blob: 48101fa06057bf9fa1b0ba89b2bd825c63afb886 [file] [log] [blame]
//
// Copyright 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// TextureD3D.cpp: Implementations of the Texture interfaces shared betweeen the D3D backends.
#include "libANGLE/renderer/d3d/TextureD3D.h"
#include "common/mathutil.h"
#include "common/utilities.h"
#include "libANGLE/Buffer.h"
#include "libANGLE/Framebuffer.h"
#include "libANGLE/Surface.h"
#include "libANGLE/Texture.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/BufferImpl.h"
#include "libANGLE/renderer/RenderTarget.h"
#include "libANGLE/renderer/d3d/BufferD3D.h"
#include "libANGLE/renderer/d3d/ImageD3D.h"
#include "libANGLE/renderer/d3d/RendererD3D.h"
#include "libANGLE/renderer/d3d/SurfaceD3D.h"
#include "libANGLE/renderer/d3d/TextureStorage.h"
namespace rx
{
namespace
{
gl::Error GetUnpackPointer(const gl::PixelUnpackState &unpack, const void *pixels, const uint8_t **pointerOut)
{
if (unpack.pixelBuffer.id() != 0)
{
// Do a CPU readback here, if we have an unpack buffer bound and the fast GPU path is not supported
gl::Buffer *pixelBuffer = unpack.pixelBuffer.get();
ptrdiff_t offset = reinterpret_cast<ptrdiff_t>(pixels);
// TODO: this is the only place outside of renderer that asks for a buffers raw data.
// This functionality should be moved into renderer and the getData method of BufferImpl removed.
BufferD3D *bufferD3D = BufferD3D::makeBufferD3D(pixelBuffer->getImplementation());
ASSERT(bufferD3D);
const uint8_t *bufferData = NULL;
gl::Error error = bufferD3D->getData(&bufferData);
if (error.isError())
{
return error;
}
*pointerOut = bufferData + offset;
}
else
{
*pointerOut = static_cast<const uint8_t *>(pixels);
}
return gl::Error(GL_NO_ERROR);
}
bool IsRenderTargetUsage(GLenum usage)
{
return (usage == GL_FRAMEBUFFER_ATTACHMENT_ANGLE);
}
}
TextureD3D::TextureD3D(RendererD3D *renderer)
: mRenderer(renderer),
mUsage(GL_NONE),
mDirtyImages(true),
mImmutable(false),
mTexStorage(NULL)
{
}
TextureD3D::~TextureD3D()
{
}
TextureD3D *TextureD3D::makeTextureD3D(TextureImpl *texture)
{
ASSERT(HAS_DYNAMIC_TYPE(TextureD3D*, texture));
return static_cast<TextureD3D*>(texture);
}
TextureStorage *TextureD3D::getNativeTexture()
{
// ensure the underlying texture is created
initializeStorage(false);
if (mTexStorage)
{
updateStorage();
}
return mTexStorage;
}
GLint TextureD3D::getBaseLevelWidth() const
{
const Image *baseImage = getBaseLevelImage();
return (baseImage ? baseImage->getWidth() : 0);
}
GLint TextureD3D::getBaseLevelHeight() const
{
const Image *baseImage = getBaseLevelImage();
return (baseImage ? baseImage->getHeight() : 0);
}
GLint TextureD3D::getBaseLevelDepth() const
{
const Image *baseImage = getBaseLevelImage();
return (baseImage ? baseImage->getDepth() : 0);
}
// Note: "base level image" is loosely defined to be any image from the base level,
// where in the base of 2D array textures and cube maps there are several. Don't use
// the base level image for anything except querying texture format and size.
GLenum TextureD3D::getBaseLevelInternalFormat() const
{
const Image *baseImage = getBaseLevelImage();
return (baseImage ? baseImage->getInternalFormat() : GL_NONE);
}
bool TextureD3D::shouldUseSetData(const Image *image) const
{
if (!mRenderer->getWorkarounds().setDataFasterThanImageUpload)
{
return false;
}
gl::InternalFormat internalFormat = gl::GetInternalFormatInfo(image->getInternalFormat());
// We can only handle full updates for depth-stencil textures, so to avoid complications
// disable them entirely.
if (internalFormat.depthBits > 0 || internalFormat.stencilBits > 0)
{
return false;
}
// TODO(jmadill): Handle compressed internal formats
return (mTexStorage && !internalFormat.compressed);
}
gl::Error TextureD3D::setImage(const gl::PixelUnpackState &unpack, GLenum type, const void *pixels, const gl::ImageIndex &index)
{
Image *image = getImage(index);
ASSERT(image);
// No-op
if (image->getWidth() == 0 || image->getHeight() == 0 || image->getDepth() == 0)
{
return gl::Error(GL_NO_ERROR);
}
// We no longer need the "GLenum format" parameter to TexImage to determine what data format "pixels" contains.
// From our image internal format we know how many channels to expect, and "type" gives the format of pixel's components.
const uint8_t *pixelData = NULL;
gl::Error error = GetUnpackPointer(unpack, pixels, &pixelData);
if (error.isError())
{
return error;
}
if (pixelData != NULL)
{
gl::Error error(GL_NO_ERROR);
if (shouldUseSetData(image))
{
error = mTexStorage->setData(index, image, NULL, type, unpack, pixelData);
}
else
{
error = image->loadData(0, 0, 0, image->getWidth(), image->getHeight(), image->getDepth(), unpack.alignment, type, pixelData);
}
if (error.isError())
{
return error;
}
mDirtyImages = true;
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D::subImage(GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth,
GLenum format, GLenum type, const gl::PixelUnpackState &unpack, const void *pixels, const gl::ImageIndex &index)
{
// CPU readback & copy where direct GPU copy is not supported
const uint8_t *pixelData = NULL;
gl::Error error = GetUnpackPointer(unpack, pixels, &pixelData);
if (error.isError())
{
return error;
}
if (pixelData != NULL)
{
Image *image = getImage(index);
ASSERT(image);
gl::Box region(xoffset, yoffset, zoffset, width, height, depth);
if (shouldUseSetData(image))
{
return mTexStorage->setData(index, image, &region, type, unpack, pixelData);
}
gl::Error error = image->loadData(xoffset, yoffset, zoffset, width, height, depth, unpack.alignment,
type, pixelData);
if (error.isError())
{
return error;
}
error = commitRegion(index, region);
if (error.isError())
{
return error;
}
mDirtyImages = true;
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D::setCompressedImage(const gl::PixelUnpackState &unpack, GLsizei imageSize, const void *pixels, Image *image)
{
// We no longer need the "GLenum format" parameter to TexImage to determine what data format "pixels" contains.
// From our image internal format we know how many channels to expect, and "type" gives the format of pixel's components.
const uint8_t *pixelData = NULL;
gl::Error error = GetUnpackPointer(unpack, pixels, &pixelData);
if (error.isError())
{
return error;
}
if (pixelData != NULL)
{
gl::Error error = image->loadCompressedData(0, 0, 0, image->getWidth(), image->getHeight(), image->getDepth(), pixelData);
if (error.isError())
{
return error;
}
mDirtyImages = true;
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D::subImageCompressed(GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth,
GLenum format, GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels, Image *image)
{
const uint8_t *pixelData = NULL;
gl::Error error = GetUnpackPointer(unpack, pixels, &pixelData);
if (error.isError())
{
return error;
}
if (pixelData != NULL)
{
gl::Error error = image->loadCompressedData(xoffset, yoffset, zoffset, width, height, depth, pixelData);
if (error.isError())
{
return error;
}
mDirtyImages = true;
}
return gl::Error(GL_NO_ERROR);
}
bool TextureD3D::isFastUnpackable(const gl::PixelUnpackState &unpack, GLenum sizedInternalFormat)
{
return unpack.pixelBuffer.id() != 0 && mRenderer->supportsFastCopyBufferToTexture(sizedInternalFormat);
}
gl::Error TextureD3D::fastUnpackPixels(const gl::PixelUnpackState &unpack, const void *pixels, const gl::Box &destArea,
GLenum sizedInternalFormat, GLenum type, RenderTarget *destRenderTarget)
{
// No-op
if (destArea.width <= 0 && destArea.height <= 0 && destArea.depth <= 0)
{
return gl::Error(GL_NO_ERROR);
}
// In order to perform the fast copy through the shader, we must have the right format, and be able
// to create a render target.
