = EOpConstructMat2;
break;
case 3:
op = EOpConstructMat2x3;
break;
case 4:
op = EOpConstructMat2x4;
break;
}
break;
case 3:
switch (publicType.getRows())
{
case 2:
op = EOpConstructMat3x2;
break;
case 3:
op = EOpConstructMat3;
break;
case 4:
op = EOpConstructMat3x4;
break;
}
break;
case 4:
switch (publicType.getRows())
{
case 2:
op = EOpConstructMat4x2;
break;
case 3:
op = EOpConstructMat4x3;
break;
case 4:
op = EOpConstructMat4;
break;
}
break;
}
}
else
{
switch (publicType.getNominalSize())
{
case 1:
op = EOpConstructFloat;
break;
case 2:
op = EOpConstructVec2;
break;
case 3:
op = EOpConstructVec3;
break;
case 4:
op = EOpConstructVec4;
break;
}
}
break;
case EbtInt:
switch (publicType.getNominalSize())
{
case 1:
op = EOpConstructInt;
break;
case 2:
op = EOpConstructIVec2;
break;
case 3:
op = EOpConstructIVec3;
break;
case 4:
op = EOpConstructIVec4;
break;
}
break;
case EbtUInt:
switch (publicType.getNominalSize())
{
case 1:
op = EOpConstructUInt;
break;
case 2:
op = EOpConstructUVec2;
break;
case 3:
op = EOpConstructUVec3;
break;
case 4:
op = EOpConstructUVec4;
break;
}
break;
case EbtBool:
switch (publicType.getNominalSize())
{
case 1:
op = EOpConstructBool;
break;
case 2:
op = EOpConstructBVec2;
break;
case 3:
op = EOpConstructBVec3;
break;
case 4:
op = EOpConstructBVec4;
break;
}
break;
default:
break;
}
if (op == EOpNull)
{
error(publicType.line, "cannot construct this type", getBasicString(publicType.type));
recover();
publicType.type = EbtFloat;
op = EOpConstructFloat;
}
}
TString tempString;
const TType *type = new TType(publicType);
return new TFunction(&tempString, type, op);
}
// This function is used to test for the correctness of the parameters passed to various constructor
// functions and also convert them to the right datatype if it is allowed and required.
//
// Returns 0 for an error or the constructed node (aggregate or typed) for no error.
//
TIntermTyped *TParseContext::addConstructor(TIntermNode *arguments,
TType *type,
TOperator op,
TFunction *fnCall,
const TSourceLoc &line)
{
TIntermAggregate *constructor = arguments->getAsAggregate();
ASSERT(constructor != nullptr);
if (type->isArray())
{
// GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of
// the array.
TIntermSequence *args = constructor->getSequence();
for (size_t i = 0; i < args->size(); i++)
{
const TType &argType = (*args)[i]->getAsTyped()->getType();
// It has already been checked that the argument is not an array.
ASSERT(!argType.isArray());
if (!argType.sameElementType(*type))
{
error(line, "Array constructor argument has an incorrect type", "Error");
recover();
return nullptr;
}
}
}
else if (op == EOpConstructStruct)
{
const TFieldList &fields = type->getStruct()->fields();
TIntermSequence *args = constructor->getSequence();
for (size_t i = 0; i < fields.size(); i++)
{
if (i >= args->size() || (*args)[i]->getAsTyped()->getType() != *fields[i]->type())
{
error(line, "Structure constructor arguments do not match structure fields",
"Error");
recover();
return 0;
}
}
}
// Turn the argument list itself into a constructor
constructor->setOp(op);
constructor->setLine(line);
ASSERT(constructor->isConstructor());
// Need to set type before setPrecisionFromChildren() because bool doesn't have precision.
constructor->setType(*type);
// Structs should not be precision qualified, the individual members may be.
// Built-in types on the other hand should be precision qualified.
if (op != EOpConstructStruct)
{
constructor->setPrecisionFromChildren();
type->setPrecision(constructor->getPrecision());
}
TIntermTyped *constConstructor = intermediate.foldAggregateBuiltIn(constructor);
if (constConstructor)
{
return constConstructor;
}
return constructor;
}
//
// This function returns the tree representation for the vector field(s) being accessed from contant
// vector.
// If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a
// contant node is returned, else an aggregate node is returned (for v.xy). The input to this
// function could either be the symbol node or it could be the intermediate tree representation of
// accessing fields in a constant structure or column of a constant matrix.
//
TIntermTyped *TParseContext::addConstVectorNode(TVectorFields &fields,
TIntermConstantUnion *node,
const TSourceLoc &line,
bool outOfRangeIndexIsError)
{
const TConstantUnion *unionArray = node->getUnionArrayPointer();
ASSERT(unionArray);
TConstantUnion *constArray = new TConstantUnion[fields.num];
for (int i = 0; i < fields.num; i++)
{
if (fields.offsets[i] >= node->getType().getNominalSize())
{
std::stringstream extraInfoStream;
extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'";
std::string extraInfo = extraInfoStream.str();
outOfRangeError(outOfRangeIndexIsError, line, "", "[", extraInfo.c_str());
fields.offsets[i] = node->getType().getNominalSize() - 1;
}
constArray[i] = unionArray[fields.offsets[i]];
}
return intermediate.addConstantUnion(constArray, node->getType(), line);
}
//
// This function returns the column being accessed from a constant matrix. The values are retrieved
// from the symbol table and parse-tree is built for a vector (each column of a matrix is a vector).
