blob: 3629f05e7f4d731c8f64ee01c527b1279d3a5709 [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "libANGLE/Program.h"
#include <algorithm>
#include "common/BitSetIterator.h"
#include "common/debug.h"
#include "common/platform.h"
#include "common/utilities.h"
#include "common/version.h"
#include "compiler/translator/blocklayout.h"
#include "libANGLE/ContextState.h"
#include "libANGLE/ResourceManager.h"
#include "libANGLE/features.h"
#include "libANGLE/renderer/GLImplFactory.h"
#include "libANGLE/renderer/ProgramImpl.h"
#include "libANGLE/queryconversions.h"
#include "libANGLE/Uniform.h"
namespace gl
{
namespace
{
void WriteShaderVar(BinaryOutputStream *stream, const sh::ShaderVariable &var)
{
stream->writeInt(var.type);
stream->writeInt(var.precision);
stream->writeString(var.name);
stream->writeString(var.mappedName);
stream->writeInt(var.arraySize);
stream->writeInt(var.staticUse);
stream->writeString(var.structName);
ASSERT(var.fields.empty());
}
void LoadShaderVar(BinaryInputStream *stream, sh::ShaderVariable *var)
{
var->type = stream->readInt<GLenum>();
var->precision = stream->readInt<GLenum>();
var->name = stream->readString();
var->mappedName = stream->readString();
var->arraySize = stream->readInt<unsigned int>();
var->staticUse = stream->readBool();
var->structName = stream->readString();
}
// This simplified cast function doesn't need to worry about advanced concepts like
// depth range values, or casting to bool.
template <typename DestT, typename SrcT>
DestT UniformStateQueryCast(SrcT value);
// From-Float-To-Integer Casts
template <>
GLint UniformStateQueryCast(GLfloat value)
{
return clampCast<GLint>(roundf(value));
}
template <>
GLuint UniformStateQueryCast(GLfloat value)
{
return clampCast<GLuint>(roundf(value));
}
// From-Integer-to-Integer Casts
template <>
GLint UniformStateQueryCast(GLuint value)
{
return clampCast<GLint>(value);
}
template <>
GLuint UniformStateQueryCast(GLint value)
{
return clampCast<GLuint>(value);
}
// From-Boolean-to-Anything Casts
template <>
GLfloat UniformStateQueryCast(GLboolean value)
{
return (value == GL_TRUE ? 1.0f : 0.0f);
}
template <>
GLint UniformStateQueryCast(GLboolean value)
{
return (value == GL_TRUE ? 1 : 0);
}
template <>
GLuint UniformStateQueryCast(GLboolean value)
{
return (value == GL_TRUE ? 1u : 0u);
}
// Default to static_cast
template <typename DestT, typename SrcT>
DestT UniformStateQueryCast(SrcT value)
{
return static_cast<DestT>(value);
}
template <typename SrcT, typename DestT>
void UniformStateQueryCastLoop(DestT *dataOut, const uint8_t *srcPointer, int components)
{
for (int comp = 0; comp < components; ++comp)
{
// We only work with strides of 4 bytes for uniform components. (GLfloat/GLint)
// Don't use SrcT stride directly since GLboolean has a stride of 1 byte.
size_t offset = comp * 4;
const SrcT *typedSrcPointer = reinterpret_cast<const SrcT *>(&srcPointer[offset]);
dataOut[comp] = UniformStateQueryCast<DestT>(*typedSrcPointer);
}
}
bool UniformInList(const std::vector<LinkedUniform> &list, const std::string &name)
{
for (const LinkedUniform &uniform : list)
{
if (uniform.name == name)
return true;
}
return false;
}
} // anonymous namespace
const char *const g_fakepath = "C:\\fakepath";
InfoLog::InfoLog()
{
}
InfoLog::~InfoLog()
{
}
size_t InfoLog::getLength() const
{
const std::string &logString = mStream.str();
return logString.empty() ? 0 : logString.length() + 1;
}
void InfoLog::getLog(GLsizei bufSize, GLsizei *length, char *infoLog) const
{
size_t index = 0;
if (bufSize > 0)
{
const std::string str(mStream.str());
if (!str.empty())
{
index = std::min(static_cast<size_t>(bufSize) - 1, str.length());
memcpy(infoLog, str.c_str(), index);
}
infoLog[index] = '\0';
}
if (length)
{
*length = static_cast<GLsizei>(index);
}
}
// append a santized message to the program info log.
// The D3D compiler includes a fake file path in some of the warning or error
// messages, so lets remove all occurrences of this fake file path from the log.
void InfoLog::appendSanitized(const char *message)
{
std::string msg(message);
size_t found;
do
{
found = msg.find(g_fakepath);
if (found != std::string::npos)
{
msg.erase(found, strlen(g_fakepath));
}
}
while (found != std::string::npos);
mStream << message << std::endl;
}
void InfoLog::reset()
{
}
VariableLocation::VariableLocation() : name(), element(0), index(0), used(false), ignored(false)
{
}
VariableLocation::VariableLocation(const std::string &name,
unsigned int element,
unsigned int index)
: name(name), element(element), index(index), used(true), ignored(false)
{
}
void Program::Bindings::bindLocation(GLuint index, const std::string &name)
{
mBindings[name] = index;
}
int Program::Bindings::getBinding(const std::string &name) const
{
auto iter = mBindings.find(name);
return (iter != mBindings.end()) ? iter->second : -1;
}
Program::Bindings::const_iterator Program::Bindings::begin() const
{
return mBindings.begin();
}
Program::Bindings::const_iterator Program::Bindings::end() const
{
return mBindings.end();
}
ProgramState::ProgramState()
: mLabel(),
mAttachedFragmentShader(nullptr),
mAttachedVertexShader(nullptr),
mAttachedComputeShader(nullptr),
mTransformFeedbackBufferMode(GL_INTERLEAVED_ATTRIBS),
mBinaryRetrieveableHint(false)
{
mComputeShaderLocalSize.fill(1);
}
ProgramState::~ProgramState()
{
if (mAttachedVertexShader != nullptr)
{
mAttachedVertexShader->release();
}
if (mAttachedFragmentShader != nullptr)
{
mAttachedFragmentShader->release();
}
if (mAttachedComputeShader != nullptr)
{
mAttachedComputeShader->release();
}
}
const std::string &ProgramState::getLabel()
{
return mLabel;
}
const LinkedUniform *ProgramState::getUniformByName(const std::string &name) const
{
for (const LinkedUniform &linkedUniform : mUniforms)
{
if (linkedUniform.name == name)
{
return &linkedUniform;
}
}
return nullptr;
}
GLint ProgramState::getUniformLocation(const std::string &name) const
{
size_t subscript = GL_INVALID_INDEX;
std::string baseName = gl::ParseUniformName(name, &subscript);
for (size_t location = 0; location < mUniformLocations.size(); ++location)
{
const VariableLocation &uniformLocation = mUniformLocations[location];
if (!uniformLocation.used)
{
continue;
}
const LinkedUniform &uniform = mUniforms[uniformLocation.index];
if (uniform.name == baseName)
{
if (uniform.isArray())
{
if (uniformLocation.element == subscript ||
(uniformLocation.element == 0 && subscript == GL_INVALID_INDEX))
{
return static_cast<GLint>(location);
}
}
else
{
if (subscript == GL_INVALID_INDEX)
{
return static_cast<GLint>(location);
}
}
}
}
return -1;
}
GLuint ProgramState::getUniformIndex(const std::string &name) const
{
size_t subscript = GL_INVALID_INDEX;
std::string baseName = gl::ParseUniformName(name, &subscript);
// The app is not allowed to specify array indices other than 0 for arrays of basic types
if (subscript != 0 && subscript != GL_INVALID_INDEX)
{
return GL_INVALID_INDEX;
}
for (size_t index = 0; index < mUniforms.size(); index++)
{
const LinkedUniform &uniform = mUniforms[index];
if (uniform.name == baseName)
{
if (uniform.isArray() || subscript == GL_INVALID_INDEX)
{
return static_cast<GLuint>(index);
}
}
}
return GL_INVALID_INDEX;
}
Program::Program(rx::GLImplFactory *factory, ResourceManager *manager, GLuint handle)
: mProgram(factory->createProgram(mState)),
mValidated(false),
mLinked(false),
mDeleteStatus(false),
mRefCount(0),
mResourceManager(manager),
mHandle(handle),
mSamplerUniformRange(0, 0)
{
ASSERT(mProgram);
resetUniformBlockBindings();
unlink();
}
Program::~Program()
{
unlink(true);
SafeDelete(mProgram);
}
void Program::setLabel(const std::string &label)
{
mState.mLabel = label;
}
const std::string &Program::getLabel() const
{
return mState.mLabel;
}
void Program::attachShader(Shader *shader)
{
switch (shader->getType())
{
case GL_VERTEX_SHADER:
{
ASSERT(!mState.mAttachedVertexShader);
mState.mAttachedVertexShader = shader;
mState.mAttachedVertexShader->addRef();
break;
}
case GL_FRAGMENT_SHADER:
{
ASSERT(!mState.mAttachedFragmentShader);
mState.mAttachedFragmentShader = shader;
mState.mAttachedFragmentShader->addRef();
break;
}
case GL_COMPUTE_SHADER:
{
ASSERT(!mState.mAttachedComputeShader);
mState.mAttachedComputeShader = shader;
mState.mAttachedComputeShader->addRef();
break;
}
default:
UNREACHABLE();
}
}
bool Program::detachShader(Shader *shader)
{
switch (shader->getType())
{
case GL_VERTEX_SHADER:
{
if (mState.mAttachedVertexShader != shader)
{
return false;
}
shader->release();
mState.mAttachedVertexShader = nullptr;
break;
}
case GL_FRAGMENT_SHADER:
{
if (mState.mAttachedFragmentShader != shader)
{
return false;
}
shader->release();
mState.mAttachedFragmentShader = nullptr;
break;
}
case GL_COMPUTE_SHADER:
{
if (mState.mAttachedComputeShader != shader)
{
return false;
}
shader->release();
mState.mAttachedComputeShader = nullptr;
break;
}
default:
UNREACHABLE();
}
return true;
}
int Program::getAttachedShadersCount() const
{
return (mState.mAttachedVertexShader ? 1 : 0) + (mState.mAttachedFragmentShader ? 1 : 0) +
(mState.mAttachedComputeShader ? 1 : 0);
}
void Program::bindAttributeLocation(GLuint index, const char *name)
{
mAttributeBindings.bindLocation(index, name);
}
void Program::bindUniformLocation(GLuint index, const char *name)
{
// Bind the base uniform name only since array indices other than 0 cannot be bound
mUniformBindings.bindLocation(index, ParseUniformName(name, nullptr));
}
void Program::bindFragmentInputLocation(GLint index, const char *name)
{
mFragmentInputBindings.bindLocation(index, name);
}
BindingInfo Program::getFragmentInputBindingInfo(GLint index) const
{
BindingInfo ret;
ret.type = GL_NONE;
ret.valid = false;
const Shader *fragmentShader = mState.getAttachedFragmentShader();
ASSERT(fragmentShader);
// Find the actual fragment shader varying we're interested in
const std::vector<sh::Varying> &inputs = fragmentShader->getVaryings();
for (const auto &binding : mFragmentInputBindings)
{
if (binding.second != static_cast<GLuint>(index))
continue;
ret.valid = true;
std::string originalName = binding.first;
unsigned int arrayIndex = ParseAndStripArrayIndex(&originalName);
for (const auto &in : inputs)
{
if (in.name == originalName)
{
if (in.isArray())
{
// The client wants to bind either "name" or "name[0]".