ASSERT(mRenderer->supportsFastCopyBufferToTexture(sizedInternalFormat));
uintptr_t offset = reinterpret_cast<uintptr_t>(pixels);
gl::Error error = mRenderer->fastCopyBufferToTexture(unpack, offset, destRenderTarget, sizedInternalFormat, type, destArea);
if (error.isError())
{
return error;
}
return gl::Error(GL_NO_ERROR);
}
GLint TextureD3D::creationLevels(GLsizei width, GLsizei height, GLsizei depth) const
{
if ((gl::isPow2(width) && gl::isPow2(height) && gl::isPow2(depth)) || mRenderer->getRendererExtensions().textureNPOT)
{
// Maximum number of levels
return gl::log2(std::max(std::max(width, height), depth)) + 1;
}
else
{
// OpenGL ES 2.0 without GL_OES_texture_npot does not permit NPOT mipmaps.
return 1;
}
}
int TextureD3D::mipLevels() const
{
return gl::log2(std::max(std::max(getBaseLevelWidth(), getBaseLevelHeight()), getBaseLevelDepth())) + 1;
}
TextureStorage *TextureD3D::getStorage()
{
ASSERT(mTexStorage);
return mTexStorage;
}
Image *TextureD3D::getBaseLevelImage() const
{
return getImage(getImageIndex(0, 0));
}
gl::Error TextureD3D::generateMipmaps()
{
GLint mipCount = mipLevels();
if (mipCount == 1)
{
return gl::Error(GL_NO_ERROR); // no-op
}
// Set up proper mipmap chain in our Image array.
initMipmapsImages();
// We know that all layers have the same dimension, for the texture to be complete
GLint layerCount = static_cast<GLint>(getLayerCount(0));
// When making mipmaps with the setData workaround enabled, the texture storage has
// the image data already. For non-render-target storage, we have to pull it out into
// an image layer.
if (mRenderer->getWorkarounds().setDataFasterThanImageUpload && mTexStorage)
{
if (!mTexStorage->isRenderTarget())
{
// Copy from the storage mip 0 to Image mip 0
for (GLint layer = 0; layer < layerCount; ++layer)
{
gl::ImageIndex srcIndex = getImageIndex(0, layer);
Image *image = getImage(srcIndex);
gl::Rectangle area(0, 0, image->getWidth(), image->getHeight());
gl::Error error = image->copy(0, 0, 0, area, srcIndex, mTexStorage);
if (error.isError())
{
return error;
}
}
}
else
{
gl::Error error = updateStorage();
if (error.isError())
{
return error;
}
}
}
bool renderableStorage = (mTexStorage && mTexStorage->isRenderTarget());
for (GLint layer = 0; layer < layerCount; ++layer)
{
for (GLint mip = 1; mip < mipCount; ++mip)
{
ASSERT(getLayerCount(mip) == layerCount);
gl::ImageIndex sourceIndex = getImageIndex(mip - 1, layer);
gl::ImageIndex destIndex = getImageIndex(mip, layer);
if (renderableStorage)
{
// GPU-side mipmapping
gl::Error error = mTexStorage->generateMipmap(sourceIndex, destIndex);
if (error.isError())
{
return error;
}
}
else
{
// CPU-side mipmapping
gl::Error error = mRenderer->generateMipmap(getImage(destIndex), getImage(sourceIndex));
if (error.isError())
{
return error;
}
}
}
}
return gl::Error(GL_NO_ERROR);
}
bool TextureD3D::isBaseImageZeroSize() const
{
Image *baseImage = getBaseLevelImage();
if (!baseImage || baseImage->getWidth() <= 0)
{
return true;
}
if (!gl::IsCubemapTextureTarget(baseImage->getTarget()) && baseImage->getHeight() <= 0)
{
return true;
}
if (baseImage->getTarget() == GL_TEXTURE_3D && baseImage->getDepth() <= 0)
{
return true;
}
if (baseImage->getTarget() == GL_TEXTURE_2D_ARRAY && getLayerCount(0) <= 0)
{
return true;
}
return false;
}
gl::Error TextureD3D::ensureRenderTarget()
{
gl::Error error = initializeStorage(true);
if (error.isError())
{
return error;
}
if (!isBaseImageZeroSize())
{
ASSERT(mTexStorage);
if (!mTexStorage->isRenderTarget())
{
TextureStorage *newRenderTargetStorage = NULL;
error = createCompleteStorage(true, &newRenderTargetStorage);
if (error.isError())
{
return error;
}
error = mTexStorage->copyToStorage(newRenderTargetStorage);
if (error.isError())
{
SafeDelete(newRenderTargetStorage);
return error;
}
error = setCompleteTexStorage(newRenderTargetStorage);
if (error.isError())
{
SafeDelete(newRenderTargetStorage);
return error;
}
}
}
return gl::Error(GL_NO_ERROR);
}
bool TextureD3D::canCreateRenderTargetForImage(const gl::ImageIndex &index) const
{
Image *image = getImage(index);
bool levelsComplete = (isImageComplete(index) && isImageComplete(getImageIndex(0, 0)));
return (image->isRenderableFormat() && levelsComplete);
}
gl::Error TextureD3D::commitRegion(const gl::ImageIndex &index, const gl::Box &region)
{
if (mTexStorage)
{
ASSERT(isValidIndex(index));
Image *image = getImage(index);
ImageD3D *imageD3D = ImageD3D::makeImageD3D(image);
gl::Error error = imageD3D->copyToStorage(mTexStorage, index, region);
if (error.isError())
{
return error;
}
image->markClean();
}
return gl::Error(GL_NO_ERROR);
}
TextureD3D_2D::TextureD3D_2D(RendererD3D *renderer)
: TextureD3D(renderer)
{
for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++i)
{
mImageArray[i] = ImageD3D::makeImageD3D(renderer->createImage());
}
}
TextureD3D_2D::~TextureD3D_2D()
{
// Delete the Images before the TextureStorage.
// Images might be relying on the TextureStorage for some of their data.
// If TextureStorage is deleted before the Images, then their data will be wastefully copied back from the GPU before we delete the Images.
for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++i)
{
delete mImageArray[i];
}
SafeDelete(mTexStorage);
}
Image *TextureD3D_2D::getImage(int level, int layer) const
{
ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS);
ASSERT(layer == 0);
return mImageArray[level];
}
Image *TextureD3D_2D::getImage(const gl::ImageIndex &index) const
{
ASSERT(index.mipIndex < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS);
ASSERT(!index.hasLayer());
ASSERT(index.type == GL_TEXTURE_2D);
return mImageArray[index.mipIndex];
}
GLsizei TextureD3D_2D::getLayerCount(int level) const
{
ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS);
return 1;
}
GLsizei TextureD3D_2D::getWidth(GLint level) const
{
if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level]->getWidth();
else
return 0;
}
GLsizei TextureD3D_2D::getHeight(GLint level) const
{
if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level]->getHeight();
else
return 0;
}
GLenum TextureD3D_2D::getInternalFormat(GLint level) const
{
if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level]->getInternalFormat();
else
return GL_NONE;
}
GLenum TextureD3D_2D::getActualFormat(GLint level) const
{
if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level]->getActualFormat();
else
return GL_NONE;
}
bool TextureD3D_2D::isDepth(GLint level) const
{
return gl::GetInternalFormatInfo(getInternalFormat(level)).depthBits > 0;
}
gl::Error TextureD3D_2D::setImage(GLenum target, GLint level, GLsizei width, GLsizei height, GLsizei depth,
GLenum internalFormat, GLenum format, GLenum type, const gl::PixelUnpackState &unpack,
const void *pixels)
{
ASSERT(target == GL_TEXTURE_2D && depth == 1);
GLenum sizedInternalFormat = gl::GetSizedInternalFormat(internalFormat, type);
bool fastUnpacked = false;
redefineImage(level, sizedInternalFormat, width, height);
gl::ImageIndex index = gl::ImageIndex::Make2D(level);
// Attempt a fast gpu copy of the pixel data to the surface
if (isFastUnpackable(unpack, sizedInternalFormat) && isLevelComplete(level))
{
// Will try to create RT storage if it does not exist
RenderTarget *destRenderTarget = NULL;
gl::Error error = getRenderTarget(index, &destRenderTarget);
if (error.isError())
{
return error;
}
gl::Box destArea(0, 0, 0, getWidth(level), getHeight(level), 1);
error = fastUnpackPixels(unpack, pixels, destArea, sizedInternalFormat, type, destRenderTarget);
if (error.isError())
{
return error;
}
// Ensure we don't overwrite our newly initialized data
mImageArray[level]->markClean();
fastUnpacked = true;
}
if (!fastUnpacked)
{
gl::Error error = TextureD3D::setImage(unpack, type, pixels, index);
if (error.isError())
{
return error;
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2D::setCompressedImage(GLenum target, GLint level, GLenum format,
GLsizei width, GLsizei height, GLsizei depth,
GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels)
{
ASSERT(target == GL_TEXTURE_2D && depth == 1);
// compressed formats don't have separate sized internal formats-- we can just use the compressed format directly
redefineImage(level, format, width, height);
return TextureD3D::setCompressedImage(unpack, imageSize, pixels, mImageArray[level]);
}
gl::Error TextureD3D_2D::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type,
const gl::PixelUnpackState &unpack, const void *pixels)
{
ASSERT(target == GL_TEXTURE_2D && depth == 1 && zoffset == 0);
bool fastUnpacked = false;
gl::ImageIndex index = gl::ImageIndex::Make2D(level);
gl::Box destArea(xoffset, yoffset, 0, width, height, 1);
if (isFastUnpackable(unpack, getInternalFormat(level)) && isLevelComplete(level))
{
RenderTarget *renderTarget = NULL;
gl::Error error = getRenderTarget(index, &renderTarget);
if (error.isError())
{
return error;
}
error = fastUnpackPixels(unpack, pixels, destArea, getInternalFormat(level), type, renderTarget);
if (error.isError())
{
return error;
}
// Ensure we don't overwrite our newly initialized data
mImageArray[level]->markClean();
fastUnpacked = true;
}
if (!fastUnpacked)
{
return TextureD3D::subImage(xoffset, yoffset, 0, width, height, 1, format, type,
unpack, pixels, index);
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2D::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLsizei depth, GLenum format,
GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels)
{
ASSERT(target == GL_TEXTURE_2D && depth == 1 && zoffset == 0);
gl::Error error = TextureD3D::subImageCompressed(xoffset, yoffset, 0, width, height, 1, format, imageSize, unpack, pixels, mImageArray[level]);