// The input to the function could either be a symbol node (m[0] where m is a constant matrix)that
// represents a constant matrix or it could be the tree representation of the constant matrix
// (s.m1[0] where s is a constant structure)
//
TIntermTyped *TParseContext::addConstMatrixNode(int index,
TIntermConstantUnion *node,
const TSourceLoc &line,
bool outOfRangeIndexIsError)
{
if (index >= node->getType().getCols())
{
std::stringstream extraInfoStream;
extraInfoStream << "matrix field selection out of range '" << index << "'";
std::string extraInfo = extraInfoStream.str();
outOfRangeError(outOfRangeIndexIsError, line, "", "[", extraInfo.c_str());
index = node->getType().getCols() - 1;
}
const TConstantUnion *unionArray = node->getUnionArrayPointer();
int size = node->getType().getCols();
return intermediate.addConstantUnion(&unionArray[size * index], node->getType(), line);
}
//
// This function returns an element of an array accessed from a constant array. The values are
// retrieved from the symbol table and parse-tree is built for the type of the element. The input
// to the function could either be a symbol node (a[0] where a is a constant array)that represents a
// constant array or it could be the tree representation of the constant array (s.a1[0] where s is a
// constant structure)
//
TIntermTyped *TParseContext::addConstArrayNode(int index,
TIntermConstantUnion *node,
const TSourceLoc &line,
bool outOfRangeIndexIsError)
{
TType arrayElementType = node->getType();
arrayElementType.clearArrayness();
if (index >= node->getType().getArraySize())
{
std::stringstream extraInfoStream;
extraInfoStream << "array field selection out of range '" << index << "'";
std::string extraInfo = extraInfoStream.str();
outOfRangeError(outOfRangeIndexIsError, line, "", "[", extraInfo.c_str());
index = node->getType().getArraySize() - 1;
}
size_t arrayElementSize = arrayElementType.getObjectSize();
const TConstantUnion *unionArray = node->getUnionArrayPointer();
return intermediate.addConstantUnion(&unionArray[arrayElementSize * index], node->getType(),
line);
}
//
// This function returns the value of a particular field inside a constant structure from the symbol
// table.
// If there is an embedded/nested struct, it appropriately calls addConstStructNested or
// addConstStructFromAggr function and returns the parse-tree with the values of the embedded/nested
// struct.
//
TIntermTyped *TParseContext::addConstStruct(const TString &identifier,
TIntermTyped *node,
const TSourceLoc &line)
{
const TFieldList &fields = node->getType().getStruct()->fields();
size_t instanceSize = 0;
for (size_t index = 0; index < fields.size(); ++index)
{
if (fields[index]->name() == identifier)
{
break;
}
else
{
instanceSize += fields[index]->type()->getObjectSize();
}
}
TIntermTyped *typedNode;
TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion();
if (tempConstantNode)
{
const TConstantUnion *constArray = tempConstantNode->getUnionArrayPointer();
// type will be changed in the calling function
typedNode = intermediate.addConstantUnion(constArray + instanceSize,
tempConstantNode->getType(), line);
}
else
{
error(line, "Cannot offset into the structure", "Error");
recover();
return 0;
}
return typedNode;
}
//
// Interface/uniform blocks
//
TIntermAggregate *TParseContext::addInterfaceBlock(const TPublicType &typeQualifier,
const TSourceLoc &nameLine,
const TString &blockName,
TFieldList *fieldList,
const TString *instanceName,
const TSourceLoc &instanceLine,
TIntermTyped *arrayIndex,
const TSourceLoc &arrayIndexLine)
{
if (reservedErrorCheck(nameLine, blockName))
recover();
if (typeQualifier.qualifier != EvqUniform)
{
error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier),
"interface blocks must be uniform");
recover();
}
TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier;
if (layoutLocationErrorCheck(typeQualifier.line, blockLayoutQualifier))
{
recover();
}
if (blockLayoutQualifier.matrixPacking == EmpUnspecified)
{
blockLayoutQualifier.matrixPacking = mDefaultMatrixPacking;
}
if (blockLayoutQualifier.blockStorage == EbsUnspecified)
{
blockLayoutQualifier.blockStorage = mDefaultBlockStorage;
}
TSymbol *blockNameSymbol = new TInterfaceBlockName(&blockName);
if (!symbolTable.declare(blockNameSymbol))
{
error(nameLine, "redefinition", blockName.c_str(), "interface block name");
recover();
}
// check for sampler types and apply layout qualifiers
for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
{
TField *field = (*fieldList)[memberIndex];
TType *fieldType = field->type();
if (IsSampler(fieldType->getBasicType()))
{
error(field->line(), "unsupported type", fieldType->getBasicString(),
"sampler types are not allowed in interface blocks");
recover();
}
const TQualifier qualifier = fieldType->getQualifier();
switch (qualifier)
{
case EvqGlobal:
case EvqUniform:
break;
default:
error(field->line(), "invalid qualifier on interface block member",
getQualifierString(qualifier));
recover();
break;
}
// check layout qualifiers
TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier();
if (layoutLocationErrorCheck(field->line(), fieldLayoutQualifier))
{
recover();
}
if (fieldLayoutQualifier.blockStorage != EbsUnspecified)
{
error(field->line(), "invalid layout qualifier:",
getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here");
recover();
}
if (fieldLayoutQualifier.matrixPacking == EmpUnspecified)
{
fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking;
}
else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct)
{
warning(field->line(), "extraneous layout qualifier:",
getMatrixPackingString(fieldLayoutQualifier.matrixPacking),
"only has an effect on matrix types");
}
fieldType->setLayoutQualifier(fieldLayoutQualifier);
}
// add array index
int arraySize = 0;
if (arrayIndex != NULL)
{
if (arraySizeErrorCheck(arrayIndexLine, arrayIndex, arraySize))
recover();
}
TInterfaceBlock *interfaceBlock =
new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier);
TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier,
arraySize);
TString symbolName = "";
int symbolId = 0;
if (!instanceName)
{
// define symbols for the members of the interface block
for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
{
TField *field = (*fieldList)[memberIndex];
TType *fieldType = field->type();
// set parent pointer of the field variable
fieldType->setInterfaceBlock(interfaceBlock);
TVariable *fieldVariable = new TVariable(&field->name(), *fieldType);
fieldVariable->setQualifier(typeQualifier.qualifier);
if (!symbolTable.declare(fieldVariable))
{
error(field->line(), "redefinition", field->name().c_str(),
"interface block member name");
recover();
}
}
}
else
{
if (reservedErrorCheck(instanceLine, *instanceName))
recover();
// add a symbol for this interface block
TVariable *instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false);
instanceTypeDef->setQualifier(typeQualifier.qualifier);
if (!symbolTable.declare(instanceTypeDef))
{
error(instanceLine, "redefinition", instanceName->c_str(),
"interface block instance name");
recover();
}
symbolId = instanceTypeDef->getUniqueId();
symbolName = instanceTypeDef->getName();
}
TIntermAggregate *aggregate = intermediate.makeAggregate(
intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line),
nameLine);
aggregate->setOp(EOpDeclaration);
exitStructDeclaration();
return aggregate;
}
bool TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString &identifier)
{
++mStructNestingLevel;
// Embedded structure definitions are not supported per GLSL ES spec.