// GL ES 3.1 spec refers to active array names with language such as:
// "if the string identifies the base name of an active array, where the
// string would exactly match the name of the variable if the suffix "[0]"
// were appended to the string".
if (arrayIndex == GL_INVALID_INDEX)
arrayIndex = 0;
ret.name = in.mappedName + "[" + ToString(arrayIndex) + "]";
}
else
{
ret.name = in.mappedName;
}
ret.type = in.type;
return ret;
}
}
}
return ret;
}
void Program::pathFragmentInputGen(GLint index,
GLenum genMode,
GLint components,
const GLfloat *coeffs)
{
// If the location is -1 then the command is silently ignored
if (index == -1)
return;
const auto &binding = getFragmentInputBindingInfo(index);
// If the input doesn't exist then then the command is silently ignored
// This could happen through optimization for example, the shader translator
// decides that a variable is not actually being used and optimizes it away.
if (binding.name.empty())
return;
mProgram->setPathFragmentInputGen(binding.name, genMode, components, coeffs);
}
// The attached shaders are checked for linking errors by matching up their variables.
// Uniform, input and output variables get collected.
// The code gets compiled into binaries.
Error Program::link(const ContextState &data)
{
unlink(false);
mInfoLog.reset();
resetUniformBlockBindings();
const Caps &caps = data.getCaps();
bool isComputeShaderAttached = (mState.mAttachedComputeShader != nullptr);
bool nonComputeShadersAttached =
(mState.mAttachedVertexShader != nullptr || mState.mAttachedFragmentShader != nullptr);
// Check whether we both have a compute and non-compute shaders attached.
// If there are of both types attached, then linking should fail.
// OpenGL ES 3.10, 7.3 Program Objects, under LinkProgram
if (isComputeShaderAttached == true && nonComputeShadersAttached == true)
{
mInfoLog << "Both a compute and non-compute shaders are attached to the same program.";
return NoError();
}
if (mState.mAttachedComputeShader)
{
if (!mState.mAttachedComputeShader->isCompiled())
{
mInfoLog << "Attached compute shader is not compiled.";
return NoError();
}
ASSERT(mState.mAttachedComputeShader->getType() == GL_COMPUTE_SHADER);
mState.mComputeShaderLocalSize = mState.mAttachedComputeShader->getWorkGroupSize();
// GLSL ES 3.10, 4.4.1.1 Compute Shader Inputs
// If the work group size is not specified, a link time error should occur.
if (!mState.mComputeShaderLocalSize.isDeclared())
{
mInfoLog << "Work group size is not specified.";
return NoError();
}
if (!linkUniforms(mInfoLog, caps, mUniformBindings))
{
return NoError();
}
if (!linkUniformBlocks(mInfoLog, caps))
{
return NoError();
}
rx::LinkResult result = mProgram->link(data, mInfoLog);
if (result.error.isError() || !result.linkSuccess)
{
return result.error;
}
}
else
{
if (!mState.mAttachedFragmentShader || !mState.mAttachedFragmentShader->isCompiled())
{
return NoError();
}
ASSERT(mState.mAttachedFragmentShader->getType() == GL_FRAGMENT_SHADER);
if (!mState.mAttachedVertexShader || !mState.mAttachedVertexShader->isCompiled())
{
return NoError();
}
ASSERT(mState.mAttachedVertexShader->getType() == GL_VERTEX_SHADER);
if (mState.mAttachedFragmentShader->getShaderVersion() !=
mState.mAttachedVertexShader->getShaderVersion())
{
mInfoLog << "Fragment shader version does not match vertex shader version.";
return NoError();
}
if (!linkAttributes(data, mInfoLog, mAttributeBindings, mState.mAttachedVertexShader))
{
return NoError();
}
if (!linkVaryings(mInfoLog, mState.mAttachedVertexShader, mState.mAttachedFragmentShader))
{
return NoError();
}
if (!linkUniforms(mInfoLog, caps, mUniformBindings))
{
return NoError();
}
if (!linkUniformBlocks(mInfoLog, caps))
{
return NoError();
}
const auto &mergedVaryings = getMergedVaryings();
if (!linkValidateTransformFeedback(mInfoLog, mergedVaryings, caps))
{
return NoError();
}
linkOutputVariables();
rx::LinkResult result = mProgram->link(data, mInfoLog);
if (result.error.isError() || !result.linkSuccess)
{
return result.error;
}
gatherTransformFeedbackVaryings(mergedVaryings);
}
gatherInterfaceBlockInfo();
mLinked = true;
return NoError();
}
// Returns the program object to an unlinked state, before re-linking, or at destruction
void Program::unlink(bool destroy)
{
if (destroy) // Object being destructed
{
if (mState.mAttachedFragmentShader)
{
mState.mAttachedFragmentShader->release();
mState.mAttachedFragmentShader = nullptr;
}
if (mState.mAttachedVertexShader)
{
mState.mAttachedVertexShader->release();
mState.mAttachedVertexShader = nullptr;
}
if (mState.mAttachedComputeShader)
{
mState.mAttachedComputeShader->release();
mState.mAttachedComputeShader = nullptr;
}
}
mState.mAttributes.clear();
mState.mActiveAttribLocationsMask.reset();
mState.mTransformFeedbackVaryingVars.clear();
mState.mUniforms.clear();
mState.mUniformLocations.clear();
mState.mUniformBlocks.clear();
mState.mOutputVariables.clear();
mState.mComputeShaderLocalSize.fill(1);
mValidated = false;
mLinked = false;
}
bool Program::isLinked() const
{
return mLinked;
}
Error Program::loadBinary(GLenum binaryFormat, const void *binary, GLsizei length)
{
unlink(false);
#if ANGLE_PROGRAM_BINARY_LOAD != ANGLE_ENABLED
return Error(GL_NO_ERROR);
#else
ASSERT(binaryFormat == GL_PROGRAM_BINARY_ANGLE);
if (binaryFormat != GL_PROGRAM_BINARY_ANGLE)
{
mInfoLog << "Invalid program binary format.";
return Error(GL_NO_ERROR);
}
BinaryInputStream stream(binary, length);
int majorVersion = stream.readInt<int>();
int minorVersion = stream.readInt<int>();
if (majorVersion != ANGLE_MAJOR_VERSION || minorVersion != ANGLE_MINOR_VERSION)
{
mInfoLog << "Invalid program binary version.";
return Error(GL_NO_ERROR);
}
unsigned char commitString[ANGLE_COMMIT_HASH_SIZE];
stream.readBytes(commitString, ANGLE_COMMIT_HASH_SIZE);
if (memcmp(commitString, ANGLE_COMMIT_HASH, sizeof(unsigned char) * ANGLE_COMMIT_HASH_SIZE) != 0)
{
mInfoLog << "Invalid program binary version.";
return Error(GL_NO_ERROR);
}
mState.mComputeShaderLocalSize[0] = stream.readInt<int>();
mState.mComputeShaderLocalSize[1] = stream.readInt<int>();
mState.mComputeShaderLocalSize[2] = stream.readInt<int>();
static_assert(MAX_VERTEX_ATTRIBS <= sizeof(unsigned long) * 8,
"Too many vertex attribs for mask");
mState.mActiveAttribLocationsMask = stream.readInt<unsigned long>();
unsigned int attribCount = stream.readInt<unsigned int>();
ASSERT(mState.mAttributes.empty());
for (unsigned int attribIndex = 0; attribIndex < attribCount; ++attribIndex)
{
sh::Attribute attrib;
LoadShaderVar(&stream, &attrib);
attrib.location = stream.readInt<int>();
mState.mAttributes.push_back(attrib);
}
unsigned int uniformCount = stream.readInt<unsigned int>();
ASSERT(mState.mUniforms.empty());
for (unsigned int uniformIndex = 0; uniformIndex < uniformCount; ++uniformIndex)
{
LinkedUniform uniform;
LoadShaderVar(&stream, &uniform);
uniform.blockIndex = stream.readInt<int>();
uniform.blockInfo.offset = stream.readInt<int>();
uniform.blockInfo.arrayStride = stream.readInt<int>();
uniform.blockInfo.matrixStride = stream.readInt<int>();
uniform.blockInfo.isRowMajorMatrix = stream.readBool();
mState.mUniforms.push_back(uniform);
}
const unsigned int uniformIndexCount = stream.readInt<unsigned int>();
ASSERT(mState.mUniformLocations.empty());
for (unsigned int uniformIndexIndex = 0; uniformIndexIndex < uniformIndexCount;
uniformIndexIndex++)
{
VariableLocation variable;
stream.readString(&variable.name);
stream.readInt(&variable.element);
stream.readInt(&variable.index);
stream.readBool(&variable.used);
stream.readBool(&variable.ignored);
mState.mUniformLocations.push_back(variable);
}
unsigned int uniformBlockCount = stream.readInt<unsigned int>();
ASSERT(mState.mUniformBlocks.empty());
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < uniformBlockCount;
++uniformBlockIndex)
{
UniformBlock uniformBlock;
stream.readString(&uniformBlock.name);
stream.readBool(&uniformBlock.isArray);
stream.readInt(&uniformBlock.arrayElement);
stream.readInt(&uniformBlock.dataSize);
stream.readBool(&uniformBlock.vertexStaticUse);
stream.readBool(&uniformBlock.fragmentStaticUse);
unsigned int numMembers = stream.readInt<unsigned int>();
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numMembers; blockMemberIndex++)
{
uniformBlock.memberUniformIndexes.push_back(stream.readInt<unsigned int>());
}
mState.mUniformBlocks.push_back(uniformBlock);
}
unsigned int transformFeedbackVaryingCount = stream.readInt<unsigned int>();
ASSERT(mState.mTransformFeedbackVaryingVars.empty());
for (unsigned int transformFeedbackVaryingIndex = 0;
transformFeedbackVaryingIndex < transformFeedbackVaryingCount;
++transformFeedbackVaryingIndex)
{
sh::Varying varying;
stream.readInt(&varying.arraySize);
stream.readInt(&varying.type);
stream.readString(&varying.name);
mState.mTransformFeedbackVaryingVars.push_back(varying);
}