if (error.isError())
{
return error;
}
gl::ImageIndex index = gl::ImageIndex::Make2D(level);
gl::Box region(xoffset, yoffset, 0, width, height, 1);
return commitRegion(index, region);
}
gl::Error TextureD3D_2D::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height,
gl::Framebuffer *source)
{
ASSERT(target == GL_TEXTURE_2D);
GLenum sizedInternalFormat = gl::GetSizedInternalFormat(format, GL_UNSIGNED_BYTE);
redefineImage(level, sizedInternalFormat, width, height);
gl::Rectangle sourceRect(x, y, width, height);
gl::ImageIndex index = gl::ImageIndex::Make2D(level);
if (!canCreateRenderTargetForImage(index))
{
gl::Error error = mImageArray[level]->copy(0, 0, 0, sourceRect, source);
if (error.isError())
{
return error;
}
mDirtyImages = true;
}
else
{
gl::Error error = ensureRenderTarget();
if (error.isError())
{
return error;
}
mImageArray[level]->markClean();
if (width != 0 && height != 0 && isValidLevel(level))
{
gl::Error error = mRenderer->copyImage2D(source, sourceRect, format, 0, 0, mTexStorage, level);
if (error.isError())
{
return error;
}
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2D::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset,
GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source)
{
ASSERT(target == GL_TEXTURE_2D && zoffset == 0);
// can only make our texture storage to a render target if level 0 is defined (with a width & height) and
// the current level we're copying to is defined (with appropriate format, width & height)
gl::Rectangle sourceRect(x, y, width, height);
gl::ImageIndex index = gl::ImageIndex::Make2D(level);
if (!canCreateRenderTargetForImage(index))
{
gl::Error error = mImageArray[level]->copy(xoffset, yoffset, 0, sourceRect, source);
if (error.isError())
{
return error;
}
mDirtyImages = true;
}
else
{
gl::Error error = ensureRenderTarget();
if (error.isError())
{
return error;
}
if (isValidLevel(level))
{
error = updateStorageLevel(level);
if (error.isError())
{
return error;
}
error = mRenderer->copyImage2D(source, sourceRect,
gl::GetInternalFormatInfo(getBaseLevelInternalFormat()).format,
xoffset, yoffset, mTexStorage, level);
if (error.isError())
{
return error;
}
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2D::storage(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth)
{
ASSERT(target == GL_TEXTURE_2D && depth == 1);
for (int level = 0; level < levels; level++)
{
GLsizei levelWidth = std::max(1, width >> level);
GLsizei levelHeight = std::max(1, height >> level);
mImageArray[level]->redefine(GL_TEXTURE_2D, internalformat, levelWidth, levelHeight, 1, true);
}
for (int level = levels; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
mImageArray[level]->redefine(GL_TEXTURE_2D, GL_NONE, 0, 0, 0, true);
}
// TODO(geofflang): Verify storage creation had no errors
bool renderTarget = IsRenderTargetUsage(mUsage);
TextureStorage *storage = mRenderer->createTextureStorage2D(internalformat, renderTarget, width, height, levels);
gl::Error error = setCompleteTexStorage(storage);
if (error.isError())
{
SafeDelete(storage);
return error;
}
mImmutable = true;
return gl::Error(GL_NO_ERROR);
}
void TextureD3D_2D::bindTexImage(egl::Surface *surface)
{
GLenum internalformat = surface->getFormat();
mImageArray[0]->redefine(GL_TEXTURE_2D, internalformat, surface->getWidth(), surface->getHeight(), 1, true);
if (mTexStorage)
{
SafeDelete(mTexStorage);
}
SurfaceD3D *surfaceD3D = SurfaceD3D::makeSurfaceD3D(surface);
ASSERT(surfaceD3D);
mTexStorage = mRenderer->createTextureStorage2D(surfaceD3D->getSwapChain());
mDirtyImages = true;
}
void TextureD3D_2D::releaseTexImage()
{
if (mTexStorage)
{
SafeDelete(mTexStorage);
}
for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
mImageArray[i]->redefine(GL_TEXTURE_2D, GL_NONE, 0, 0, 0, true);
}
}
void TextureD3D_2D::initMipmapsImages()
{
// Purge array levels 1 through q and reset them to represent the generated mipmap levels.
int levelCount = mipLevels();
for (int level = 1; level < levelCount; level++)
{
redefineImage(level, getBaseLevelInternalFormat(),
std::max(getBaseLevelWidth() >> level, 1),
std::max(getBaseLevelHeight() >> level, 1));
}
}
unsigned int TextureD3D_2D::getRenderTargetSerial(const gl::ImageIndex &index)
{
ASSERT(!index.hasLayer());
return (!ensureRenderTarget().isError() ? mTexStorage->getRenderTargetSerial(index) : 0);
}
gl::Error TextureD3D_2D::getRenderTarget(const gl::ImageIndex &index, RenderTarget **outRT)
{
ASSERT(!index.hasLayer());
// ensure the underlying texture is created
gl::Error error = ensureRenderTarget();
if (error.isError())
{
return error;
}
error = updateStorageLevel(index.mipIndex);
if (error.isError())
{
return error;
}
return mTexStorage->getRenderTarget(index, outRT);
}
bool TextureD3D_2D::isValidLevel(int level) const
{
return (mTexStorage ? (level >= 0 && level < mTexStorage->getLevelCount()) : false);
}
bool TextureD3D_2D::isLevelComplete(int level) const
{
if (isImmutable())
{
return true;
}
const Image *baseImage = getBaseLevelImage();
GLsizei width = baseImage->getWidth();
GLsizei height = baseImage->getHeight();
if (width <= 0 || height <= 0)
{
return false;
}
// The base image level is complete if the width and height are positive
if (level == 0)
{
return true;
}
ASSERT(level >= 1 && level <= (int)ArraySize(mImageArray) && mImageArray[level] != NULL);
ImageD3D *image = mImageArray[level];
if (image->getInternalFormat() != baseImage->getInternalFormat())
{
return false;
}
if (image->getWidth() != std::max(1, width >> level))
{
return false;
}
if (image->getHeight() != std::max(1, height >> level))
{
return false;
}
return true;
}
bool TextureD3D_2D::isImageComplete(const gl::ImageIndex &index) const
{
return isLevelComplete(index.mipIndex);
}
// Constructs a native texture resource from the texture images
gl::Error TextureD3D_2D::initializeStorage(bool renderTarget)
{
// Only initialize the first time this texture is used as a render target or shader resource
if (mTexStorage)
{
return gl::Error(GL_NO_ERROR);
}
// do not attempt to create storage for nonexistant data
if (!isLevelComplete(0))
{
return gl::Error(GL_NO_ERROR);
}
bool createRenderTarget = (renderTarget || IsRenderTargetUsage(mUsage));
TextureStorage *storage = NULL;
gl::Error error = createCompleteStorage(createRenderTarget, &storage);
if (error.isError())
{
return error;
}
error = setCompleteTexStorage(storage);
if (error.isError())
{
SafeDelete(storage);
return error;
}
ASSERT(mTexStorage);
// flush image data to the storage
error = updateStorage();
if (error.isError())
{
return error;
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2D::createCompleteStorage(bool renderTarget, TextureStorage **outTexStorage) const
{
GLsizei width = getBaseLevelWidth();
GLsizei height = getBaseLevelHeight();
GLenum internalFormat = getBaseLevelInternalFormat();
ASSERT(width > 0 && height > 0);
// use existing storage level count, when previously specified by TexStorage*D
GLint levels = (mTexStorage ? mTexStorage->getLevelCount() : creationLevels(width, height, 1));
// TODO(geofflang): Determine if the texture creation succeeded
*outTexStorage = mRenderer->createTextureStorage2D(internalFormat, renderTarget, width, height, levels);
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2D::setCompleteTexStorage(TextureStorage *newCompleteTexStorage)
{
if (newCompleteTexStorage && newCompleteTexStorage->isManaged())
{
for (int level = 0; level < newCompleteTexStorage->getLevelCount(); level++)
{
gl::Error error = mImageArray[level]->setManagedSurface2D(newCompleteTexStorage, level);
if (error.isError())
{
return error;
}
}
}
SafeDelete(mTexStorage);
mTexStorage = newCompleteTexStorage;
mDirtyImages = true;
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2D::updateStorage()
{
ASSERT(mTexStorage != NULL);
GLint storageLevels = mTexStorage->getLevelCount();
for (int level = 0; level < storageLevels; level++)
{
if (mImageArray[level]->isDirty() && isLevelComplete(level))
{
gl::Error error = updateStorageLevel(level);
if (error.isError())
{
return error;
}
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2D::updateStorageLevel(int level)
{
ASSERT(level <= (int)ArraySize(mImageArray) && mImageArray[level] != NULL);
ASSERT(isLevelComplete(level));
if (mImageArray[level]->isDirty())
{
gl::ImageIndex index = gl::ImageIndex::Make2D(level);
gl::Box region(0, 0, 0, getWidth(level), getHeight(level), 1);
gl::Error error = commitRegion(index, region);
if (error.isError())
{
return error;
}
}
return gl::Error(GL_NO_ERROR);
}
void TextureD3D_2D::redefineImage(GLint level, GLenum internalformat, GLsizei width, GLsizei height)
{
// If there currently is a corresponding storage texture image, it has these parameters
const int storageWidth = std::max(1, getBaseLevelWidth() >> level);
const int storageHeight = std::max(1, getBaseLevelHeight() >> level);
const GLenum storageFormat = getBaseLevelInternalFormat();
mImageArray[level]->redefine(GL_TEXTURE_2D, internalformat, width, height, 1, false);
if (mTexStorage)
{
const int storageLevels = mTexStorage->getLevelCount();
if ((level >= storageLevels && storageLevels != 0) ||
width != storageWidth ||
height != storageHeight ||
internalformat != storageFormat) // Discard mismatched storage
{
for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
mImageArray[i]->markDirty();
}
SafeDelete(mTexStorage);
mDirtyImages = true;
}
}
}
gl::ImageIndexIterator TextureD3D_2D::imageIterator() const
{
return gl::ImageIndexIterator::Make2D(0, mTexStorage->getLevelCount());
}
gl::ImageIndex TextureD3D_2D::getImageIndex(GLint mip, GLint /*layer*/) const
{
// "layer" does not apply to 2D Textures.