// They aren't allowed in GLSL either, but we need to detect this here
// so we don't rely on the GLSL compiler to catch it.
if (mStructNestingLevel > 1)
{
error(line, "", "Embedded struct definitions are not allowed");
return true;
}
return false;
}
void TParseContext::exitStructDeclaration()
{
--mStructNestingLevel;
}
namespace
{
const int kWebGLMaxStructNesting = 4;
} // namespace
bool TParseContext::structNestingErrorCheck(const TSourceLoc &line, const TField &field)
{
if (!IsWebGLBasedSpec(mShaderSpec))
{
return false;
}
if (field.type()->getBasicType() != EbtStruct)
{
return false;
}
// We're already inside a structure definition at this point, so add
// one to the field's struct nesting.
if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting)
{
std::stringstream reasonStream;
reasonStream << "Reference of struct type " << field.type()->getStruct()->name().c_str()
<< " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting;
std::string reason = reasonStream.str();
error(line, reason.c_str(), field.name().c_str(), "");
return true;
}
return false;
}
//
// Parse an array index expression
//
TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression,
const TSourceLoc &location,
TIntermTyped *indexExpression)
{
TIntermTyped *indexedExpression = NULL;
if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
{
if (baseExpression->getAsSymbolNode())
{
error(location, " left of '[' is not of type array, matrix, or vector ",
baseExpression->getAsSymbolNode()->getSymbol().c_str());
}
else
{
error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
}
recover();
}
TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion();
// TODO(oetuaho@nvidia.com): Get rid of indexConstantUnion == nullptr below once ANGLE is able
// to constant fold all constant expressions. Right now we don't allow indexing interface blocks
// or fragment outputs with expressions that ANGLE is not able to constant fold, even if the
// index is a constant expression.
if (indexExpression->getQualifier() != EvqConst || indexConstantUnion == nullptr)
{
if (baseExpression->isInterfaceBlock())
{
error(
location, "", "[",
"array indexes for interface blocks arrays must be constant integral expressions");
recover();
}
else if (baseExpression->getQualifier() == EvqFragmentOut)
{
error(location, "", "[",
"array indexes for fragment outputs must be constant integral expressions");
recover();
}
else if (mShaderSpec == SH_WEBGL2_SPEC && baseExpression->getQualifier() == EvqFragData)
{
error(location, "", "[", "array index for gl_FragData must be constant zero");
recover();
}
}
if (indexConstantUnion)
{
// If the index is not qualified as constant, the behavior in the spec is undefined. This
// applies even if ANGLE has been able to constant fold it (ANGLE may constant fold
// expressions that are not constant expressions). The most compatible way to handle this
// case is to report a warning instead of an error and force the index to be in the
// correct range.
bool outOfRangeIndexIsError = indexExpression->getQualifier() == EvqConst;
int index = indexConstantUnion->getIConst(0);
if (index < 0)
{
std::stringstream infoStream;
infoStream << index;
std::string info = infoStream.str();
outOfRangeError(outOfRangeIndexIsError, location, "negative index", info.c_str());
index = 0;
}
TIntermConstantUnion *baseConstantUnion = baseExpression->getAsConstantUnion();
if (baseConstantUnion)
{
if (baseExpression->isArray())
{
// constant folding for array indexing
indexedExpression =
addConstArrayNode(index, baseConstantUnion, location, outOfRangeIndexIsError);
}
else if (baseExpression->isVector())
{
// constant folding for vector indexing
TVectorFields fields;
fields.num = 1;
fields.offsets[0] =
index; // need to do it this way because v.xy sends fields integer array
indexedExpression =
addConstVectorNode(fields, baseConstantUnion, location, outOfRangeIndexIsError);
}
else if (baseExpression->isMatrix())
{
// constant folding for matrix indexing
indexedExpression =
addConstMatrixNode(index, baseConstantUnion, location, outOfRangeIndexIsError);
}
}
else
{
int safeIndex = -1;
if (baseExpression->isArray())
{
if (baseExpression->getQualifier() == EvqFragData && index > 0)
{
if (mShaderSpec == SH_WEBGL2_SPEC)
{
// Error has been already generated if index is not const.
if (indexExpression->getQualifier() == EvqConst)
{
error(location, "", "[",
"array index for gl_FragData must be constant zero");
recover();
}
safeIndex = 0;
}
else if (!isExtensionEnabled("GL_EXT_draw_buffers"))
{
outOfRangeError(outOfRangeIndexIsError, location, "", "[",
"array index for gl_FragData must be zero when "
"GL_EXT_draw_buffers is disabled");
safeIndex = 0;
}
}
// Only do generic out-of-range check if similar error hasn't already been reported.
if (safeIndex < 0 && index >= baseExpression->getType().getArraySize())
{
std::stringstream extraInfoStream;
extraInfoStream << "array index out of range '" << index << "'";
std::string extraInfo = extraInfoStream.str();
outOfRangeError(outOfRangeIndexIsError, location, "", "[", extraInfo.c_str());
safeIndex = baseExpression->getType().getArraySize() - 1;
}
}
else if ((baseExpression->isVector() || baseExpression->isMatrix()) &&
baseExpression->getType().getNominalSize() <= index)
{
std::stringstream extraInfoStream;
extraInfoStream << "field selection out of range '" << index << "'";
std::string extraInfo = extraInfoStream.str();
outOfRangeError(outOfRangeIndexIsError, location, "", "[", extraInfo.c_str());
safeIndex = baseExpression->getType().getNominalSize() - 1;
}
// Data of constant unions can't be changed, because it may be shared with other
// constant unions or even builtins, like gl_MaxDrawBuffers. Instead use a new
// sanitized object.