stream.readInt(&mState.mTransformFeedbackBufferMode);
unsigned int outputVarCount = stream.readInt<unsigned int>();
for (unsigned int outputIndex = 0; outputIndex < outputVarCount; ++outputIndex)
{
int locationIndex = stream.readInt<int>();
VariableLocation locationData;
stream.readInt(&locationData.element);
stream.readInt(&locationData.index);
stream.readString(&locationData.name);
mState.mOutputVariables[locationIndex] = locationData;
}
stream.readInt(&mSamplerUniformRange.start);
stream.readInt(&mSamplerUniformRange.end);
rx::LinkResult result = mProgram->load(mInfoLog, &stream);
if (result.error.isError() || !result.linkSuccess)
{
return result.error;
}
mLinked = true;
return Error(GL_NO_ERROR);
#endif // #if ANGLE_PROGRAM_BINARY_LOAD == ANGLE_ENABLED
}
Error Program::saveBinary(GLenum *binaryFormat, void *binary, GLsizei bufSize, GLsizei *length) const
{
if (binaryFormat)
{
*binaryFormat = GL_PROGRAM_BINARY_ANGLE;
}
BinaryOutputStream stream;
stream.writeInt(ANGLE_MAJOR_VERSION);
stream.writeInt(ANGLE_MINOR_VERSION);
stream.writeBytes(reinterpret_cast<const unsigned char*>(ANGLE_COMMIT_HASH), ANGLE_COMMIT_HASH_SIZE);
stream.writeInt(mState.mComputeShaderLocalSize[0]);
stream.writeInt(mState.mComputeShaderLocalSize[1]);
stream.writeInt(mState.mComputeShaderLocalSize[2]);
stream.writeInt(mState.mActiveAttribLocationsMask.to_ulong());
stream.writeInt(mState.mAttributes.size());
for (const sh::Attribute &attrib : mState.mAttributes)
{
WriteShaderVar(&stream, attrib);
stream.writeInt(attrib.location);
}
stream.writeInt(mState.mUniforms.size());
for (const gl::LinkedUniform &uniform : mState.mUniforms)
{
WriteShaderVar(&stream, uniform);
// FIXME: referenced
stream.writeInt(uniform.blockIndex);
stream.writeInt(uniform.blockInfo.offset);
stream.writeInt(uniform.blockInfo.arrayStride);
stream.writeInt(uniform.blockInfo.matrixStride);
stream.writeInt(uniform.blockInfo.isRowMajorMatrix);
}
stream.writeInt(mState.mUniformLocations.size());
for (const auto &variable : mState.mUniformLocations)
{
stream.writeString(variable.name);
stream.writeInt(variable.element);
stream.writeInt(variable.index);
stream.writeInt(variable.used);
stream.writeInt(variable.ignored);
}
stream.writeInt(mState.mUniformBlocks.size());
for (const UniformBlock &uniformBlock : mState.mUniformBlocks)
{
stream.writeString(uniformBlock.name);
stream.writeInt(uniformBlock.isArray);
stream.writeInt(uniformBlock.arrayElement);
stream.writeInt(uniformBlock.dataSize);
stream.writeInt(uniformBlock.vertexStaticUse);
stream.writeInt(uniformBlock.fragmentStaticUse);
stream.writeInt(uniformBlock.memberUniformIndexes.size());
for (unsigned int memberUniformIndex : uniformBlock.memberUniformIndexes)
{
stream.writeInt(memberUniformIndex);
}
}
stream.writeInt(mState.mTransformFeedbackVaryingVars.size());
for (const sh::Varying &varying : mState.mTransformFeedbackVaryingVars)
{
stream.writeInt(varying.arraySize);
stream.writeInt(varying.type);
stream.writeString(varying.name);
}
stream.writeInt(mState.mTransformFeedbackBufferMode);
stream.writeInt(mState.mOutputVariables.size());
for (const auto &outputPair : mState.mOutputVariables)
{
stream.writeInt(outputPair.first);
stream.writeIntOrNegOne(outputPair.second.element);
stream.writeInt(outputPair.second.index);
stream.writeString(outputPair.second.name);
}
stream.writeInt(mSamplerUniformRange.start);
stream.writeInt(mSamplerUniformRange.end);
gl::Error error = mProgram->save(&stream);
if (error.isError())
{
return error;
}
GLsizei streamLength = static_cast<GLsizei>(stream.length());
const void *streamState = stream.data();
if (streamLength > bufSize)
{
if (length)
{
*length = 0;
}
// TODO: This should be moved to the validation layer but computing the size of the binary before saving
// it causes the save to happen twice. It may be possible to write the binary to a separate buffer, validate
// sizes and then copy it.
return Error(GL_INVALID_OPERATION);
}
if (binary)
{
char *ptr = reinterpret_cast<char*>(binary);
memcpy(ptr, streamState, streamLength);
ptr += streamLength;
ASSERT(ptr - streamLength == binary);
}
if (length)
{
*length = streamLength;
}
return Error(GL_NO_ERROR);
}
GLint Program::getBinaryLength() const
{
GLint length;
Error error = saveBinary(nullptr, nullptr, std::numeric_limits<GLint>::max(), &length);
if (error.isError())
{
return 0;
}
return length;
}
void Program::setBinaryRetrievableHint(bool retrievable)
{
// TODO(jmadill) : replace with dirty bits
mProgram->setBinaryRetrievableHint(retrievable);
mState.mBinaryRetrieveableHint = retrievable;
}
bool Program::getBinaryRetrievableHint() const
{
return mState.mBinaryRetrieveableHint;
}
void Program::release()
{
mRefCount--;
if (mRefCount == 0 && mDeleteStatus)
{
mResourceManager->deleteProgram(mHandle);
}
}
void Program::addRef()
{
mRefCount++;
}
unsigned int Program::getRefCount() const
{
return mRefCount;
}
int Program::getInfoLogLength() const
{
return static_cast<int>(mInfoLog.getLength());
}
void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog) const
{
return mInfoLog.getLog(bufSize, length, infoLog);
}
void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders) const
{
int total = 0;
if (mState.mAttachedComputeShader)
{
if (total < maxCount)
{
shaders[total] = mState.mAttachedComputeShader->getHandle();
total++;
}
}
if (mState.mAttachedVertexShader)
{
if (total < maxCount)
{
shaders[total] = mState.mAttachedVertexShader->getHandle();
total++;
}
}
if (mState.mAttachedFragmentShader)
{
if (total < maxCount)
{
shaders[total] = mState.mAttachedFragmentShader->getHandle();
total++;
}
}
if (count)
{
*count = total;
}
}
GLuint Program::getAttributeLocation(const std::string &name) const
{
for (const sh::Attribute &attribute : mState.mAttributes)
{
if (attribute.name == name && attribute.staticUse)
{
return attribute.location;
}
}
return static_cast<GLuint>(-1);
}
bool Program::isAttribLocationActive(size_t attribLocation) const
{
ASSERT(attribLocation < mState.mActiveAttribLocationsMask.size());
return mState.mActiveAttribLocationsMask[attribLocation];
}
void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
if (!mLinked)
{
if (bufsize > 0)
{
name[0] = '\0';
}
if (length)
{
*length = 0;
}
*type = GL_NONE;
*size = 1;
return;
}
size_t attributeIndex = 0;
for (const sh::Attribute &attribute : mState.mAttributes)
{
// Skip over inactive attributes
if (attribute.staticUse)
{
if (static_cast<size_t>(index) == attributeIndex)
{
break;
}
attributeIndex++;
}
}
ASSERT(index == attributeIndex && attributeIndex < mState.mAttributes.size());
const sh::Attribute &attrib = mState.mAttributes[attributeIndex];
if (bufsize > 0)
{
const char *string = attrib.name.c_str();
strncpy(name, string, bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = static_cast<GLsizei>(strlen(name));
}
}
// Always a single 'type' instance
*size = 1;
*type = attrib.type;
}
GLint Program::getActiveAttributeCount() const
{
if (!mLinked)
{
return 0;
}
GLint count = 0;
for (const sh::Attribute &attrib : mState.mAttributes)
{
count += (attrib.staticUse ? 1 : 0);
}
return count;
}
GLint Program::getActiveAttributeMaxLength() const
{
if (!mLinked)
{
return 0;
}
size_t maxLength = 0;
for (const sh::Attribute &attrib : mState.mAttributes)
{
if (attrib.staticUse)
{
maxLength = std::max(attrib.name.length() + 1, maxLength);
}
}
return static_cast<GLint>(maxLength);
}
GLint Program::getFragDataLocation(const std::string &name) const
{
std::string baseName(name);
unsigned int arrayIndex = ParseAndStripArrayIndex(&baseName);
for (auto outputPair : mState.mOutputVariables)
{
const VariableLocation &outputVariable = outputPair.second;
if (outputVariable.name == baseName && (arrayIndex == GL_INVALID_INDEX || arrayIndex == outputVariable.element))
{
return static_cast<GLint>(outputPair.first);
}
}
return -1;
}
void Program::getActiveUniform(GLuint index,
GLsizei bufsize,
GLsizei *length,
GLint *size,
GLenum *type,
GLchar *name) const
{
if (mLinked)
{
// index must be smaller than getActiveUniformCount()
ASSERT(index < mState.mUniforms.size());
const LinkedUniform &uniform = mState.mUniforms[index];
if (bufsize > 0)
{
std::string string = uniform.name;
if (uniform.isArray())
{
string += "[0]";
}
strncpy(name, string.c_str(), bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = static_cast<GLsizei>(strlen(name));
}
}
*size = uniform.elementCount();
*type = uniform.type;
}
else
{
if (bufsize > 0)
{
name[0] = '\0';
}
if (length)
{
*length = 0;
}
*size = 0;
*type = GL_NONE;
}
}
GLint Program::getActiveUniformCount() const
{
if (mLinked)
{
return static_cast<GLint>(mState.mUniforms.size());
}
else
{
return 0;
}
}
GLint Program::getActiveUniformMaxLength() const
{
size_t maxLength = 0;
if (mLinked)
{
for (const LinkedUniform &uniform : mState.mUniforms)
{
if (!uniform.name.empty())
{
size_t length = uniform.name.length() + 1u;
if (uniform.isArray())
{
length += 3; // Counting in "[0]".