return gl::ImageIndex::Make2D(mip);
}
bool TextureD3D_2D::isValidIndex(const gl::ImageIndex &index) const
{
return (mTexStorage && index.type == GL_TEXTURE_2D &&
index.mipIndex >= 0 && index.mipIndex < mTexStorage->getLevelCount());
}
TextureD3D_Cube::TextureD3D_Cube(RendererD3D *renderer)
: TextureD3D(renderer)
{
for (int i = 0; i < 6; i++)
{
for (int j = 0; j < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++j)
{
mImageArray[i][j] = ImageD3D::makeImageD3D(renderer->createImage());
}
}
}
TextureD3D_Cube::~TextureD3D_Cube()
{
// Delete the Images before the TextureStorage.
// Images might be relying on the TextureStorage for some of their data.
// If TextureStorage is deleted before the Images, then their data will be wastefully copied back from the GPU before we delete the Images.
for (int i = 0; i < 6; i++)
{
for (int j = 0; j < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++j)
{
SafeDelete(mImageArray[i][j]);
}
}
SafeDelete(mTexStorage);
}
Image *TextureD3D_Cube::getImage(int level, int layer) const
{
ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS);
ASSERT(layer >= 0 && layer < 6);
return mImageArray[layer][level];
}
Image *TextureD3D_Cube::getImage(const gl::ImageIndex &index) const
{
ASSERT(index.mipIndex < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS);
ASSERT(index.layerIndex >= 0 && index.layerIndex < 6);
return mImageArray[index.layerIndex][index.mipIndex];
}
GLsizei TextureD3D_Cube::getLayerCount(int level) const
{
ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS);
return 6;
}
GLenum TextureD3D_Cube::getInternalFormat(GLint level, GLint layer) const
{
if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[layer][level]->getInternalFormat();
else
return GL_NONE;
}
bool TextureD3D_Cube::isDepth(GLint level, GLint layer) const
{
return gl::GetInternalFormatInfo(getInternalFormat(level, layer)).depthBits > 0;
}
gl::Error TextureD3D_Cube::setImage(GLenum target, GLint level, GLsizei width, GLsizei height, GLsizei depth,
GLenum internalFormat, GLenum format, GLenum type, const gl::PixelUnpackState &unpack,
const void *pixels)
{
ASSERT(depth == 1);
GLenum sizedInternalFormat = gl::GetSizedInternalFormat(internalFormat, type);
gl::ImageIndex index = gl::ImageIndex::MakeCube(target, level);
redefineImage(index.layerIndex, level, sizedInternalFormat, width, height);
return TextureD3D::setImage(unpack, type, pixels, index);
}
gl::Error TextureD3D_Cube::setCompressedImage(GLenum target, GLint level, GLenum format,
GLsizei width, GLsizei height, GLsizei depth,
GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels)
{
ASSERT(depth == 1);
// compressed formats don't have separate sized internal formats-- we can just use the compressed format directly
int faceIndex = gl::TextureCubeMap::targetToLayerIndex(target);
redefineImage(faceIndex, level, format, width, height);
return TextureD3D::setCompressedImage(unpack, imageSize, pixels, mImageArray[faceIndex][level]);
}
gl::Error TextureD3D_Cube::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type,
const gl::PixelUnpackState &unpack, const void *pixels)
{
ASSERT(depth == 1 && zoffset == 0);
gl::ImageIndex index = gl::ImageIndex::MakeCube(target, level);
return TextureD3D::subImage(xoffset, yoffset, 0, width, height, 1, format, type, unpack, pixels, index);
}
gl::Error TextureD3D_Cube::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLsizei depth, GLenum format,
GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels)
{
ASSERT(depth == 1 && zoffset == 0);
gl::ImageIndex index = gl::ImageIndex::MakeCube(target, level);
gl::Error error = TextureD3D::subImageCompressed(xoffset, yoffset, 0, width, height, 1, format, imageSize, unpack, pixels, mImageArray[index.layerIndex][level]);
if (error.isError())
{
return error;
}
gl::Box region(xoffset, yoffset, 0, width, height, 1);
return commitRegion(index, region);
}
gl::Error TextureD3D_Cube::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y,
GLsizei width, GLsizei height, gl::Framebuffer *source)
{
int faceIndex = gl::TextureCubeMap::targetToLayerIndex(target);
GLenum sizedInternalFormat = gl::GetSizedInternalFormat(format, GL_UNSIGNED_BYTE);
redefineImage(faceIndex, level, sizedInternalFormat, width, height);
gl::Rectangle sourceRect(x, y, width, height);
gl::ImageIndex index = gl::ImageIndex::MakeCube(target, level);
if (!canCreateRenderTargetForImage(index))
{
gl::Error error = mImageArray[faceIndex][level]->copy(0, 0, 0, sourceRect, source);
if (error.isError())
{
return error;
}
mDirtyImages = true;
}
else
{
gl::Error error = ensureRenderTarget();
if (error.isError())
{
return error;
}
mImageArray[faceIndex][level]->markClean();
ASSERT(width == height);
if (width > 0 && isValidFaceLevel(faceIndex, level))
{
error = mRenderer->copyImageCube(source, sourceRect, format, 0, 0, mTexStorage, target, level);
if (error.isError())
{
return error;
}
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_Cube::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset,
GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source)
{
int faceIndex = gl::TextureCubeMap::targetToLayerIndex(target);
gl::Rectangle sourceRect(x, y, width, height);
gl::ImageIndex index = gl::ImageIndex::MakeCube(target, level);
if (!canCreateRenderTargetForImage(index))
{
gl::Error error =mImageArray[faceIndex][level]->copy(0, 0, 0, sourceRect, source);
if (error.isError())
{
return error;
}
mDirtyImages = true;
}
else
{
gl::Error error = ensureRenderTarget();
if (error.isError())
{
return error;
}
if (isValidFaceLevel(faceIndex, level))
{
error = updateStorageFaceLevel(faceIndex, level);
if (error.isError())
{
return error;
}
error = mRenderer->copyImageCube(source, sourceRect, gl::GetInternalFormatInfo(getBaseLevelInternalFormat()).format,
xoffset, yoffset, mTexStorage, target, level);
if (error.isError())
{
return error;
}
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_Cube::storage(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth)
{
ASSERT(width == height);
ASSERT(depth == 1);
for (int level = 0; level < levels; level++)
{
GLsizei mipSize = std::max(1, width >> level);
for (int faceIndex = 0; faceIndex < 6; faceIndex++)
{
mImageArray[faceIndex][level]->redefine(GL_TEXTURE_CUBE_MAP, internalformat, mipSize, mipSize, 1, true);
}
}
for (int level = levels; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
for (int faceIndex = 0; faceIndex < 6; faceIndex++)
{
mImageArray[faceIndex][level]->redefine(GL_TEXTURE_CUBE_MAP, GL_NONE, 0, 0, 0, true);
}
}
// TODO(geofflang): Verify storage creation had no errors
bool renderTarget = IsRenderTargetUsage(mUsage);
TextureStorage *storage = mRenderer->createTextureStorageCube(internalformat, renderTarget, width, levels);
gl::Error error = setCompleteTexStorage(storage);
if (error.isError())
{
SafeDelete(storage);
return error;
}
mImmutable = true;
return gl::Error(GL_NO_ERROR);
}
// Tests for cube texture completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81.
bool TextureD3D_Cube::isCubeComplete() const
{
int baseWidth = getBaseLevelWidth();
int baseHeight = getBaseLevelHeight();
GLenum baseFormat = getBaseLevelInternalFormat();
if (baseWidth <= 0 || baseWidth != baseHeight)
{
return false;
}
for (int faceIndex = 1; faceIndex < 6; faceIndex++)
{
const ImageD3D &faceBaseImage = *mImageArray[faceIndex][0];
if (faceBaseImage.getWidth() != baseWidth ||
faceBaseImage.getHeight() != baseHeight ||
faceBaseImage.getInternalFormat() != baseFormat )
{
return false;
}
}
return true;
}
void TextureD3D_Cube::bindTexImage(egl::Surface *surface)
{
UNREACHABLE();
}
void TextureD3D_Cube::releaseTexImage()
{
UNREACHABLE();
}
void TextureD3D_Cube::initMipmapsImages()
{
// Purge array levels 1 through q and reset them to represent the generated mipmap levels.