if (safeIndex != -1)
{
TConstantUnion *safeConstantUnion = new TConstantUnion();
safeConstantUnion->setIConst(safeIndex);
indexConstantUnion->replaceConstantUnion(safeConstantUnion);
}
indexedExpression =
intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location);
}
}
else
{
indexedExpression =
intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location);
}
if (indexedExpression == 0)
{
TConstantUnion *unionArray = new TConstantUnion[1];
unionArray->setFConst(0.0f);
indexedExpression =
intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), location);
}
else if (baseExpression->isArray())
{
TType indexedType = baseExpression->getType();
indexedType.clearArrayness();
indexedExpression->setType(indexedType);
}
else if (baseExpression->isMatrix())
{
indexedExpression->setType(TType(baseExpression->getBasicType(),
baseExpression->getPrecision(), EvqTemporary,
static_cast<unsigned char>(baseExpression->getRows())));
}
else if (baseExpression->isVector())
{
indexedExpression->setType(
TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary));
}
else
{
indexedExpression->setType(baseExpression->getType());
}
if (baseExpression->getType().getQualifier() == EvqConst &&
indexExpression->getType().getQualifier() == EvqConst)
{
indexedExpression->getTypePointer()->setQualifier(EvqConst);
}
else
{
indexedExpression->getTypePointer()->setQualifier(EvqTemporary);
}
return indexedExpression;
}
TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression,
const TSourceLoc &dotLocation,
const TString &fieldString,
const TSourceLoc &fieldLocation)
{
TIntermTyped *indexedExpression = NULL;
if (baseExpression->isArray())
{
error(fieldLocation, "cannot apply dot operator to an array", ".");
recover();
}
if (baseExpression->isVector())
{
TVectorFields fields;
if (!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields,
fieldLocation))
{
fields.num = 1;
fields.offsets[0] = 0;
recover();
}
if (baseExpression->getAsConstantUnion())
{
// constant folding for vector fields
indexedExpression = addConstVectorNode(fields, baseExpression->getAsConstantUnion(),
fieldLocation, true);
}
else
{
TIntermTyped *index = intermediate.addSwizzle(fields, fieldLocation);
indexedExpression =
intermediate.addIndex(EOpVectorSwizzle, baseExpression, index, dotLocation);
}
if (indexedExpression == nullptr)
{
recover();
indexedExpression = baseExpression;
}
else
{
// Note that the qualifier set here will be corrected later.
indexedExpression->setType(TType(baseExpression->getBasicType(),
baseExpression->getPrecision(), EvqTemporary,
(unsigned char)(fieldString).size()));
}
}
else if (baseExpression->getBasicType() == EbtStruct)
{
bool fieldFound = false;
const TFieldList &fields = baseExpression->getType().getStruct()->fields();
if (fields.empty())
{
error(dotLocation, "structure has no fields", "Internal Error");
recover();
indexedExpression = baseExpression;
}
else
{
unsigned int i;
for (i = 0; i < fields.size(); ++i)
{
if (fields[i]->name() == fieldString)
{
fieldFound = true;
break;
}
}
if (fieldFound)
{
if (baseExpression->getAsConstantUnion())
{
indexedExpression = addConstStruct(fieldString, baseExpression, dotLocation);
if (indexedExpression == 0)
{
recover();
indexedExpression = baseExpression;
}
else
{
indexedExpression->setType(*fields[i]->type());
}
}
else
{
TConstantUnion *unionArray = new TConstantUnion[1];
unionArray->setIConst(i);
TIntermTyped *index = intermediate.addConstantUnion(
unionArray, *fields[i]->type(), fieldLocation);
indexedExpression = intermediate.addIndex(EOpIndexDirectStruct, baseExpression,
index, dotLocation);
indexedExpression->setType(*fields[i]->type());
}
}
else
{
error(dotLocation, " no such field in structure", fieldString.c_str());
recover();
indexedExpression = baseExpression;
}
}
}
else if (baseExpression->isInterfaceBlock())
{
bool fieldFound = false;
const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields();
if (fields.empty())
{
error(dotLocation, "interface block has no fields", "Internal Error");
recover();
indexedExpression = baseExpression;
}
else
{
unsigned int i;
for (i = 0; i < fields.size(); ++i)
{
if (fields[i]->name() == fieldString)
{
fieldFound = true;
break;
}
}
if (fieldFound)
{
TConstantUnion *unionArray = new TConstantUnion[1];
unionArray->setIConst(i);
TIntermTyped *index =
intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation);
indexedExpression = intermediate.addIndex(EOpIndexDirectInterfaceBlock,
baseExpression, index, dotLocation);
indexedExpression->setType(*fields[i]->type());
}
else
{
error(dotLocation, " no such field in interface block", fieldString.c_str());
recover();
indexedExpression = baseExpression;
}
}
}
else
{
if (mShaderVersion < 300)
{
error(dotLocation, " field selection requires structure or vector on left hand side",
fieldString.c_str());
}
else
{
error(dotLocation,
" field selection requires structure, vector, or interface block on left hand "
"side",
fieldString.c_str());
}
recover();
indexedExpression = baseExpression;
}
if (baseExpression->getQualifier() == EvqConst)