}
maxLength = std::max(length, maxLength);
}
}
}
return static_cast<GLint>(maxLength);
}
GLint Program::getActiveUniformi(GLuint index, GLenum pname) const
{
ASSERT(static_cast<size_t>(index) < mState.mUniforms.size());
const gl::LinkedUniform &uniform = mState.mUniforms[index];
switch (pname)
{
case GL_UNIFORM_TYPE: return static_cast<GLint>(uniform.type);
case GL_UNIFORM_SIZE: return static_cast<GLint>(uniform.elementCount());
case GL_UNIFORM_NAME_LENGTH: return static_cast<GLint>(uniform.name.size() + 1 + (uniform.isArray() ? 3 : 0));
case GL_UNIFORM_BLOCK_INDEX: return uniform.blockIndex;
case GL_UNIFORM_OFFSET: return uniform.blockInfo.offset;
case GL_UNIFORM_ARRAY_STRIDE: return uniform.blockInfo.arrayStride;
case GL_UNIFORM_MATRIX_STRIDE: return uniform.blockInfo.matrixStride;
case GL_UNIFORM_IS_ROW_MAJOR: return static_cast<GLint>(uniform.blockInfo.isRowMajorMatrix);
default:
UNREACHABLE();
break;
}
return 0;
}
bool Program::isValidUniformLocation(GLint location) const
{
ASSERT(angle::IsValueInRangeForNumericType<GLint>(mState.mUniformLocations.size()));
return (location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size() &&
mState.mUniformLocations[static_cast<size_t>(location)].used);
}
bool Program::isIgnoredUniformLocation(GLint location) const
{
// Location is ignored if it is -1 or it was bound but non-existant in the shader or optimized
// out
return location == -1 ||
(location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size() &&
mState.mUniformLocations[static_cast<size_t>(location)].ignored);
}
const LinkedUniform &Program::getUniformByLocation(GLint location) const
{
ASSERT(location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size());
return mState.mUniforms[mState.mUniformLocations[location].index];
}
GLint Program::getUniformLocation(const std::string &name) const
{
return mState.getUniformLocation(name);
}
GLuint Program::getUniformIndex(const std::string &name) const
{
return mState.getUniformIndex(name);
}
void Program::setUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformInternal(location, count * 1, v);
mProgram->setUniform1fv(location, count, v);
}
void Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformInternal(location, count * 2, v);
mProgram->setUniform2fv(location, count, v);
}
void Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformInternal(location, count * 3, v);
mProgram->setUniform3fv(location, count, v);
}
void Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformInternal(location, count * 4, v);
mProgram->setUniform4fv(location, count, v);
}
void Program::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
setUniformInternal(location, count * 1, v);
mProgram->setUniform1iv(location, count, v);
}
void Program::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
setUniformInternal(location, count * 2, v);
mProgram->setUniform2iv(location, count, v);
}
void Program::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
setUniformInternal(location, count * 3, v);
mProgram->setUniform3iv(location, count, v);
}
void Program::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
setUniformInternal(location, count * 4, v);
mProgram->setUniform4iv(location, count, v);
}
void Program::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformInternal(location, count * 1, v);
mProgram->setUniform1uiv(location, count, v);
}
void Program::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformInternal(location, count * 2, v);
mProgram->setUniform2uiv(location, count, v);
}
void Program::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformInternal(location, count * 3, v);
mProgram->setUniform3uiv(location, count, v);
}
void Program::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformInternal(location, count * 4, v);
mProgram->setUniform4uiv(location, count, v);
}
void Program::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
setMatrixUniformInternal<2, 2>(location, count, transpose, v);
mProgram->setUniformMatrix2fv(location, count, transpose, v);
}
void Program::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
setMatrixUniformInternal<3, 3>(location, count, transpose, v);
mProgram->setUniformMatrix3fv(location, count, transpose, v);
}
void Program::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
setMatrixUniformInternal<4, 4>(location, count, transpose, v);
mProgram->setUniformMatrix4fv(location, count, transpose, v);
}
void Program::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
setMatrixUniformInternal<2, 3>(location, count, transpose, v);
mProgram->setUniformMatrix2x3fv(location, count, transpose, v);
}
void Program::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
setMatrixUniformInternal<2, 4>(location, count, transpose, v);
mProgram->setUniformMatrix2x4fv(location, count, transpose, v);
}
void Program::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
setMatrixUniformInternal<3, 2>(location, count, transpose, v);
mProgram->setUniformMatrix3x2fv(location, count, transpose, v);
}
void Program::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
setMatrixUniformInternal<3, 4>(location, count, transpose, v);
mProgram->setUniformMatrix3x4fv(location, count, transpose, v);
}
void Program::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
setMatrixUniformInternal<4, 2>(location, count, transpose, v);
mProgram->setUniformMatrix4x2fv(location, count, transpose, v);
}
void Program::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
setMatrixUniformInternal<4, 3>(location, count, transpose, v);
mProgram->setUniformMatrix4x3fv(location, count, transpose, v);
}
void Program::getUniformfv(GLint location, GLfloat *v) const
{
getUniformInternal(location, v);
}
void Program::getUniformiv(GLint location, GLint *v) const
{
getUniformInternal(location, v);
}
void Program::getUniformuiv(GLint location, GLuint *v) const
{
getUniformInternal(location, v);
}
void Program::flagForDeletion()
{
mDeleteStatus = true;
}
bool Program::isFlaggedForDeletion() const
{
return mDeleteStatus;
}
void Program::validate(const Caps &caps)
{
mInfoLog.reset();
if (mLinked)
{
mValidated = (mProgram->validate(caps, &mInfoLog) == GL_TRUE);
}
else
{
mInfoLog << "Program has not been successfully linked.";
}
}
bool Program::validateSamplers(InfoLog *infoLog, const Caps &caps)
{
// Skip cache if we're using an infolog, so we get the full error.
// Also skip the cache if the sample mapping has changed, or if we haven't ever validated.
if (infoLog == nullptr && mCachedValidateSamplersResult.valid())
{
return mCachedValidateSamplersResult.value();
}
if (mTextureUnitTypesCache.empty())
{
mTextureUnitTypesCache.resize(caps.maxCombinedTextureImageUnits, GL_NONE);
}
else
{
std::fill(mTextureUnitTypesCache.begin(), mTextureUnitTypesCache.end(), GL_NONE);
}
// if any two active samplers in a program are of different types, but refer to the same
// texture image unit, and this is the current program, then ValidateProgram will fail, and
// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
for (unsigned int samplerIndex = mSamplerUniformRange.start;
samplerIndex < mSamplerUniformRange.end; ++samplerIndex)
{
const LinkedUniform &uniform = mState.mUniforms[samplerIndex];
ASSERT(uniform.isSampler());
if (!uniform.staticUse)
continue;
const GLuint *dataPtr = reinterpret_cast<const GLuint *>(uniform.getDataPtrToElement(0));
GLenum textureType = SamplerTypeToTextureType(uniform.type);
for (unsigned int arrayElement = 0; arrayElement < uniform.elementCount(); ++arrayElement)
{
GLuint textureUnit = dataPtr[arrayElement];
if (textureUnit >= caps.maxCombinedTextureImageUnits)
{
if (infoLog)
{
(*infoLog) << "Sampler uniform (" << textureUnit
<< ") exceeds GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS ("
<< caps.maxCombinedTextureImageUnits << ")";
}
mCachedValidateSamplersResult = false;
return false;
}
if (mTextureUnitTypesCache[textureUnit] != GL_NONE)
{
if (textureType != mTextureUnitTypesCache[textureUnit])
{
if (infoLog)
{
(*infoLog) << "Samplers of conflicting types refer to the same texture "
"image unit ("
<< textureUnit << ").";
}
mCachedValidateSamplersResult = false;
return false;
}
}
else
{
mTextureUnitTypesCache[textureUnit] = textureType;
}
}
}
mCachedValidateSamplersResult = true;
return true;
}
bool Program::isValidated() const
{
return mValidated;
}
GLuint Program::getActiveUniformBlockCount() const
{
return static_cast<GLuint>(mState.mUniformBlocks.size());
}
void Program::getActiveUniformBlockName(GLuint uniformBlockIndex, GLsizei bufSize, GLsizei *length, GLchar *uniformBlockName) const
{
ASSERT(
uniformBlockIndex <
mState.mUniformBlocks.size()); // index must be smaller than getActiveUniformBlockCount()
const UniformBlock &uniformBlock = mState.mUniformBlocks[uniformBlockIndex];
if (bufSize > 0)
{
std::string string = uniformBlock.name;
if (uniformBlock.isArray)
{
string += ArrayString(uniformBlock.arrayElement);
}
strncpy(uniformBlockName, string.c_str(), bufSize);
uniformBlockName[bufSize - 1] = '\0';
if (length)
{
*length = static_cast<GLsizei>(strlen(uniformBlockName));
}
}
}
GLint Program::getActiveUniformBlockMaxLength() const
{
int maxLength = 0;
if (mLinked)
{
unsigned int numUniformBlocks = static_cast<unsigned int>(mState.mUniformBlocks.size());
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < numUniformBlocks; uniformBlockIndex++)
{
const UniformBlock &uniformBlock = mState.mUniformBlocks[uniformBlockIndex];
if (!uniformBlock.name.empty())
{
const int length = static_cast<int>(uniformBlock.name.length()) + 1;
// Counting in "[0]".