int levelCount = mipLevels();
for (int faceIndex = 0; faceIndex < 6; faceIndex++)
{
for (int level = 1; level < levelCount; level++)
{
int faceLevelSize = (std::max(mImageArray[faceIndex][0]->getWidth() >> level, 1));
redefineImage(faceIndex, level, mImageArray[faceIndex][0]->getInternalFormat(), faceLevelSize, faceLevelSize);
}
}
}
unsigned int TextureD3D_Cube::getRenderTargetSerial(const gl::ImageIndex &index)
{
return (!ensureRenderTarget().isError() ? mTexStorage->getRenderTargetSerial(index) : 0);
}
gl::Error TextureD3D_Cube::getRenderTarget(const gl::ImageIndex &index, RenderTarget **outRT)
{
ASSERT(gl::IsCubemapTextureTarget(index.type));
// ensure the underlying texture is created
gl::Error error = ensureRenderTarget();
if (error.isError())
{
return error;
}
error = updateStorageFaceLevel(index.layerIndex, index.mipIndex);
if (error.isError())
{
return error;
}
return mTexStorage->getRenderTarget(index, outRT);
}
gl::Error TextureD3D_Cube::initializeStorage(bool renderTarget)
{
// Only initialize the first time this texture is used as a render target or shader resource
if (mTexStorage)
{
return gl::Error(GL_NO_ERROR);
}
// do not attempt to create storage for nonexistant data
if (!isFaceLevelComplete(0, 0))
{
return gl::Error(GL_NO_ERROR);
}
bool createRenderTarget = (renderTarget || IsRenderTargetUsage(mUsage));
TextureStorage *storage = NULL;
gl::Error error = createCompleteStorage(createRenderTarget, &storage);
if (error.isError())
{
return error;
}
error = setCompleteTexStorage(storage);
if (error.isError())
{
SafeDelete(storage);
return error;
}
ASSERT(mTexStorage);
// flush image data to the storage
error = updateStorage();
if (error.isError())
{
return error;
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_Cube::createCompleteStorage(bool renderTarget, TextureStorage **outTexStorage) const
{
GLsizei size = getBaseLevelWidth();
ASSERT(size > 0);
// use existing storage level count, when previously specified by TexStorage*D
GLint levels = (mTexStorage ? mTexStorage->getLevelCount() : creationLevels(size, size, 1));
// TODO (geofflang): detect if storage creation succeeded
*outTexStorage = mRenderer->createTextureStorageCube(getBaseLevelInternalFormat(), renderTarget, size, levels);
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_Cube::setCompleteTexStorage(TextureStorage *newCompleteTexStorage)
{
if (newCompleteTexStorage && newCompleteTexStorage->isManaged())
{
for (int faceIndex = 0; faceIndex < 6; faceIndex++)
{
for (int level = 0; level < newCompleteTexStorage->getLevelCount(); level++)
{
gl::Error error = mImageArray[faceIndex][level]->setManagedSurfaceCube(newCompleteTexStorage, faceIndex, level);
if (error.isError())
{
return error;
}
}
}
}
SafeDelete(mTexStorage);
mTexStorage = newCompleteTexStorage;
mDirtyImages = true;
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_Cube::updateStorage()
{
ASSERT(mTexStorage != NULL);
GLint storageLevels = mTexStorage->getLevelCount();
for (int face = 0; face < 6; face++)
{
for (int level = 0; level < storageLevels; level++)
{
if (mImageArray[face][level]->isDirty() && isFaceLevelComplete(face, level))
{
gl::Error error = updateStorageFaceLevel(face, level);
if (error.isError())
{
return error;
}
}
}
}
return gl::Error(GL_NO_ERROR);
}
bool TextureD3D_Cube::isValidFaceLevel(int faceIndex, int level) const
{
return (mTexStorage ? (level >= 0 && level < mTexStorage->getLevelCount()) : 0);
}
bool TextureD3D_Cube::isFaceLevelComplete(int faceIndex, int level) const
{
ASSERT(level >= 0 && faceIndex < 6 && level < (int)ArraySize(mImageArray[faceIndex]) && mImageArray[faceIndex][level] != NULL);
if (isImmutable())
{
return true;
}
int baseSize = getBaseLevelWidth();
if (baseSize <= 0)
{
return false;
}
// "isCubeComplete" checks for base level completeness and we must call that
// to determine if any face at level 0 is complete. We omit that check here
// to avoid re-checking cube-completeness for every face at level 0.
if (level == 0)
{
return true;
}
// Check that non-zero levels are consistent with the base level.
const ImageD3D *faceLevelImage = mImageArray[faceIndex][level];
if (faceLevelImage->getInternalFormat() != getBaseLevelInternalFormat())
{
return false;
}
if (faceLevelImage->getWidth() != std::max(1, baseSize >> level))
{
return false;
}
return true;
}
bool TextureD3D_Cube::isImageComplete(const gl::ImageIndex &index) const
{
return isFaceLevelComplete(index.layerIndex, index.mipIndex);
}
gl::Error TextureD3D_Cube::updateStorageFaceLevel(int faceIndex, int level)
{
ASSERT(level >= 0 && faceIndex < 6 && level < (int)ArraySize(mImageArray[faceIndex]) && mImageArray[faceIndex][level] != NULL);
ImageD3D *image = mImageArray[faceIndex][level];
if (image->isDirty())
{
GLenum faceTarget = gl::TextureCubeMap::layerIndexToTarget(faceIndex);
gl::ImageIndex index = gl::ImageIndex::MakeCube(faceTarget, level);
gl::Box region(0, 0, 0, image->getWidth(), image->getHeight(), 1);
gl::Error error = commitRegion(index, region);
if (error.isError())
{
return error;
}
}
return gl::Error(GL_NO_ERROR);
}
void TextureD3D_Cube::redefineImage(int faceIndex, GLint level, GLenum internalformat, GLsizei width, GLsizei height)
{
// If there currently is a corresponding storage texture image, it has these parameters
const int storageWidth = std::max(1, getBaseLevelWidth() >> level);
const int storageHeight = std::max(1, getBaseLevelHeight() >> level);
const GLenum storageFormat = getBaseLevelInternalFormat();
mImageArray[faceIndex][level]->redefine(GL_TEXTURE_CUBE_MAP, internalformat, width, height, 1, false);
if (mTexStorage)
{
const int storageLevels = mTexStorage->getLevelCount();
if ((level >= storageLevels && storageLevels != 0) ||
width != storageWidth ||
height != storageHeight ||
internalformat != storageFormat) // Discard mismatched storage
{
for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
for (int faceIndex = 0; faceIndex < 6; faceIndex++)
{
mImageArray[faceIndex][level]->markDirty();
}
}
SafeDelete(mTexStorage);
mDirtyImages = true;
}
}
}
gl::ImageIndexIterator TextureD3D_Cube::imageIterator() const
{
return gl::ImageIndexIterator::MakeCube(0, mTexStorage->getLevelCount());
}
gl::ImageIndex TextureD3D_Cube::getImageIndex(GLint mip, GLint layer) const
{
// The "layer" of the image index corresponds to the cube face
return gl::ImageIndex::MakeCube(gl::TextureCubeMap::layerIndexToTarget(layer), mip);
}
bool TextureD3D_Cube::isValidIndex(const gl::ImageIndex &index) const
{
return (mTexStorage && gl::IsCubemapTextureTarget(index.type) &&
index.mipIndex >= 0 && index.mipIndex < mTexStorage->getLevelCount());
}
TextureD3D_3D::TextureD3D_3D(RendererD3D *renderer)
: TextureD3D(renderer)
{
for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++i)
{
mImageArray[i] = ImageD3D::makeImageD3D(renderer->createImage());
}
}
TextureD3D_3D::~TextureD3D_3D()
{
// Delete the Images before the TextureStorage.
// Images might be relying on the TextureStorage for some of their data.
// If TextureStorage is deleted before the Images, then their data will be wastefully copied back from the GPU before we delete the Images.