{
indexedExpression->getTypePointer()->setQualifier(EvqConst);
}
else
{
indexedExpression->getTypePointer()->setQualifier(EvqTemporary);
}
return indexedExpression;
}
TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType,
const TSourceLoc &qualifierTypeLine)
{
TLayoutQualifier qualifier;
qualifier.location = -1;
qualifier.matrixPacking = EmpUnspecified;
qualifier.blockStorage = EbsUnspecified;
if (qualifierType == "shared")
{
qualifier.blockStorage = EbsShared;
}
else if (qualifierType == "packed")
{
qualifier.blockStorage = EbsPacked;
}
else if (qualifierType == "std140")
{
qualifier.blockStorage = EbsStd140;
}
else if (qualifierType == "row_major")
{
qualifier.matrixPacking = EmpRowMajor;
}
else if (qualifierType == "column_major")
{
qualifier.matrixPacking = EmpColumnMajor;
}
else if (qualifierType == "location")
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(),
"location requires an argument");
recover();
}
else
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
recover();
}
return qualifier;
}
TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType,
const TSourceLoc &qualifierTypeLine,
const TString &intValueString,
int intValue,
const TSourceLoc &intValueLine)
{
TLayoutQualifier qualifier;
qualifier.location = -1;
qualifier.matrixPacking = EmpUnspecified;
qualifier.blockStorage = EbsUnspecified;
if (qualifierType != "location")
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(),
"only location may have arguments");
recover();
}
else
{
// must check that location is non-negative
if (intValue < 0)
{
error(intValueLine, "out of range:", intValueString.c_str(),
"location must be non-negative");
recover();
}
else
{
qualifier.location = intValue;
}
}
return qualifier;
}
TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier,
TLayoutQualifier rightQualifier)
{
TLayoutQualifier joinedQualifier = leftQualifier;
if (rightQualifier.location != -1)
{
joinedQualifier.location = rightQualifier.location;
}
if (rightQualifier.matrixPacking != EmpUnspecified)
{
joinedQualifier.matrixPacking = rightQualifier.matrixPacking;
}
if (rightQualifier.blockStorage != EbsUnspecified)
{
joinedQualifier.blockStorage = rightQualifier.blockStorage;
}
return joinedQualifier;
}
TPublicType TParseContext::joinInterpolationQualifiers(const TSourceLoc &interpolationLoc,
TQualifier interpolationQualifier,
const TSourceLoc &storageLoc,
TQualifier storageQualifier)
{
TQualifier mergedQualifier = EvqSmoothIn;
if (storageQualifier == EvqFragmentIn)
{
if (interpolationQualifier == EvqSmooth)
mergedQualifier = EvqSmoothIn;
else if (interpolationQualifier == EvqFlat)
mergedQualifier = EvqFlatIn;
else
UNREACHABLE();
}
else if (storageQualifier == EvqCentroidIn)
{
if (interpolationQualifier == EvqSmooth)
mergedQualifier = EvqCentroidIn;
else if (interpolationQualifier == EvqFlat)
mergedQualifier = EvqFlatIn;
else
UNREACHABLE();
}
else if (storageQualifier == EvqVertexOut)
{
if (interpolationQualifier == EvqSmooth)
mergedQualifier = EvqSmoothOut;
else if (interpolationQualifier == EvqFlat)
mergedQualifier = EvqFlatOut;
else
UNREACHABLE();
}
else if (storageQualifier == EvqCentroidOut)
{
if (interpolationQualifier == EvqSmooth)
mergedQualifier = EvqCentroidOut;
else if (interpolationQualifier == EvqFlat)
mergedQualifier = EvqFlatOut;
else
UNREACHABLE();
}
else
{
error(interpolationLoc,
"interpolation qualifier requires a fragment 'in' or vertex 'out' storage qualifier",
getInterpolationString(interpolationQualifier));
recover();
mergedQualifier = storageQualifier;
}
TPublicType type;
type.setBasic(EbtVoid, mergedQualifier, storageLoc);
return type;
}
TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier,
TFieldList *fieldList)
{
if (voidErrorCheck(typeSpecifier.line, (*fieldList)[0]->name(), typeSpecifier.type))
{
recover();
}
for (unsigned int i = 0; i < fieldList->size(); ++i)
{
//
// Careful not to replace already known aspects of type, like array-ness
//
TType *type = (*fieldList)[i]->type();
type->setBasicType(typeSpecifier.type);
type->setPrimarySize(typeSpecifier.primarySize);
type->setSecondarySize(typeSpecifier.secondarySize);
type->setPrecision(typeSpecifier.precision);
type->setQualifier(typeSpecifier.qualifier);
type->setLayoutQualifier(typeSpecifier.layoutQualifier);
// don't allow arrays of arrays
if (type->isArray())
{
if (arrayTypeErrorCheck(typeSpecifier.line, typeSpecifier))
recover();
}
if (typeSpecifier.array)
type->setArraySize(typeSpecifier.arraySize);
if (typeSpecifier.userDef)
{
type->setStruct(typeSpecifier.userDef->getStruct());
}
if (structNestingErrorCheck(typeSpecifier.line, *(*fieldList)[i]))
{
recover();
}
}
return fieldList;
}
TPublicType TParseContext::addStructure(const TSourceLoc &structLine,
const TSourceLoc &nameLine,
const TString *structName,
TFieldList *fieldList)
{
TStructure *structure = new TStructure(structName, fieldList);
TType *structureType = new TType(structure);
// Store a bool in the struct if we're at global scope, to allow us to
// skip the local struct scoping workaround in HLSL.