const int arrayLength = (uniformBlock.isArray ? 3 : 0);
maxLength = std::max(length + arrayLength, maxLength);
}
}
}
return maxLength;
}
GLuint Program::getUniformBlockIndex(const std::string &name) const
{
size_t subscript = GL_INVALID_INDEX;
std::string baseName = gl::ParseUniformName(name, &subscript);
unsigned int numUniformBlocks = static_cast<unsigned int>(mState.mUniformBlocks.size());
for (unsigned int blockIndex = 0; blockIndex < numUniformBlocks; blockIndex++)
{
const gl::UniformBlock &uniformBlock = mState.mUniformBlocks[blockIndex];
if (uniformBlock.name == baseName)
{
const bool arrayElementZero =
(subscript == GL_INVALID_INDEX &&
(!uniformBlock.isArray || uniformBlock.arrayElement == 0));
if (subscript == uniformBlock.arrayElement || arrayElementZero)
{
return blockIndex;
}
}
}
return GL_INVALID_INDEX;
}
const UniformBlock &Program::getUniformBlockByIndex(GLuint index) const
{
ASSERT(index < static_cast<GLuint>(mState.mUniformBlocks.size()));
return mState.mUniformBlocks[index];
}
void Program::bindUniformBlock(GLuint uniformBlockIndex, GLuint uniformBlockBinding)
{
mState.mUniformBlockBindings[uniformBlockIndex] = uniformBlockBinding;
mProgram->setUniformBlockBinding(uniformBlockIndex, uniformBlockBinding);
}
GLuint Program::getUniformBlockBinding(GLuint uniformBlockIndex) const
{
return mState.getUniformBlockBinding(uniformBlockIndex);
}
void Program::resetUniformBlockBindings()
{
for (unsigned int blockId = 0; blockId < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS; blockId++)
{
mState.mUniformBlockBindings[blockId] = 0;
}
mState.mActiveUniformBlockBindings.reset();
}
void Program::setTransformFeedbackVaryings(GLsizei count, const GLchar *const *varyings, GLenum bufferMode)
{
mState.mTransformFeedbackVaryingNames.resize(count);
for (GLsizei i = 0; i < count; i++)
{
mState.mTransformFeedbackVaryingNames[i] = varyings[i];
}
mState.mTransformFeedbackBufferMode = bufferMode;
}
void Program::getTransformFeedbackVarying(GLuint index, GLsizei bufSize, GLsizei *length, GLsizei *size, GLenum *type, GLchar *name) const
{
if (mLinked)
{
ASSERT(index < mState.mTransformFeedbackVaryingVars.size());
const sh::Varying &varying = mState.mTransformFeedbackVaryingVars[index];
GLsizei lastNameIdx = std::min(bufSize - 1, static_cast<GLsizei>(varying.name.length()));
if (length)
{
*length = lastNameIdx;
}
if (size)
{
*size = varying.elementCount();
}
if (type)
{
*type = varying.type;
}
if (name)
{
memcpy(name, varying.name.c_str(), lastNameIdx);
name[lastNameIdx] = '\0';
}
}
}
GLsizei Program::getTransformFeedbackVaryingCount() const
{
if (mLinked)
{
return static_cast<GLsizei>(mState.mTransformFeedbackVaryingVars.size());
}
else
{
return 0;
}
}
GLsizei Program::getTransformFeedbackVaryingMaxLength() const
{
if (mLinked)
{
GLsizei maxSize = 0;
for (const sh::Varying &varying : mState.mTransformFeedbackVaryingVars)
{
maxSize = std::max(maxSize, static_cast<GLsizei>(varying.name.length() + 1));
}
return maxSize;
}
else
{
return 0;
}
}
GLenum Program::getTransformFeedbackBufferMode() const
{
return mState.mTransformFeedbackBufferMode;
}
bool Program::linkVaryings(InfoLog &infoLog,
const Shader *vertexShader,
const Shader *fragmentShader) const
{
ASSERT(vertexShader->getShaderVersion() == fragmentShader->getShaderVersion());
const std::vector<sh::Varying> &vertexVaryings = vertexShader->getVaryings();
const std::vector<sh::Varying> &fragmentVaryings = fragmentShader->getVaryings();
std::map<GLuint, std::string> staticFragmentInputLocations;
for (const sh::Varying &output : fragmentVaryings)
{
bool matched = false;
// Built-in varyings obey special rules
if (output.isBuiltIn())
{
continue;
}
for (const sh::Varying &input : vertexVaryings)
{
if (output.name == input.name)
{
ASSERT(!input.isBuiltIn());
if (!linkValidateVaryings(infoLog, output.name, input, output,
vertexShader->getShaderVersion()))
{
return false;
}
matched = true;
break;
}
}
// We permit unmatched, unreferenced varyings
if (!matched && output.staticUse)
{
infoLog << "Fragment varying " << output.name << " does not match any vertex varying";
return false;
}
// Check for aliased path rendering input bindings (if any).
// If more than one binding refer statically to the same
// location the link must fail.
if (!output.staticUse)
continue;
const auto inputBinding = mFragmentInputBindings.getBinding(output.name);
if (inputBinding == -1)
continue;
const auto it = staticFragmentInputLocations.find(inputBinding);
if (it == std::end(staticFragmentInputLocations))
{
staticFragmentInputLocations.insert(std::make_pair(inputBinding, output.name));
}
else
{
infoLog << "Binding for fragment input " << output.name << " conflicts with "
<< it->second;
return false;
}
}
// TODO(jmadill): verify no unmatched vertex varyings?
return true;
}
bool Program::validateVertexAndFragmentUniforms(InfoLog &infoLog) const
{
// Check that uniforms defined in the vertex and fragment shaders are identical
std::map<std::string, LinkedUniform> linkedUniforms;
const std::vector<sh::Uniform> &vertexUniforms = mState.mAttachedVertexShader->getUniforms();
const std::vector<sh::Uniform> &fragmentUniforms =
mState.mAttachedFragmentShader->getUniforms();
for (const sh::Uniform &vertexUniform : vertexUniforms)
{
linkedUniforms[vertexUniform.name] = LinkedUniform(vertexUniform);
}
for (const sh::Uniform &fragmentUniform : fragmentUniforms)
{
auto entry = linkedUniforms.find(fragmentUniform.name);
if (entry != linkedUniforms.end())
{
LinkedUniform *vertexUniform = &entry->second;
const std::string &uniformName = "uniform '" + vertexUniform->name + "'";
if (!linkValidateUniforms(infoLog, uniformName, *vertexUniform, fragmentUniform))
{
return false;
}
}
}
return true;
}
bool Program::linkUniforms(gl::InfoLog &infoLog,
const gl::Caps &caps,
const Bindings &uniformBindings)
{
if (mState.mAttachedVertexShader && mState.mAttachedFragmentShader)
{
ASSERT(mState.mAttachedComputeShader == nullptr);
if (!validateVertexAndFragmentUniforms(infoLog))
{
return false;
}
}
// Flatten the uniforms list (nested fields) into a simple list (no nesting).
// Also check the maximum uniform vector and sampler counts.
if (!flattenUniformsAndCheckCaps(caps, infoLog))
{
return false;
}
if (!indexUniforms(infoLog, caps, uniformBindings))
{
return false;
}
return true;
}
bool Program::indexUniforms(gl::InfoLog &infoLog,
const gl::Caps &caps,
const Bindings &uniformBindings)
{
// Uniforms awaiting a location
std::vector<VariableLocation> unboundUniforms;
std::map<GLuint, VariableLocation> boundUniforms;
int maxUniformLocation = -1;
// Gather bound and unbound uniforms
for (size_t uniformIndex = 0; uniformIndex < mState.mUniforms.size(); uniformIndex++)
{
const gl::LinkedUniform &uniform = mState.mUniforms[uniformIndex];
if (uniform.isBuiltIn())
{
continue;
}
int bindingLocation = uniformBindings.getBinding(uniform.name);
// Verify that this location isn't bound twice
if (bindingLocation != -1 && boundUniforms.find(bindingLocation) != boundUniforms.end())
{
infoLog << "Multiple uniforms bound to location " << bindingLocation << ".";
return false;
}
for (unsigned int arrayIndex = 0; arrayIndex < uniform.elementCount(); arrayIndex++)
{
VariableLocation location(uniform.name, arrayIndex,
static_cast<unsigned int>(uniformIndex));
if (arrayIndex == 0 && bindingLocation != -1)
{
boundUniforms[bindingLocation] = location;
maxUniformLocation = std::max(maxUniformLocation, bindingLocation);
}
else
{
unboundUniforms.push_back(location);
}
}
}
// Gather the reserved bindings, ones that are bound but not referenced. Other uniforms should
// not be assigned to those locations.