for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++i)
{
delete mImageArray[i];
}
SafeDelete(mTexStorage);
}
Image *TextureD3D_3D::getImage(int level, int layer) const
{
ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS);
ASSERT(layer == 0);
return mImageArray[level];
}
Image *TextureD3D_3D::getImage(const gl::ImageIndex &index) const
{
ASSERT(index.mipIndex < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS);
ASSERT(!index.hasLayer());
ASSERT(index.type == GL_TEXTURE_3D);
return mImageArray[index.mipIndex];
}
GLsizei TextureD3D_3D::getLayerCount(int level) const
{
ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS);
return 1;
}
GLsizei TextureD3D_3D::getWidth(GLint level) const
{
if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level]->getWidth();
else
return 0;
}
GLsizei TextureD3D_3D::getHeight(GLint level) const
{
if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level]->getHeight();
else
return 0;
}
GLsizei TextureD3D_3D::getDepth(GLint level) const
{
if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level]->getDepth();
else
return 0;
}
GLenum TextureD3D_3D::getInternalFormat(GLint level) const
{
if (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level]->getInternalFormat();
else
return GL_NONE;
}
bool TextureD3D_3D::isDepth(GLint level) const
{
return gl::GetInternalFormatInfo(getInternalFormat(level)).depthBits > 0;
}
gl::Error TextureD3D_3D::setImage(GLenum target, GLint level, GLsizei width, GLsizei height, GLsizei depth,
GLenum internalFormat, GLenum format, GLenum type, const gl::PixelUnpackState &unpack,
const void *pixels)
{
ASSERT(target == GL_TEXTURE_3D);
GLenum sizedInternalFormat = gl::GetSizedInternalFormat(internalFormat, type);
redefineImage(level, sizedInternalFormat, width, height, depth);
bool fastUnpacked = false;
gl::ImageIndex index = gl::ImageIndex::Make3D(level);
// Attempt a fast gpu copy of the pixel data to the surface if the app bound an unpack buffer
if (isFastUnpackable(unpack, sizedInternalFormat))
{
// Will try to create RT storage if it does not exist
RenderTarget *destRenderTarget = NULL;
gl::Error error = getRenderTarget(index, &destRenderTarget);
if (error.isError())
{
return error;
}
gl::Box destArea(0, 0, 0, getWidth(level), getHeight(level), getDepth(level));
error = fastUnpackPixels(unpack, pixels, destArea, sizedInternalFormat, type, destRenderTarget);
if (error.isError())
{
return error;
}
// Ensure we don't overwrite our newly initialized data
mImageArray[level]->markClean();
fastUnpacked = true;
}
if (!fastUnpacked)
{
gl::Error error = TextureD3D::setImage(unpack, type, pixels, index);
if (error.isError())
{
return error;
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_3D::setCompressedImage(GLenum target, GLint level, GLenum format,
GLsizei width, GLsizei height,GLsizei depth,
GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels)
{
ASSERT(target == GL_TEXTURE_3D);
// compressed formats don't have separate sized internal formats-- we can just use the compressed format directly
redefineImage(level, format, width, height, depth);
return TextureD3D::setCompressedImage(unpack, imageSize, pixels, mImageArray[level]);
}
gl::Error TextureD3D_3D::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type,
const gl::PixelUnpackState &unpack, const void *pixels)
{
ASSERT(target == GL_TEXTURE_3D);
bool fastUnpacked = false;
gl::ImageIndex index = gl::ImageIndex::Make3D(level);
// Attempt a fast gpu copy of the pixel data to the surface if the app bound an unpack buffer
if (isFastUnpackable(unpack, getInternalFormat(level)))
{
RenderTarget *destRenderTarget = NULL;
gl::Error error = getRenderTarget(index, &destRenderTarget);
if (error.isError())
{
return error;
}
gl::Box destArea(xoffset, yoffset, zoffset, width, height, depth);
error = fastUnpackPixels(unpack, pixels, destArea, getInternalFormat(level), type, destRenderTarget);
if (error.isError())
{
return error;
}
// Ensure we don't overwrite our newly initialized data
mImageArray[level]->markClean();
fastUnpacked = true;
}
if (!fastUnpacked)
{
return TextureD3D::subImage(xoffset, yoffset, zoffset, width, height, depth, format, type,
unpack, pixels, index);
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_3D::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLsizei depth, GLenum format,
GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels)
{
ASSERT(target == GL_TEXTURE_3D);
gl::Error error = TextureD3D::subImageCompressed(xoffset, yoffset, zoffset, width, height, depth,
format, imageSize, unpack, pixels, mImageArray[level]);
if (error.isError())
{
return error;
}
gl::ImageIndex index = gl::ImageIndex::Make3D(level);
gl::Box region(xoffset, yoffset, zoffset, width, height, depth);
return commitRegion(index, region);
}
gl::Error TextureD3D_3D::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y,
GLsizei width, GLsizei height, gl::Framebuffer *source)
{
UNIMPLEMENTED();
return gl::Error(GL_INVALID_OPERATION, "Copying 3D textures is unimplemented.");
}
gl::Error TextureD3D_3D::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset,
GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source)
{
ASSERT(target == GL_TEXTURE_3D);
gl::Rectangle sourceRect(x, y, width, height);
gl::ImageIndex index = gl::ImageIndex::Make3D(level);
if (canCreateRenderTargetForImage(index))
{
gl::Error error = mImageArray[level]->copy(xoffset, yoffset, zoffset, sourceRect, source);
if (error.isError())
{
return error;
}
mDirtyImages = true;
}
else
{
gl::Error error = ensureRenderTarget();
if (error.isError())
{
return error;
}
if (isValidLevel(level))
{
error = updateStorageLevel(level);
if (error.isError())
{
return error;
}
error = mRenderer->copyImage3D(source, sourceRect,
gl::GetInternalFormatInfo(getBaseLevelInternalFormat()).format,
xoffset, yoffset, zoffset, mTexStorage, level);
if (error.isError())
{
return error;
}
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_3D::storage(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth)
{
ASSERT(target == GL_TEXTURE_3D);
for (int level = 0; level < levels; level++)
{
GLsizei levelWidth = std::max(1, width >> level);
GLsizei levelHeight = std::max(1, height >> level);
GLsizei levelDepth = std::max(1, depth >> level);
mImageArray[level]->redefine(GL_TEXTURE_3D, internalformat, levelWidth, levelHeight, levelDepth, true);
}
for (int level = levels; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
mImageArray[level]->redefine(GL_TEXTURE_3D, GL_NONE, 0, 0, 0, true);
}
// TODO(geofflang): Verify storage creation had no errors
bool renderTarget = IsRenderTargetUsage(mUsage);
TextureStorage *storage = mRenderer->createTextureStorage3D(internalformat, renderTarget, width, height, depth, levels);
gl::Error error = setCompleteTexStorage(storage);
if (error.isError())
{
SafeDelete(storage);
return error;
}
mImmutable = true;
return gl::Error(GL_NO_ERROR);
}
void TextureD3D_3D::bindTexImage(egl::Surface *surface)
{
UNREACHABLE();
}
void TextureD3D_3D::releaseTexImage()
{
UNREACHABLE();
}
void TextureD3D_3D::initMipmapsImages()
{
// Purge array levels 1 through q and reset them to represent the generated mipmap levels.
int levelCount = mipLevels();
for (int level = 1; level < levelCount; level++)
{
redefineImage(level, getBaseLevelInternalFormat(),
std::max(getBaseLevelWidth() >> level, 1),
std::max(getBaseLevelHeight() >> level, 1),
std::max(getBaseLevelDepth() >> level, 1));
}
}
unsigned int TextureD3D_3D::getRenderTargetSerial(const gl::ImageIndex &index)
{
return (!ensureRenderTarget().isError() ? mTexStorage->getRenderTargetSerial(index) : 0);
}
gl::Error TextureD3D_3D::getRenderTarget(const gl::ImageIndex &index, RenderTarget **outRT)
{
// ensure the underlying texture is created
gl::Error error = ensureRenderTarget();
if (error.isError())
{
return error;
}
if (index.hasLayer())
{
error = updateStorage();
if (error.isError())
{
return error;
}
}
else
{
error = updateStorageLevel(index.mipIndex);
if (error.isError())
{
return error;
}
}
return mTexStorage->getRenderTarget(index, outRT);
}
gl::Error TextureD3D_3D::initializeStorage(bool renderTarget)
{
// Only initialize the first time this texture is used as a render target or shader resource
if (mTexStorage)
{
return gl::Error(GL_NO_ERROR);
}
// do not attempt to create storage for nonexistant data
if (!isLevelComplete(0))
{
return gl::Error(GL_NO_ERROR);
}
bool createRenderTarget = (renderTarget || mUsage == GL_FRAMEBUFFER_ATTACHMENT_ANGLE);
TextureStorage *storage = NULL;
gl::Error error = createCompleteStorage(createRenderTarget, &storage);
if (error.isError())
{
return error;
}
error = setCompleteTexStorage(storage);
if (error.isError())
{
SafeDelete(storage);
return error;
}
ASSERT(mTexStorage);
// flush image data to the storage
error = updateStorage();
if (error.isError())
{
return error;
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_3D::createCompleteStorage(bool renderTarget, TextureStorage **outStorage) const
{
GLsizei width = getBaseLevelWidth();
GLsizei height = getBaseLevelHeight();
GLsizei depth = getBaseLevelDepth();
GLenum internalFormat = getBaseLevelInternalFormat();
ASSERT(width > 0 && height > 0 && depth > 0);
// use existing storage level count, when previously specified by TexStorage*D
GLint levels = (mTexStorage ? mTexStorage->getLevelCount() : creationLevels(width, height, depth));
// TODO: Verify creation of the storage succeeded
*outStorage = mRenderer->createTextureStorage3D(internalFormat, renderTarget, width, height, depth, levels);
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_3D::setCompleteTexStorage(TextureStorage *newCompleteTexStorage)
{
SafeDelete(mTexStorage);
mTexStorage = newCompleteTexStorage;
mDirtyImages = true;
// We do not support managed 3D storage, as that is D3D9/ES2-only
ASSERT(!mTexStorage->isManaged());
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_3D::updateStorage()
{
ASSERT(mTexStorage != NULL);
GLint storageLevels = mTexStorage->getLevelCount();
for (int level = 0; level < storageLevels; level++)
{
if (mImageArray[level]->isDirty() && isLevelComplete(level))
{
gl::Error error = updateStorageLevel(level);
if (error.isError())
{
return error;
}
}
}
return gl::Error(GL_NO_ERROR);
}
bool TextureD3D_3D::isValidLevel(int level) const
{
return (mTexStorage ? (level >= 0 && level < mTexStorage->getLevelCount()) : 0);
}
bool TextureD3D_3D::isLevelComplete(int level) const
{
ASSERT(level >= 0 && level < (int)ArraySize(mImageArray) && mImageArray[level] != NULL);
if (isImmutable())
{
return true;
}
GLsizei width = getBaseLevelWidth();
GLsizei height = getBaseLevelHeight();
GLsizei depth = getBaseLevelDepth();
if (width <= 0 || height <= 0 || depth <= 0)
{
return false;
}
if (level == 0)
{
return true;
}
ImageD3D *levelImage = mImageArray[level];
if (levelImage->getInternalFormat() != getBaseLevelInternalFormat())
{
return false;
}
if (levelImage->getWidth() != std::max(1, width >> level))
{
return false;
}
if (levelImage->getHeight() != std::max(1, height >> level))
{
return false;
}
if (levelImage->getDepth() != std::max(1, depth >> level))
{
return false;
}
return true;
}
bool TextureD3D_3D::isImageComplete(const gl::ImageIndex &index) const
{
return isLevelComplete(index.mipIndex);
}
gl::Error TextureD3D_3D::updateStorageLevel(int level)
{
ASSERT(level >= 0 && level < (int)ArraySize(mImageArray) && mImageArray[level] != NULL);
ASSERT(isLevelComplete(level));
if (mImageArray[level]->isDirty())
{
gl::ImageIndex index = gl::ImageIndex::Make3D(level);
gl::Box region(0, 0, 0, getWidth(level), getHeight(level), getDepth(level));
gl::Error error = commitRegion(index, region);
if (error.isError())
{
return error;
}
}
return gl::Error(GL_NO_ERROR);
}
void TextureD3D_3D::redefineImage(GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth)
{
// If there currently is a corresponding storage texture image, it has these parameters
const int storageWidth = std::max(1, getBaseLevelWidth() >> level);
const int storageHeight = std::max(1, getBaseLevelHeight() >> level);
const int storageDepth = std::max(1, getBaseLevelDepth() >> level);
const GLenum storageFormat = getBaseLevelInternalFormat();
mImageArray[level]->redefine(GL_TEXTURE_3D, internalformat, width, height, depth, false);
if (mTexStorage)
{
const int storageLevels = mTexStorage->getLevelCount();
if ((level >= storageLevels && storageLevels != 0) ||
width != storageWidth ||
height != storageHeight ||
depth != storageDepth ||
internalformat != storageFormat) // Discard mismatched storage
{
for (int i = 0; i < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
mImageArray[i]->markDirty();
}
SafeDelete(mTexStorage);
mDirtyImages = true;
}
}
}
gl::ImageIndexIterator TextureD3D_3D::imageIterator() const
{
return gl::ImageIndexIterator::Make3D(0, mTexStorage->getLevelCount(),
gl::ImageIndex::ENTIRE_LEVEL, gl::ImageIndex::ENTIRE_LEVEL);
}
gl::ImageIndex TextureD3D_3D::getImageIndex(GLint mip, GLint /*layer*/) const
{
// The "layer" here does not apply to 3D images. We use one Image per mip.