structure->setUniqueId(TSymbolTable::nextUniqueId());
structure->setAtGlobalScope(symbolTable.atGlobalLevel());
if (!structName->empty())
{
if (reservedErrorCheck(nameLine, *structName))
{
recover();
}
TVariable *userTypeDef = new TVariable(structName, *structureType, true);
if (!symbolTable.declare(userTypeDef))
{
error(nameLine, "redefinition", structName->c_str(), "struct");
recover();
}
}
// ensure we do not specify any storage qualifiers on the struct members
for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++)
{
const TField &field = *(*fieldList)[typeListIndex];
const TQualifier qualifier = field.type()->getQualifier();
switch (qualifier)
{
case EvqGlobal:
case EvqTemporary:
break;
default:
error(field.line(), "invalid qualifier on struct member",
getQualifierString(qualifier));
recover();
break;
}
}
TPublicType publicType;
publicType.setBasic(EbtStruct, EvqTemporary, structLine);
publicType.userDef = structureType;
publicType.isStructSpecifier = true;
exitStructDeclaration();
return publicType;
}
TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init,
TIntermAggregate *statementList,
const TSourceLoc &loc)
{
TBasicType switchType = init->getBasicType();
if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() ||
init->isVector())
{
error(init->getLine(), "init-expression in a switch statement must be a scalar integer",
"switch");
recover();
return nullptr;
}
if (statementList)
{
if (!ValidateSwitch::validate(switchType, this, statementList, loc))
{
recover();
return nullptr;
}
}
TIntermSwitch *node = intermediate.addSwitch(init, statementList, loc);
if (node == nullptr)
{
error(loc, "erroneous switch statement", "switch");
recover();
return nullptr;
}
return node;
}
TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc)
{
if (mSwitchNestingLevel == 0)
{
error(loc, "case labels need to be inside switch statements", "case");
recover();
return nullptr;
}
if (condition == nullptr)
{
error(loc, "case label must have a condition", "case");
recover();
return nullptr;
}
if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) ||
condition->isMatrix() || condition->isArray() || condition->isVector())
{
error(condition->getLine(), "case label must be a scalar integer", "case");
recover();
}
TIntermConstantUnion *conditionConst = condition->getAsConstantUnion();
// TODO(oetuaho@nvidia.com): Get rid of the conditionConst == nullptr check once all constant
// expressions can be folded. Right now we don't allow constant expressions that ANGLE can't
// fold in case labels.
if (condition->getQualifier() != EvqConst || conditionConst == nullptr)
{
error(condition->getLine(), "case label must be constant", "case");
recover();
}
TIntermCase *node = intermediate.addCase(condition, loc);
if (node == nullptr)
{
error(loc, "erroneous case statement", "case");
recover();
return nullptr;
}
return node;
}
TIntermCase *TParseContext::addDefault(const TSourceLoc &loc)
{
if (mSwitchNestingLevel == 0)
{
error(loc, "default labels need to be inside switch statements", "default");
recover();
return nullptr;
}
TIntermCase *node = intermediate.addCase(nullptr, loc);
if (node == nullptr)
{
error(loc, "erroneous default statement", "default");
recover();
return nullptr;
}
return node;
}
TIntermTyped *TParseContext::createUnaryMath(TOperator op,
TIntermTyped *child,
const TSourceLoc &loc,
const TType *funcReturnType)
{
if (child == nullptr)
{
return nullptr;
}
switch (op)
{
case EOpLogicalNot:
if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() ||
child->isVector())
{
return nullptr;
}
break;
case EOpBitwiseNot:
if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) ||
child->isMatrix() || child->isArray())
{
return nullptr;
}
break;
case EOpPostIncrement:
case EOpPreIncrement:
case EOpPostDecrement:
case EOpPreDecrement:
case EOpNegative:
case EOpPositive:
if (child->getBasicType() == EbtStruct || child->getBasicType() == EbtBool ||
child->isArray())
{
return nullptr;
}
// Operators for built-ins are already type checked against their prototype.
default:
break;
}
return intermediate.addUnaryMath(op, child, loc, funcReturnType);
}
TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc)
{
TIntermTyped *node = createUnaryMath(op, child, loc, nullptr);
if (node == nullptr)
{
unaryOpError(loc, GetOperatorString(op), child->getCompleteString());
recover();
return child;
}
return node;
}
TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op,
TIntermTyped *child,
const TSourceLoc &loc)
{
if (lValueErrorCheck(loc, GetOperatorString(op), child))
recover();
return addUnaryMath(op, child, loc);
}
bool TParseContext::binaryOpCommonCheck(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
if (left->isArray() || right->isArray())
{
if (mShaderVersion < 300)
{
error(loc, "Invalid operation for arrays", GetOperatorString(op));
return false;
}
if (left->isArray() != right->isArray())
{
error(loc, "array / non-array mismatch", GetOperatorString(op));
return false;
}
switch (op)
{
case EOpEqual:
case EOpNotEqual:
case EOpAssign:
case EOpInitialize:
break;
default:
error(loc, "Invalid operation for arrays", GetOperatorString(op));
return false;
}
// At this point, size of implicitly sized arrays should be resolved.
if (left->getArraySize() != right->getArraySize())
{
error(loc, "array size mismatch", GetOperatorString(op));
return false;
}
}
// Check ops which require integer / ivec parameters
bool isBitShift = false;
switch (op)
{
case EOpBitShiftLeft:
case EOpBitShiftRight:
case EOpBitShiftLeftAssign:
case EOpBitShiftRightAssign:
// Unsigned can be bit-shifted by signed and vice versa, but we need to
// check that the basic type is an integer type.
isBitShift = true;
if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType()))
{
return false;
}
break;
case EOpBitwiseAnd:
case EOpBitwiseXor:
case EOpBitwiseOr:
case EOpBitwiseAndAssign:
case EOpBitwiseXorAssign:
case EOpBitwiseOrAssign:
// It is enough to check the type of only one operand, since later it
// is checked that the operand types match.
if (!IsInteger(left->getBasicType()))
{
return false;
}
break;
default:
break;
}
// GLSL ES 1.00 and 3.00 do not support implicit type casting.
// So the basic type should usually match.
if (!isBitShift && left->getBasicType() != right->getBasicType())
{
return false;
}
// Check that type sizes match exactly on ops that require that.