std::set<GLuint> reservedLocations;
for (const auto &binding : uniformBindings)
{
GLuint location = binding.second;
if (boundUniforms.find(location) == boundUniforms.end())
{
reservedLocations.insert(location);
maxUniformLocation = std::max(maxUniformLocation, static_cast<int>(location));
}
}
// Make enough space for all uniforms, bound and unbound
mState.mUniformLocations.resize(
std::max(unboundUniforms.size() + boundUniforms.size() + reservedLocations.size(),
static_cast<size_t>(maxUniformLocation + 1)));
// Assign bound uniforms
for (const auto &boundUniform : boundUniforms)
{
mState.mUniformLocations[boundUniform.first] = boundUniform.second;
}
// Assign reserved uniforms
for (const auto &reservedLocation : reservedLocations)
{
mState.mUniformLocations[reservedLocation].ignored = true;
}
// Assign unbound uniforms
size_t nextUniformLocation = 0;
for (const auto &unboundUniform : unboundUniforms)
{
while (mState.mUniformLocations[nextUniformLocation].used ||
mState.mUniformLocations[nextUniformLocation].ignored)
{
nextUniformLocation++;
}
ASSERT(nextUniformLocation < mState.mUniformLocations.size());
mState.mUniformLocations[nextUniformLocation] = unboundUniform;
nextUniformLocation++;
}
return true;
}
bool Program::linkValidateInterfaceBlockFields(InfoLog &infoLog,
const std::string &uniformName,
const sh::InterfaceBlockField &vertexUniform,
const sh::InterfaceBlockField &fragmentUniform)
{
// We don't validate precision on UBO fields. See resolution of Khronos bug 10287.
if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, false))
{
return false;
}
if (vertexUniform.isRowMajorLayout != fragmentUniform.isRowMajorLayout)
{
infoLog << "Matrix packings for " << uniformName << " differ between vertex and fragment shaders";
return false;
}
return true;
}
// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices
bool Program::linkAttributes(const ContextState &data,
InfoLog &infoLog,
const Bindings &attributeBindings,
const Shader *vertexShader)
{
unsigned int usedLocations = 0;
mState.mAttributes = vertexShader->getActiveAttributes();
GLuint maxAttribs = data.getCaps().maxVertexAttributes;
// TODO(jmadill): handle aliasing robustly
if (mState.mAttributes.size() > maxAttribs)
{
infoLog << "Too many vertex attributes.";
return false;
}
std::vector<sh::Attribute *> usedAttribMap(maxAttribs, nullptr);
// Link attributes that have a binding location
for (sh::Attribute &attribute : mState.mAttributes)
{
// TODO(jmadill): do staticUse filtering step here, or not at all
ASSERT(attribute.staticUse);
int bindingLocation = attributeBindings.getBinding(attribute.name);
if (attribute.location == -1 && bindingLocation != -1)
{
attribute.location = bindingLocation;
}
if (attribute.location != -1)
{
// Location is set by glBindAttribLocation or by location layout qualifier
const int regs = VariableRegisterCount(attribute.type);
if (static_cast<GLuint>(regs + attribute.location) > maxAttribs)
{
infoLog << "Active attribute (" << attribute.name << ") at location "
<< attribute.location << " is too big to fit";
return false;
}
for (int reg = 0; reg < regs; reg++)
{
const int regLocation = attribute.location + reg;
sh::ShaderVariable *linkedAttribute = usedAttribMap[regLocation];
// In GLSL 3.00, attribute aliasing produces a link error
// In GLSL 1.00, attribute aliasing is allowed, but ANGLE currently has a bug
if (linkedAttribute)
{
// TODO(jmadill): fix aliasing on ES2
// if (mProgram->getShaderVersion() >= 300)
{
infoLog << "Attribute '" << attribute.name << "' aliases attribute '"
<< linkedAttribute->name << "' at location " << regLocation;
return false;
}
}
else
{
usedAttribMap[regLocation] = &attribute;
}
usedLocations |= 1 << regLocation;
}
}
}
// Link attributes that don't have a binding location
for (sh::Attribute &attribute : mState.mAttributes)
{
ASSERT(attribute.staticUse);
// Not set by glBindAttribLocation or by location layout qualifier
if (attribute.location == -1)
{
int regs = VariableRegisterCount(attribute.type);
int availableIndex = AllocateFirstFreeBits(&usedLocations, regs, maxAttribs);
if (availableIndex == -1 || static_cast<GLuint>(availableIndex + regs) > maxAttribs)
{
infoLog << "Too many active attributes (" << attribute.name << ")";
return false;
}
attribute.location = availableIndex;
}
}
for (const sh::Attribute &attribute : mState.mAttributes)
{
ASSERT(attribute.staticUse);
ASSERT(attribute.location != -1);
int regs = VariableRegisterCount(attribute.type);
for (int r = 0; r < regs; r++)
{
mState.mActiveAttribLocationsMask.set(attribute.location + r);
}
}
return true;
}
bool Program::validateUniformBlocksCount(GLuint maxUniformBlocks,
const std::vector<sh::InterfaceBlock> &intefaceBlocks,
const std::string &errorMessage,
InfoLog &infoLog) const
{
GLuint blockCount = 0;
for (const sh::InterfaceBlock &block : intefaceBlocks)
{
if (block.staticUse || block.layout != sh::BLOCKLAYOUT_PACKED)
{
if (++blockCount > maxUniformBlocks)
{
infoLog << errorMessage << maxUniformBlocks << ")";
return false;
}
}
}
return true;
}
bool Program::validateVertexAndFragmentInterfaceBlocks(
const std::vector<sh::InterfaceBlock> &vertexInterfaceBlocks,
const std::vector<sh::InterfaceBlock> &fragmentInterfaceBlocks,
InfoLog &infoLog) const
{
// Check that interface blocks defined in the vertex and fragment shaders are identical
typedef std::map<std::string, const sh::InterfaceBlock *> UniformBlockMap;
UniformBlockMap linkedUniformBlocks;
for (const sh::InterfaceBlock &vertexInterfaceBlock : vertexInterfaceBlocks)
{
linkedUniformBlocks[vertexInterfaceBlock.name] = &vertexInterfaceBlock;
}
for (const sh::InterfaceBlock &fragmentInterfaceBlock : fragmentInterfaceBlocks)
{
auto entry = linkedUniformBlocks.find(fragmentInterfaceBlock.name);
if (entry != linkedUniformBlocks.end())
{
const sh::InterfaceBlock &vertexInterfaceBlock = *entry->second;
if (!areMatchingInterfaceBlocks(infoLog, vertexInterfaceBlock, fragmentInterfaceBlock))
{
return false;
}
}
}
return true;
}
bool Program::linkUniformBlocks(InfoLog &infoLog, const Caps &caps)
{
if (mState.mAttachedComputeShader)
{
const Shader &computeShader = *mState.mAttachedComputeShader;
const auto &computeInterfaceBlocks = computeShader.getInterfaceBlocks();
if (!validateUniformBlocksCount(
caps.maxComputeUniformBlocks, computeInterfaceBlocks,
"Compute shader uniform block count exceeds GL_MAX_COMPUTE_UNIFORM_BLOCKS (",
infoLog))
{
return false;
}
return true;
}
const Shader &vertexShader = *mState.mAttachedVertexShader;
const Shader &fragmentShader = *mState.mAttachedFragmentShader;
const auto &vertexInterfaceBlocks = vertexShader.getInterfaceBlocks();
const auto &fragmentInterfaceBlocks = fragmentShader.getInterfaceBlocks();
if (!validateUniformBlocksCount(
caps.maxVertexUniformBlocks, vertexInterfaceBlocks,
"Vertex shader uniform block count exceeds GL_MAX_VERTEX_UNIFORM_BLOCKS (", infoLog))
{
return false;
}
if (!validateUniformBlocksCount(
caps.maxFragmentUniformBlocks, fragmentInterfaceBlocks,
"Fragment shader uniform block count exceeds GL_MAX_FRAGMENT_UNIFORM_BLOCKS (",
infoLog))
{
return false;
}
if (!validateVertexAndFragmentInterfaceBlocks(vertexInterfaceBlocks, fragmentInterfaceBlocks,
infoLog))
{
return false;
}
return true;
}
bool Program::areMatchingInterfaceBlocks(gl::InfoLog &infoLog,
const sh::InterfaceBlock &vertexInterfaceBlock,
const sh::InterfaceBlock &fragmentInterfaceBlock) const
{
const char* blockName = vertexInterfaceBlock.name.c_str();
// validate blocks for the same member types
if (vertexInterfaceBlock.fields.size() != fragmentInterfaceBlock.fields.size())
{
infoLog << "Types for interface block '" << blockName
<< "' differ between vertex and fragment shaders";
return false;
}
if (vertexInterfaceBlock.arraySize != fragmentInterfaceBlock.arraySize)
{
infoLog << "Array sizes differ for interface block '" << blockName
<< "' between vertex and fragment shaders";
return false;
}
if (vertexInterfaceBlock.layout != fragmentInterfaceBlock.layout || vertexInterfaceBlock.isRowMajorLayout != fragmentInterfaceBlock.isRowMajorLayout)
{
infoLog << "Layout qualifiers differ for interface block '" << blockName
<< "' between vertex and fragment shaders";
return false;
}
const unsigned int numBlockMembers =
static_cast<unsigned int>(vertexInterfaceBlock.fields.size());
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++)
{
const sh::InterfaceBlockField &vertexMember = vertexInterfaceBlock.fields[blockMemberIndex];
const sh::InterfaceBlockField &fragmentMember = fragmentInterfaceBlock.fields[blockMemberIndex];
if (vertexMember.name != fragmentMember.name)
{
infoLog << "Name mismatch for field " << blockMemberIndex
<< " of interface block '" << blockName
<< "': (in vertex: '" << vertexMember.name
<< "', in fragment: '" << fragmentMember.name << "')";
return false;
}
std::string memberName = "interface block '" + vertexInterfaceBlock.name + "' member '" + vertexMember.name + "'";
if (!linkValidateInterfaceBlockFields(infoLog, memberName, vertexMember, fragmentMember))
{
return false;
}
}
return true;
}
bool Program::linkValidateVariablesBase(InfoLog &infoLog, const std::string &variableName, const sh::ShaderVariable &vertexVariable,
const sh::ShaderVariable &fragmentVariable, bool validatePrecision)
{
if (vertexVariable.type != fragmentVariable.type)
{
infoLog << "Types for " << variableName << " differ between vertex and fragment shaders";
return false;
}
if (vertexVariable.arraySize != fragmentVariable.arraySize)
{
infoLog << "Array sizes for " << variableName << " differ between vertex and fragment shaders";
return false;
}
if (validatePrecision && vertexVariable.precision != fragmentVariable.precision)
{
infoLog << "Precisions for " << variableName << " differ between vertex and fragment shaders";
return false;
}
if (vertexVariable.fields.size() != fragmentVariable.fields.size())
{
infoLog << "Structure lengths for " << variableName << " differ between vertex and fragment shaders";
return false;
}