return gl::ImageIndex::Make3D(mip);
}
bool TextureD3D_3D::isValidIndex(const gl::ImageIndex &index) const
{
return (mTexStorage && index.type == GL_TEXTURE_3D &&
index.mipIndex >= 0 && index.mipIndex < mTexStorage->getLevelCount());
}
TextureD3D_2DArray::TextureD3D_2DArray(RendererD3D *renderer)
: TextureD3D(renderer)
{
for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++level)
{
mLayerCounts[level] = 0;
mImageArray[level] = NULL;
}
}
TextureD3D_2DArray::~TextureD3D_2DArray()
{
// Delete the Images before the TextureStorage.
// Images might be relying on the TextureStorage for some of their data.
// If TextureStorage is deleted before the Images, then their data will be wastefully copied back from the GPU before we delete the Images.
deleteImages();
SafeDelete(mTexStorage);
}
Image *TextureD3D_2DArray::getImage(int level, int layer) const
{
ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS);
ASSERT((layer == 0 && mLayerCounts[level] == 0) ||
layer < mLayerCounts[level]);
return (mImageArray[level] ? mImageArray[level][layer] : NULL);
}
Image *TextureD3D_2DArray::getImage(const gl::ImageIndex &index) const
{
ASSERT(index.mipIndex < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS);
ASSERT((index.layerIndex == 0 && mLayerCounts[index.mipIndex] == 0) ||
index.layerIndex < mLayerCounts[index.mipIndex]);
ASSERT(index.type == GL_TEXTURE_2D_ARRAY);
return (mImageArray[index.mipIndex] ? mImageArray[index.mipIndex][index.layerIndex] : NULL);
}
GLsizei TextureD3D_2DArray::getLayerCount(int level) const
{
ASSERT(level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS);
return mLayerCounts[level];
}
GLsizei TextureD3D_2DArray::getWidth(GLint level) const
{
return (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS && mLayerCounts[level] > 0) ? mImageArray[level][0]->getWidth() : 0;
}
GLsizei TextureD3D_2DArray::getHeight(GLint level) const
{
return (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS && mLayerCounts[level] > 0) ? mImageArray[level][0]->getHeight() : 0;
}
GLenum TextureD3D_2DArray::getInternalFormat(GLint level) const
{
return (level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS && mLayerCounts[level] > 0) ? mImageArray[level][0]->getInternalFormat() : GL_NONE;
}
bool TextureD3D_2DArray::isDepth(GLint level) const
{
return gl::GetInternalFormatInfo(getInternalFormat(level)).depthBits > 0;
}
gl::Error TextureD3D_2DArray::setImage(GLenum target, GLint level, GLsizei width, GLsizei height, GLsizei depth,
GLenum internalFormat, GLenum format, GLenum type, const gl::PixelUnpackState &unpack,
const void *pixels)
{
ASSERT(target == GL_TEXTURE_2D_ARRAY);
GLenum sizedInternalFormat = gl::GetSizedInternalFormat(internalFormat, type);
redefineImage(level, sizedInternalFormat, width, height, depth);
const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(sizedInternalFormat);
GLsizei inputDepthPitch = formatInfo.computeDepthPitch(type, width, height, unpack.alignment);
for (int i = 0; i < depth; i++)
{
const void *layerPixels = pixels ? (reinterpret_cast<const unsigned char*>(pixels) + (inputDepthPitch * i)) : NULL;
gl::ImageIndex index = gl::ImageIndex::Make2DArray(level, i);
gl::Error error = TextureD3D::setImage(unpack, type, layerPixels, index);
if (error.isError())
{
return error;
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2DArray::setCompressedImage(GLenum target, GLint level, GLenum format,
GLsizei width, GLsizei height, GLsizei depth,
GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels)
{
ASSERT(target == GL_TEXTURE_2D_ARRAY);
// compressed formats don't have separate sized internal formats-- we can just use the compressed format directly
redefineImage(level, format, width, height, depth);
const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(format);
GLsizei inputDepthPitch = formatInfo.computeDepthPitch(GL_UNSIGNED_BYTE, width, height, 1);
for (int i = 0; i < depth; i++)
{
const void *layerPixels = pixels ? (reinterpret_cast<const unsigned char*>(pixels) + (inputDepthPitch * i)) : NULL;
gl::Error error = TextureD3D::setCompressedImage(unpack, imageSize, layerPixels, mImageArray[level][i]);
if (error.isError())
{
return error;
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2DArray::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type,
const gl::PixelUnpackState &unpack, const void *pixels)
{
ASSERT(target == GL_TEXTURE_2D_ARRAY);
const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(getInternalFormat(level));
GLsizei inputDepthPitch = formatInfo.computeDepthPitch(type, width, height, unpack.alignment);
for (int i = 0; i < depth; i++)
{
int layer = zoffset + i;
const void *layerPixels = pixels ? (reinterpret_cast<const unsigned char*>(pixels) + (inputDepthPitch * i)) : NULL;
gl::ImageIndex index = gl::ImageIndex::Make2DArray(level, layer);
gl::Error error = TextureD3D::subImage(xoffset, yoffset, 0, width, height, 1, format, type,
unpack, layerPixels, index);
if (error.isError())
{
return error;
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2DArray::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLsizei depth, GLenum format,
GLsizei imageSize, const gl::PixelUnpackState &unpack, const void *pixels)
{
ASSERT(target == GL_TEXTURE_2D_ARRAY);
const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(format);
GLsizei inputDepthPitch = formatInfo.computeDepthPitch(GL_UNSIGNED_BYTE, width, height, 1);
for (int i = 0; i < depth; i++)
{
int layer = zoffset + i;
const void *layerPixels = pixels ? (reinterpret_cast<const unsigned char*>(pixels) + (inputDepthPitch * i)) : NULL;
gl::Error error = TextureD3D::subImageCompressed(xoffset, yoffset, zoffset, width, height, 1, format, imageSize, unpack, layerPixels, mImageArray[level][layer]);
if (error.isError())
{
return error;
}
gl::ImageIndex index = gl::ImageIndex::Make2DArray(level, layer);
gl::Box region(xoffset, yoffset, 0, width, height, 1);
error = commitRegion(index, region);
if (error.isError())
{
return error;
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2DArray::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source)
{
UNIMPLEMENTED();
return gl::Error(GL_INVALID_OPERATION, "Copying 2D array textures is unimplemented.");
}
gl::Error TextureD3D_2DArray::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height, gl::Framebuffer *source)
{
ASSERT(target == GL_TEXTURE_2D_ARRAY);
gl::Rectangle sourceRect(x, y, width, height);
gl::ImageIndex index = gl::ImageIndex::Make2DArray(level, zoffset);
if (canCreateRenderTargetForImage(index))
{
gl::Error error = mImageArray[level][zoffset]->copy(xoffset, yoffset, 0, sourceRect, source);
if (error.isError())
{
return error;
}
mDirtyImages = true;
}
else
{
gl::Error error = ensureRenderTarget();
if (error.isError())
{
return error;
}
if (isValidLevel(level))
{
error = updateStorageLevel(level);
if (error.isError())
{
return error;
}
error = mRenderer->copyImage2DArray(source, sourceRect, gl::GetInternalFormatInfo(getInternalFormat(0)).format,
xoffset, yoffset, zoffset, mTexStorage, level);
if (error.isError())
{
return error;
}
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2DArray::storage(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth)
{
ASSERT(target == GL_TEXTURE_2D_ARRAY);
deleteImages();
for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
GLsizei levelWidth = std::max(1, width >> level);
GLsizei levelHeight = std::max(1, height >> level);
mLayerCounts[level] = (level < levels ? depth : 0);
if (mLayerCounts[level] > 0)
{
// Create new images for this level
mImageArray[level] = new ImageD3D*[mLayerCounts[level]];
for (int layer = 0; layer < mLayerCounts[level]; layer++)
{
mImageArray[level][layer] = ImageD3D::makeImageD3D(mRenderer->createImage());
mImageArray[level][layer]->redefine(GL_TEXTURE_2D_ARRAY, internalformat, levelWidth,
levelHeight, 1, true);
}
}
}
// TODO(geofflang): Verify storage creation had no errors
bool renderTarget = IsRenderTargetUsage(mUsage);
TextureStorage *storage = mRenderer->createTextureStorage2DArray(internalformat, renderTarget, width, height, depth, levels);
gl::Error error = setCompleteTexStorage(storage);
if (error.isError())
{
SafeDelete(storage);
return error;
}
mImmutable = true;
return gl::Error(GL_NO_ERROR);
}
void TextureD3D_2DArray::bindTexImage(egl::Surface *surface)
{
UNREACHABLE();
}
void TextureD3D_2DArray::releaseTexImage()
{
UNREACHABLE();
}
void TextureD3D_2DArray::initMipmapsImages()
{
int baseWidth = getBaseLevelWidth();
int baseHeight = getBaseLevelHeight();
int baseDepth = getLayerCount(0);
GLenum baseFormat = getBaseLevelInternalFormat();
// Purge array levels 1 through q and reset them to represent the generated mipmap levels.