// Also check restrictions for structs that contain arrays or samplers.
switch (op)
{
case EOpAssign:
case EOpInitialize:
case EOpEqual:
case EOpNotEqual:
// ESSL 1.00 sections 5.7, 5.8, 5.9
if (mShaderVersion < 300 && left->getType().isStructureContainingArrays())
{
error(loc, "undefined operation for structs containing arrays",
GetOperatorString(op));
return false;
}
// Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7,
// we interpret the spec so that this extends to structs containing samplers,
// similarly to ESSL 1.00 spec.
if ((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) &&
left->getType().isStructureContainingSamplers())
{
error(loc, "undefined operation for structs containing samplers",
GetOperatorString(op));
return false;
}
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
if ((left->getNominalSize() != right->getNominalSize()) ||
(left->getSecondarySize() != right->getSecondarySize()))
{
return false;
}
default:
break;
}
return true;
}
TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
if (!binaryOpCommonCheck(op, left, right, loc))
return nullptr;
switch (op)
{
case EOpEqual:
case EOpNotEqual:
break;
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
ASSERT(!left->isArray() && !right->isArray());
if (left->isMatrix() || left->isVector() || left->getBasicType() == EbtStruct)
{
return nullptr;
}
break;
case EOpLogicalOr:
case EOpLogicalXor:
case EOpLogicalAnd:
ASSERT(!left->isArray() && !right->isArray());
if (left->getBasicType() != EbtBool || left->isMatrix() || left->isVector())
{
return nullptr;
}
break;
case EOpAdd:
case EOpSub:
case EOpDiv:
case EOpMul:
ASSERT(!left->isArray() && !right->isArray());
if (left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool)
{
return nullptr;
}
break;
case EOpIMod:
ASSERT(!left->isArray() && !right->isArray());
// Note that this is only for the % operator, not for mod()
if (left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool ||
left->getBasicType() == EbtFloat)
{
return nullptr;
}
break;
// Note that for bitwise ops, type checking is done in promote() to
// share code between ops and compound assignment
default:
break;
}
return intermediate.addBinaryMath(op, left, right, loc);
}
TIntermTyped *TParseContext::addBinaryMath(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
if (node == 0)
{
binaryOpError(loc, GetOperatorString(op), left->getCompleteString(),
right->getCompleteString());
recover();
return left;
}
return node;
}
TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
if (node == 0)
{
binaryOpError(loc, GetOperatorString(op), left->getCompleteString(),
right->getCompleteString());
recover();
TConstantUnion *unionArray = new TConstantUnion[1];
unionArray->setBConst(false);
return intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst),
loc);
}
return node;
}
TIntermTyped *TParseContext::createAssign(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
if (binaryOpCommonCheck(op, left, right, loc))
{
return intermediate.addAssign(op, left, right, loc);
}
return nullptr;
}
TIntermTyped *TParseContext::addAssign(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
TIntermTyped *node = createAssign(op, left, right, loc);
if (node == nullptr)
{
assignError(loc, "assign", left->getCompleteString(), right->getCompleteString());
recover();
return left;
}
return node;
}
TIntermTyped *TParseContext::addComma(TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
return intermediate.addComma(left, right, loc, mShaderVersion);
}
TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc)
{
switch (op)
{
case EOpContinue:
if (mLoopNestingLevel <= 0)
{
error(loc, "continue statement only allowed in loops", "");
recover();
}
break;
case EOpBreak:
if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0)
{
error(loc, "break statement only allowed in loops and switch statements", "");
recover();
}
break;
case EOpReturn:
if (mCurrentFunctionType->getBasicType() != EbtVoid)
{
error(loc, "non-void function must return a value", "return");
recover();
}
break;
default:
// No checks for discard
break;
}
return intermediate.addBranch(op, loc);
}
TIntermBranch *TParseContext::addBranch(TOperator op,
TIntermTyped *returnValue,
const TSourceLoc &loc)
{
ASSERT(op == EOpReturn);
mFunctionReturnsValue = true;
if (mCurrentFunctionType->getBasicType() == EbtVoid)
{
error(loc, "void function cannot return a value", "return");
recover();
}
else if (*mCurrentFunctionType != returnValue->getType())
{
error(loc, "function return is not matching type:", "return");
recover();
}
return intermediate.addBranch(op, returnValue, loc);
}
void TParseContext::checkTextureOffsetConst(TIntermAggregate *functionCall)
{
ASSERT(!functionCall->isUserDefined());
const TString &name = functionCall->getName();
TIntermNode *offset = nullptr;
TIntermSequence *arguments = functionCall->getSequence();
if (name.compare(0, 16, "texelFetchOffset") == 0 ||
name.compare(0, 16, "textureLodOffset") == 0 ||
name.compare(0, 20, "textureProjLodOffset") == 0 ||
name.compare(0, 17, "textureGradOffset") == 0 ||
name.compare(0, 21, "textureProjGradOffset") == 0)
{
offset = arguments->back();
}
else if (name.compare(0, 13, "textureOffset") == 0 ||
name.compare(0, 17, "textureProjOffset") == 0)
{
// A bias parameter might follow the offset parameter.
ASSERT(arguments->size() >= 3);
offset = (*arguments)[2];
}
if (offset != nullptr)
{
TIntermConstantUnion *offsetConstantUnion = offset->getAsConstantUnion();
if (offset->getAsTyped()->getQualifier() != EvqConst || !offsetConstantUnion)
{
TString unmangledName = TFunction::unmangleName(name);
error(functionCall->getLine(), "Texture offset must be a constant expression",
unmangledName.c_str());
recover();
}
else
{
ASSERT(offsetConstantUnion->getBasicType() == EbtInt);
size_t size = offsetConstantUnion->getType().getObjectSize();
const TConstantUnion *values = offsetConstantUnion->getUnionArrayPointer();
for (size_t i = 0u; i < size; ++i)
{
int offsetValue = values[i].getIConst();
if (offsetValue > mMaxProgramTexelOffset || offsetValue < mMinProgramTexelOffset)
{
std::stringstream tokenStream;
tokenStream << offsetValue;
std::string token = tokenStream.str();
error(offset->getLine(), "Texture offset value out of valid range",
token.c_str());
recover();
}
}
}
}
}
TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall,
TIntermNode *paramNode,
TIntermNode *thisNode,
const TSourceLoc &loc,
bool *fatalError)
{
*fatalError = false;
TOperator op = fnCall->getBuiltInOp();
TIntermTyped *callNode = nullptr;
if (thisNode != nullptr)
{
TConstantUnion *unionArray = new TConstantUnion[1];
int arraySize = 0;
TIntermTyped *typedThis = thisNode->getAsTyped();
if (fnCall->getName() != "length")
{
error(loc, "invalid method", fnCall->getName().c_str());
recover();
}
else if (paramNode != nullptr)
{
error(loc, "method takes no parameters", "length");
recover();
}
else if (typedThis == nullptr || !typedThis->isArray())
{
error(loc, "length can only be called on arrays", "length");
recover();
}
else
{
arraySize = typedThis->getArraySize();
if (typedThis->getAsSymbolNode() == nullptr)
{
// This code path can be hit with expressions like these:
// (a = b).length()
// (func()).length()
// (int[3](0, 1, 2)).length()
// ESSL 3.00 section 5.9 defines expressions so that this is not actually a valid
// expression.