const unsigned int numMembers = static_cast<unsigned int>(vertexVariable.fields.size());
for (unsigned int memberIndex = 0; memberIndex < numMembers; memberIndex++)
{
const sh::ShaderVariable &vertexMember = vertexVariable.fields[memberIndex];
const sh::ShaderVariable &fragmentMember = fragmentVariable.fields[memberIndex];
if (vertexMember.name != fragmentMember.name)
{
infoLog << "Name mismatch for field '" << memberIndex
<< "' of " << variableName
<< ": (in vertex: '" << vertexMember.name
<< "', in fragment: '" << fragmentMember.name << "')";
return false;
}
const std::string memberName = variableName.substr(0, variableName.length() - 1) + "." +
vertexMember.name + "'";
if (!linkValidateVariablesBase(infoLog, vertexMember.name, vertexMember, fragmentMember, validatePrecision))
{
return false;
}
}
return true;
}
bool Program::linkValidateUniforms(InfoLog &infoLog, const std::string &uniformName, const sh::Uniform &vertexUniform, const sh::Uniform &fragmentUniform)
{
#if ANGLE_PROGRAM_LINK_VALIDATE_UNIFORM_PRECISION == ANGLE_ENABLED
const bool validatePrecision = true;
#else
const bool validatePrecision = false;
#endif
if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, validatePrecision))
{
return false;
}
return true;
}
bool Program::linkValidateVaryings(InfoLog &infoLog,
const std::string &varyingName,
const sh::Varying &vertexVarying,
const sh::Varying &fragmentVarying,
int shaderVersion)
{
if (!linkValidateVariablesBase(infoLog, varyingName, vertexVarying, fragmentVarying, false))
{
return false;
}
if (!sh::InterpolationTypesMatch(vertexVarying.interpolation, fragmentVarying.interpolation))
{
infoLog << "Interpolation types for " << varyingName
<< " differ between vertex and fragment shaders.";
return false;
}
if (shaderVersion == 100 && vertexVarying.isInvariant != fragmentVarying.isInvariant)
{
infoLog << "Invariance for " << varyingName
<< " differs between vertex and fragment shaders.";
return false;
}
return true;
}
bool Program::linkValidateTransformFeedback(InfoLog &infoLog,
const std::vector<const sh::Varying *> &varyings,
const Caps &caps) const
{
size_t totalComponents = 0;
std::set<std::string> uniqueNames;
for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames)
{
bool found = false;
for (const sh::Varying *varying : varyings)
{
if (tfVaryingName == varying->name)
{
if (uniqueNames.count(tfVaryingName) > 0)
{
infoLog << "Two transform feedback varyings specify the same output variable ("
<< tfVaryingName << ").";
return false;
}
uniqueNames.insert(tfVaryingName);
if (varying->isArray())
{
infoLog << "Capture of arrays is undefined and not supported.";
return false;
}
// TODO(jmadill): Investigate implementation limits on D3D11
size_t componentCount = gl::VariableComponentCount(varying->type);
if (mState.mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS &&
componentCount > caps.maxTransformFeedbackSeparateComponents)
{
infoLog << "Transform feedback varying's " << varying->name << " components ("
<< componentCount << ") exceed the maximum separate components ("
<< caps.maxTransformFeedbackSeparateComponents << ").";
return false;
}
totalComponents += componentCount;
found = true;
break;
}
}
if (tfVaryingName.find('[') != std::string::npos)
{
infoLog << "Capture of array elements is undefined and not supported.";
return false;
}
// All transform feedback varyings are expected to exist since packVaryings checks for them.
ASSERT(found);
UNUSED_ASSERTION_VARIABLE(found);
}
if (mState.mTransformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS &&
totalComponents > caps.maxTransformFeedbackInterleavedComponents)
{
infoLog << "Transform feedback varying total components (" << totalComponents
<< ") exceed the maximum interleaved components ("
<< caps.maxTransformFeedbackInterleavedComponents << ").";
return false;
}
return true;
}
void Program::gatherTransformFeedbackVaryings(const std::vector<const sh::Varying *> &varyings)
{
// Gather the linked varyings that are used for transform feedback, they should all exist.
mState.mTransformFeedbackVaryingVars.clear();
for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames)
{
for (const sh::Varying *varying : varyings)
{
if (tfVaryingName == varying->name)
{
mState.mTransformFeedbackVaryingVars.push_back(*varying);
break;
}
}
}
}
std::vector<const sh::Varying *> Program::getMergedVaryings() const
{
std::set<std::string> uniqueNames;
std::vector<const sh::Varying *> varyings;
for (const sh::Varying &varying : mState.mAttachedVertexShader->getVaryings())
{
if (uniqueNames.count(varying.name) == 0)
{
uniqueNames.insert(varying.name);
varyings.push_back(&varying);
}
}
for (const sh::Varying &varying : mState.mAttachedFragmentShader->getVaryings())
{
if (uniqueNames.count(varying.name) == 0)
{
uniqueNames.insert(varying.name);
varyings.push_back(&varying);
}
}
return varyings;
}
void Program::linkOutputVariables()
{
const Shader *fragmentShader = mState.mAttachedFragmentShader;
ASSERT(fragmentShader != nullptr);
// Skip this step for GLES2 shaders.
if (fragmentShader->getShaderVersion() == 100)
return;
const auto &shaderOutputVars = fragmentShader->getActiveOutputVariables();
// TODO(jmadill): any caps validation here?
for (unsigned int outputVariableIndex = 0; outputVariableIndex < shaderOutputVars.size();
outputVariableIndex++)
{
const sh::OutputVariable &outputVariable = shaderOutputVars[outputVariableIndex];
// Don't store outputs for gl_FragDepth, gl_FragColor, etc.
if (outputVariable.isBuiltIn())
continue;
// Since multiple output locations must be specified, use 0 for non-specified locations.
int baseLocation = (outputVariable.location == -1 ? 0 : outputVariable.location);
ASSERT(outputVariable.staticUse);
for (unsigned int elementIndex = 0; elementIndex < outputVariable.elementCount();
elementIndex++)
{
const int location = baseLocation + elementIndex;
ASSERT(mState.mOutputVariables.count(location) == 0);
unsigned int element = outputVariable.isArray() ? elementIndex : GL_INVALID_INDEX;
mState.mOutputVariables[location] =
VariableLocation(outputVariable.name, element, outputVariableIndex);
}
}
}
bool Program::flattenUniformsAndCheckCapsForShader(const gl::Shader &shader,
GLuint maxUniformComponents,
GLuint maxTextureImageUnits,
const std::string &componentsErrorMessage,
const std::string &samplerErrorMessage,
std::vector<LinkedUniform> &samplerUniforms,
InfoLog &infoLog)
{
VectorAndSamplerCount vasCount;
for (const sh::Uniform &uniform : shader.getUniforms())
{
if (uniform.staticUse)
{
vasCount += flattenUniform(uniform, uniform.name, &samplerUniforms);
}
}
if (vasCount.vectorCount > maxUniformComponents)
{
infoLog << componentsErrorMessage << maxUniformComponents << ").";
return false;
}
if (vasCount.samplerCount > maxTextureImageUnits)
{
infoLog << samplerErrorMessage << maxTextureImageUnits << ").";
return false;
}
return true;
}
bool Program::flattenUniformsAndCheckCaps(const Caps &caps, InfoLog &infoLog)
{
std::vector<LinkedUniform> samplerUniforms;
if (mState.mAttachedComputeShader)
{
const gl::Shader *computeShader = mState.getAttachedComputeShader();
// TODO (mradev): check whether we need finer-grained component counting
if (!flattenUniformsAndCheckCapsForShader(
*computeShader, caps.maxComputeUniformComponents / 4,
caps.maxComputeTextureImageUnits,
"Compute shader active uniforms exceed MAX_COMPUTE_UNIFORM_COMPONENTS (",
"Compute shader sampler count exceeds MAX_COMPUTE_TEXTURE_IMAGE_UNITS (",
samplerUniforms, infoLog))
{
return false;
}
}
else
{
const gl::Shader *vertexShader = mState.getAttachedVertexShader();
if (!flattenUniformsAndCheckCapsForShader(
*vertexShader, caps.maxVertexUniformVectors, caps.maxVertexTextureImageUnits,
"Vertex shader active uniforms exceed MAX_VERTEX_UNIFORM_VECTORS (",
"Vertex shader sampler count exceeds MAX_VERTEX_TEXTURE_IMAGE_UNITS (",
samplerUniforms, infoLog))
{
return false;
}
const gl::Shader *fragmentShader = mState.getAttachedFragmentShader();
if (!flattenUniformsAndCheckCapsForShader(
*fragmentShader, caps.maxFragmentUniformVectors, caps.maxTextureImageUnits,
"Fragment shader active uniforms exceed MAX_FRAGMENT_UNIFORM_VECTORS (",
"Fragment shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (", samplerUniforms,
infoLog))
{
return false;
}
}
mSamplerUniformRange.start = static_cast<unsigned int>(mState.mUniforms.size());
mSamplerUniformRange.end =
mSamplerUniformRange.start + static_cast<unsigned int>(samplerUniforms.size());
mState.mUniforms.insert(mState.mUniforms.end(), samplerUniforms.begin(), samplerUniforms.end());
return true;
}
Program::VectorAndSamplerCount Program::flattenUniform(const sh::ShaderVariable &uniform,
const std::string &fullName,
std::vector<LinkedUniform> *samplerUniforms)
{
VectorAndSamplerCount vectorAndSamplerCount;
if (uniform.isStruct())
{
for (unsigned int elementIndex = 0; elementIndex < uniform.elementCount(); elementIndex++)
{
const std::string &elementString = (uniform.isArray() ? ArrayString(elementIndex) : "");
for (size_t fieldIndex = 0; fieldIndex < uniform.fields.size(); fieldIndex++)
{
const sh::ShaderVariable &field = uniform.fields[fieldIndex];
const std::string &fieldFullName = (fullName + elementString + "." + field.name);
vectorAndSamplerCount += flattenUniform(field, fieldFullName, samplerUniforms);
}
}
return vectorAndSamplerCount;
}
// Not a struct
bool isSampler = IsSamplerType(uniform.type);
if (!UniformInList(mState.getUniforms(), fullName) &&
!UniformInList(*samplerUniforms, fullName))
{
gl::LinkedUniform linkedUniform(uniform.type, uniform.precision, fullName,
uniform.arraySize, -1,
sh::BlockMemberInfo::getDefaultBlockInfo());
linkedUniform.staticUse = true;
// Store sampler uniforms separately, so we'll append them to the end of the list.
if (isSampler)
{
samplerUniforms->push_back(linkedUniform);
}
else
{
mState.mUniforms.push_back(linkedUniform);
}
}
unsigned int elementCount = uniform.elementCount();
// Samplers aren't "real" uniforms, so they don't count towards register usage.