int levelCount = mipLevels();
for (int level = 1; level < levelCount; level++)
{
redefineImage(level, baseFormat, std::max(baseWidth >> level, 1), std::max(baseHeight >> level, 1), baseDepth);
}
}
unsigned int TextureD3D_2DArray::getRenderTargetSerial(const gl::ImageIndex &index)
{
return (!ensureRenderTarget().isError() ? mTexStorage->getRenderTargetSerial(index) : 0);
}
gl::Error TextureD3D_2DArray::getRenderTarget(const gl::ImageIndex &index, RenderTarget **outRT)
{
// ensure the underlying texture is created
gl::Error error = ensureRenderTarget();
if (error.isError())
{
return error;
}
error = updateStorageLevel(index.mipIndex);
if (error.isError())
{
return error;
}
return mTexStorage->getRenderTarget(index, outRT);
}
gl::Error TextureD3D_2DArray::initializeStorage(bool renderTarget)
{
// Only initialize the first time this texture is used as a render target or shader resource
if (mTexStorage)
{
return gl::Error(GL_NO_ERROR);
}
// do not attempt to create storage for nonexistant data
if (!isLevelComplete(0))
{
return gl::Error(GL_NO_ERROR);
}
bool createRenderTarget = (renderTarget || mUsage == GL_FRAMEBUFFER_ATTACHMENT_ANGLE);
TextureStorage *storage = NULL;
gl::Error error = createCompleteStorage(createRenderTarget, &storage);
if (error.isError())
{
return error;
}
error = setCompleteTexStorage(storage);
if (error.isError())
{
SafeDelete(storage);
return error;
}
ASSERT(mTexStorage);
// flush image data to the storage
error = updateStorage();
if (error.isError())
{
return error;
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2DArray::createCompleteStorage(bool renderTarget, TextureStorage **outStorage) const
{
GLsizei width = getBaseLevelWidth();
GLsizei height = getBaseLevelHeight();
GLsizei depth = getLayerCount(0);
GLenum internalFormat = getBaseLevelInternalFormat();
ASSERT(width > 0 && height > 0 && depth > 0);
// use existing storage level count, when previously specified by TexStorage*D
GLint levels = (mTexStorage ? mTexStorage->getLevelCount() : creationLevels(width, height, 1));
// TODO(geofflang): Verify storage creation succeeds
*outStorage = mRenderer->createTextureStorage2DArray(internalFormat, renderTarget, width, height, depth, levels);
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2DArray::setCompleteTexStorage(TextureStorage *newCompleteTexStorage)
{
SafeDelete(mTexStorage);
mTexStorage = newCompleteTexStorage;
mDirtyImages = true;
// We do not support managed 2D array storage, as managed storage is ES2/D3D9 only
ASSERT(!mTexStorage->isManaged());
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureD3D_2DArray::updateStorage()
{
ASSERT(mTexStorage != NULL);
GLint storageLevels = mTexStorage->getLevelCount();
for (int level = 0; level < storageLevels; level++)
{
if (isLevelComplete(level))
{
gl::Error error = updateStorageLevel(level);
if (error.isError())
{
return error;
}
}
}
return gl::Error(GL_NO_ERROR);
}
bool TextureD3D_2DArray::isValidLevel(int level) const
{
return (mTexStorage ? (level >= 0 && level < mTexStorage->getLevelCount()) : 0);
}
bool TextureD3D_2DArray::isLevelComplete(int level) const
{
ASSERT(level >= 0 && level < (int)ArraySize(mImageArray));
if (isImmutable())
{
return true;
}
GLsizei width = getBaseLevelWidth();
GLsizei height = getBaseLevelHeight();
GLsizei layers = getLayerCount(0);
if (width <= 0 || height <= 0 || layers <= 0)
{
return false;
}
if (level == 0)
{
return true;
}
if (getInternalFormat(level) != getInternalFormat(0))
{
return false;
}
if (getWidth(level) != std::max(1, width >> level))
{
return false;
}
if (getHeight(level) != std::max(1, height >> level))
{
return false;
}
if (getLayerCount(level) != layers)
{
return false;
}
return true;
}
bool TextureD3D_2DArray::isImageComplete(const gl::ImageIndex &index) const
{
return isLevelComplete(index.mipIndex);
}
gl::Error TextureD3D_2DArray::updateStorageLevel(int level)
{
ASSERT(level >= 0 && level < (int)ArraySize(mLayerCounts));
ASSERT(isLevelComplete(level));
for (int layer = 0; layer < mLayerCounts[level]; layer++)
{
ASSERT(mImageArray[level] != NULL && mImageArray[level][layer] != NULL);
if (mImageArray[level][layer]->isDirty())
{
gl::ImageIndex index = gl::ImageIndex::Make2DArray(level, layer);
gl::Box region(0, 0, 0, getWidth(level), getHeight(level), 1);
gl::Error error = commitRegion(index, region);
if (error.isError())
{
return error;
}
}
}
return gl::Error(GL_NO_ERROR);
}
void TextureD3D_2DArray::deleteImages()
{
for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++level)
{
for (int layer = 0; layer < mLayerCounts[level]; ++layer)
{
delete mImageArray[level][layer];
}
delete[] mImageArray[level];
mImageArray[level] = NULL;
mLayerCounts[level] = 0;
}
}
void TextureD3D_2DArray::redefineImage(GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth)
{
// If there currently is a corresponding storage texture image, it has these parameters
const int storageWidth = std::max(1, getBaseLevelWidth() >> level);
const int storageHeight = std::max(1, getBaseLevelHeight() >> level);
const int storageDepth = getLayerCount(0);
const GLenum storageFormat = getBaseLevelInternalFormat();
for (int layer = 0; layer < mLayerCounts[level]; layer++)
{
delete mImageArray[level][layer];
}
delete[] mImageArray[level];
mImageArray[level] = NULL;
mLayerCounts[level] = depth;
if (depth > 0)
{
mImageArray[level] = new ImageD3D*[depth]();
for (int layer = 0; layer < mLayerCounts[level]; layer++)
{
mImageArray[level][layer] = ImageD3D::makeImageD3D(mRenderer->createImage());
mImageArray[level][layer]->redefine(GL_TEXTURE_2D_ARRAY, internalformat, width, height, 1, false);
}
}
if (mTexStorage)
{
const int storageLevels = mTexStorage->getLevelCount();
if ((level >= storageLevels && storageLevels != 0) ||
width != storageWidth ||
height != storageHeight ||
depth != storageDepth ||
internalformat != storageFormat) // Discard mismatched storage
{
for (int level = 0; level < gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
for (int layer = 0; layer < mLayerCounts[level]; layer++)
{
mImageArray[level][layer]->markDirty();
}
}
delete mTexStorage;
mTexStorage = NULL;
mDirtyImages = true;
}
}
}
gl::ImageIndexIterator TextureD3D_2DArray::imageIterator() const
{
return gl::ImageIndexIterator::Make2DArray(0, mTexStorage->getLevelCount(), mLayerCounts);
}
gl::ImageIndex TextureD3D_2DArray::getImageIndex(GLint mip, GLint layer) const
{
return gl::ImageIndex::Make2DArray(mip, layer);
}
bool TextureD3D_2DArray::isValidIndex(const gl::ImageIndex &index) const
{
// Check for having a storage and the right type of index
if (!mTexStorage || index.type != GL_TEXTURE_2D_ARRAY)
{
return false;
}
// Check the mip index
if (index.mipIndex < 0 || index.mipIndex >= mTexStorage->getLevelCount())
{
return false;
}
// Check the layer index
return (!index.hasLayer() || (index.layerIndex >= 0 && index.layerIndex < mLayerCounts[index.mipIndex]));
}
}