// It allows "An array name with the length method applied" in contrast to GLSL 4.4
// spec section 5.9 which allows "An array, vector or matrix expression with the
// length method applied".
error(loc, "length can only be called on array names, not on array expressions",
"length");
recover();
}
}
unionArray->setIConst(arraySize);
callNode =
intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), loc);
}
else if (op != EOpNull)
{
//
// Then this should be a constructor.
// Don't go through the symbol table for constructors.
// Their parameters will be verified algorithmically.
//
TType type(EbtVoid, EbpUndefined); // use this to get the type back
if (!constructorErrorCheck(loc, paramNode, *fnCall, op, &type))
{
//
// It's a constructor, of type 'type'.
//
callNode = addConstructor(paramNode, &type, op, fnCall, loc);
}
if (callNode == nullptr)
{
recover();
callNode = intermediate.setAggregateOperator(nullptr, op, loc);
}
callNode->setType(type);
}
else
{
//
// Not a constructor. Find it in the symbol table.
//
const TFunction *fnCandidate;
bool builtIn;
fnCandidate = findFunction(loc, fnCall, mShaderVersion, &builtIn);
if (fnCandidate)
{
//
// A declared function.
//
if (builtIn && !fnCandidate->getExtension().empty() &&
extensionErrorCheck(loc, fnCandidate->getExtension()))
{
recover();
}
op = fnCandidate->getBuiltInOp();
if (builtIn && op != EOpNull)
{
//
// A function call mapped to a built-in operation.
//
if (fnCandidate->getParamCount() == 1)
{
//
// Treat it like a built-in unary operator.
//
TIntermAggregate *paramAgg = paramNode->getAsAggregate();
paramNode = paramAgg->getSequence()->front();
callNode = createUnaryMath(op, paramNode->getAsTyped(), loc,
&fnCandidate->getReturnType());
if (callNode == nullptr)
{
std::stringstream extraInfoStream;
extraInfoStream
<< "built in unary operator function. Type: "
<< static_cast<TIntermTyped *>(paramNode)->getCompleteString();
std::string extraInfo = extraInfoStream.str();
error(paramNode->getLine(), " wrong operand type", "Internal Error",
extraInfo.c_str());
*fatalError = true;
return nullptr;
}
}
else
{
TIntermAggregate *aggregate =
intermediate.setAggregateOperator(paramNode, op, loc);
aggregate->setType(fnCandidate->getReturnType());
aggregate->setPrecisionFromChildren();
if (aggregate->areChildrenConstQualified())
{
aggregate->getTypePointer()->setQualifier(EvqConst);
}
// Some built-in functions have out parameters too.
functionCallLValueErrorCheck(fnCandidate, aggregate);
// See if we can constant fold a built-in. Note that this may be possible even
// if it is not const-qualified.
TIntermTyped *foldedNode = intermediate.foldAggregateBuiltIn(aggregate);
if (foldedNode)
{
callNode = foldedNode;
}
else
{
callNode = aggregate;
}
}
}
else
{
// This is a real function call
TIntermAggregate *aggregate =
intermediate.setAggregateOperator(paramNode, EOpFunctionCall, loc);
aggregate->setType(fnCandidate->getReturnType());
// this is how we know whether the given function is a builtIn function or a user
// defined function
// if builtIn == false, it's a userDefined -> could be an overloaded
// builtIn function also
// if builtIn == true, it's definitely a builtIn function with EOpNull
if (!builtIn)
aggregate->setUserDefined();
aggregate->setName(fnCandidate->getMangledName());
aggregate->setFunctionId(fnCandidate->getUniqueId());
// This needs to happen after the name is set
if (builtIn)
{
aggregate->setBuiltInFunctionPrecision();
checkTextureOffsetConst(aggregate);
}
callNode = aggregate;
functionCallLValueErrorCheck(fnCandidate, aggregate);
}
}
else
{
// error message was put out by findFunction()
// Put on a dummy node for error recovery
TConstantUnion *unionArray = new TConstantUnion[1];
unionArray->setFConst(0.0f);
callNode = intermediate.addConstantUnion(unionArray,
TType(EbtFloat, EbpUndefined, EvqConst), loc);
recover();
}
}
return callNode;
}
TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond,
TIntermTyped *trueBlock,
TIntermTyped *falseBlock,
const TSourceLoc &loc)
{
if (boolErrorCheck(loc, cond))
recover();
if (trueBlock->getType() != falseBlock->getType())
{
binaryOpError(loc, ":", trueBlock->getCompleteString(), falseBlock->getCompleteString());
recover();
return falseBlock;
}
// ESSL1 sections 5.2 and 5.7:
// ESSL3 section 5.7:
// Ternary operator is not among the operators allowed for structures/arrays.
if (trueBlock->isArray() || trueBlock->getBasicType() == EbtStruct)
{
error(loc, "ternary operator is not allowed for structures or arrays", ":");
recover();
return falseBlock;
}
return intermediate.addSelection(cond, trueBlock, falseBlock, loc);
}
//
// Parse an array of strings using yyparse.
//
// Returns 0 for success.
//
int PaParseStrings(size_t count,
const char *const string[],
const int length[],
TParseContext *context)
{
if ((count == 0) || (string == NULL))
return 1;
if (glslang_initialize(context))
return 1;
int error = glslang_scan(count, string, length, context);
if (!error)
error = glslang_parse(context);
glslang_finalize(context);
return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
}