// Likewise, don't count "real" uniforms towards sampler count.
vectorAndSamplerCount.vectorCount =
(isSampler ? 0 : (VariableRegisterCount(uniform.type) * elementCount));
vectorAndSamplerCount.samplerCount = (isSampler ? elementCount : 0);
return vectorAndSamplerCount;
}
void Program::gatherInterfaceBlockInfo()
{
ASSERT(mState.mUniformBlocks.empty());
if (mState.mAttachedComputeShader)
{
const gl::Shader *computeShader = mState.getAttachedComputeShader();
for (const sh::InterfaceBlock &computeBlock : computeShader->getInterfaceBlocks())
{
// Only 'packed' blocks are allowed to be considered inactive.
if (!computeBlock.staticUse && computeBlock.layout == sh::BLOCKLAYOUT_PACKED)
continue;
for (gl::UniformBlock &block : mState.mUniformBlocks)
{
if (block.name == computeBlock.name)
{
block.computeStaticUse = computeBlock.staticUse;
}
}
defineUniformBlock(computeBlock, GL_COMPUTE_SHADER);
}
return;
}
std::set<std::string> visitedList;
const gl::Shader *vertexShader = mState.getAttachedVertexShader();
for (const sh::InterfaceBlock &vertexBlock : vertexShader->getInterfaceBlocks())
{
// Only 'packed' blocks are allowed to be considered inactive.
if (!vertexBlock.staticUse && vertexBlock.layout == sh::BLOCKLAYOUT_PACKED)
continue;
if (visitedList.count(vertexBlock.name) > 0)
continue;
defineUniformBlock(vertexBlock, GL_VERTEX_SHADER);
visitedList.insert(vertexBlock.name);
}
const gl::Shader *fragmentShader = mState.getAttachedFragmentShader();
for (const sh::InterfaceBlock &fragmentBlock : fragmentShader->getInterfaceBlocks())
{
// Only 'packed' blocks are allowed to be considered inactive.
if (!fragmentBlock.staticUse && fragmentBlock.layout == sh::BLOCKLAYOUT_PACKED)
continue;
if (visitedList.count(fragmentBlock.name) > 0)
{
for (gl::UniformBlock &block : mState.mUniformBlocks)
{
if (block.name == fragmentBlock.name)
{
block.fragmentStaticUse = fragmentBlock.staticUse;
}
}
continue;
}
defineUniformBlock(fragmentBlock, GL_FRAGMENT_SHADER);
visitedList.insert(fragmentBlock.name);
}
}
template <typename VarT>
void Program::defineUniformBlockMembers(const std::vector<VarT> &fields,
const std::string &prefix,
int blockIndex)
{
for (const VarT &field : fields)
{
const std::string &fullName = (prefix.empty() ? field.name : prefix + "." + field.name);
if (field.isStruct())
{
for (unsigned int arrayElement = 0; arrayElement < field.elementCount(); arrayElement++)
{
const std::string uniformElementName =
fullName + (field.isArray() ? ArrayString(arrayElement) : "");
defineUniformBlockMembers(field.fields, uniformElementName, blockIndex);
}
}
else
{
// If getBlockMemberInfo returns false, the uniform is optimized out.
sh::BlockMemberInfo memberInfo;
if (!mProgram->getUniformBlockMemberInfo(fullName, &memberInfo))
{
continue;
}
LinkedUniform newUniform(field.type, field.precision, fullName, field.arraySize,
blockIndex, memberInfo);
// Since block uniforms have no location, we don't need to store them in the uniform
// locations list.
mState.mUniforms.push_back(newUniform);
}
}
}
void Program::defineUniformBlock(const sh::InterfaceBlock &interfaceBlock, GLenum shaderType)
{
int blockIndex = static_cast<int>(mState.mUniformBlocks.size());
size_t blockSize = 0;
// Don't define this block at all if it's not active in the implementation.
if (!mProgram->getUniformBlockSize(interfaceBlock.name, &blockSize))
{
return;
}
// Track the first and last uniform index to determine the range of active uniforms in the
// block.
size_t firstBlockUniformIndex = mState.mUniforms.size();
defineUniformBlockMembers(interfaceBlock.fields, interfaceBlock.fieldPrefix(), blockIndex);
size_t lastBlockUniformIndex = mState.mUniforms.size();
std::vector<unsigned int> blockUniformIndexes;
for (size_t blockUniformIndex = firstBlockUniformIndex;
blockUniformIndex < lastBlockUniformIndex; ++blockUniformIndex)
{
blockUniformIndexes.push_back(static_cast<unsigned int>(blockUniformIndex));
}
if (interfaceBlock.arraySize > 0)
{
for (unsigned int arrayElement = 0; arrayElement < interfaceBlock.arraySize; ++arrayElement)
{
UniformBlock block(interfaceBlock.name, true, arrayElement);
block.memberUniformIndexes = blockUniformIndexes;
switch (shaderType)
{
case GL_VERTEX_SHADER:
{
block.vertexStaticUse = interfaceBlock.staticUse;
break;
}
case GL_FRAGMENT_SHADER:
{
block.fragmentStaticUse = interfaceBlock.staticUse;
break;
}
case GL_COMPUTE_SHADER:
{
block.computeStaticUse = interfaceBlock.staticUse;
break;
}
default:
UNREACHABLE();
}
// TODO(jmadill): Determine if we can ever have an inactive array element block.
size_t blockElementSize = 0;
if (!mProgram->getUniformBlockSize(block.nameWithArrayIndex(), &blockElementSize))
{
continue;
}
ASSERT(blockElementSize == blockSize);
block.dataSize = static_cast<unsigned int>(blockElementSize);
mState.mUniformBlocks.push_back(block);
}
}
else
{
UniformBlock block(interfaceBlock.name, false, 0);
block.memberUniformIndexes = blockUniformIndexes;
switch (shaderType)
{
case GL_VERTEX_SHADER:
{
block.vertexStaticUse = interfaceBlock.staticUse;
break;
}
case GL_FRAGMENT_SHADER:
{
block.fragmentStaticUse = interfaceBlock.staticUse;
break;
}
case GL_COMPUTE_SHADER:
{
block.computeStaticUse = interfaceBlock.staticUse;
break;
}
default:
UNREACHABLE();
}
block.dataSize = static_cast<unsigned int>(blockSize);
mState.mUniformBlocks.push_back(block);
}
}
template <typename T>
void Program::setUniformInternal(GLint location, GLsizei count, const T *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
LinkedUniform *linkedUniform = &mState.mUniforms[locationInfo.index];
uint8_t *destPointer = linkedUniform->getDataPtrToElement(locationInfo.element);
if (VariableComponentType(linkedUniform->type) == GL_BOOL)
{
// Do a cast conversion for boolean types. From the spec:
// "The uniform is set to FALSE if the input value is 0 or 0.0f, and set to TRUE otherwise."
GLint *destAsInt = reinterpret_cast<GLint *>(destPointer);
for (GLsizei component = 0; component < count; ++component)
{
destAsInt[component] = (v[component] != static_cast<T>(0) ? GL_TRUE : GL_FALSE);
}
}
else
{
// Invalide the validation cache if we modify the sampler data.
if (linkedUniform->isSampler() && memcmp(destPointer, v, sizeof(T) * count) != 0)
{
mCachedValidateSamplersResult.reset();
}
memcpy(destPointer, v, sizeof(T) * count);
}
}
template <size_t cols, size_t rows, typename T>
void Program::setMatrixUniformInternal(GLint location,
GLsizei count,
GLboolean transpose,
const T *v)
{
if (!transpose)
{
setUniformInternal(location, count * cols * rows, v);
return;
}
// Perform a transposing copy.
const VariableLocation &locationInfo = mState.mUniformLocations[location];
LinkedUniform *linkedUniform = &mState.mUniforms[locationInfo.index];
T *destPtr = reinterpret_cast<T *>(linkedUniform->getDataPtrToElement(locationInfo.element));
for (GLsizei element = 0; element < count; ++element)
{
size_t elementOffset = element * rows * cols;
for (size_t row = 0; row < rows; ++row)
{
for (size_t col = 0; col < cols; ++col)
{
destPtr[col * rows + row + elementOffset] = v[row * cols + col + elementOffset];
}
}
}
}
template <typename DestT>
void Program::getUniformInternal(GLint location, DestT *dataOut) const
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
const LinkedUniform &uniform = mState.mUniforms[locationInfo.index];
const uint8_t *srcPointer = uniform.getDataPtrToElement(locationInfo.element);
GLenum componentType = VariableComponentType(uniform.type);
if (componentType == GLTypeToGLenum<DestT>::value)
{
memcpy(dataOut, srcPointer, uniform.getElementSize());
return;
}
int components = VariableComponentCount(uniform.type);
switch (componentType)
{
case GL_INT:
UniformStateQueryCastLoop<GLint>(dataOut, srcPointer, components);
break;
case GL_UNSIGNED_INT:
UniformStateQueryCastLoop<GLuint>(dataOut, srcPointer, components);
break;
case GL_BOOL:
UniformStateQueryCastLoop<GLboolean>(dataOut, srcPointer, components);
break;
case GL_FLOAT:
UniformStateQueryCastLoop<GLfloat>(dataOut, srcPointer, components);
break;
default:
UNREACHABLE();
}
}
}