blob: 52dddc9115f133fd53fbb51a6bbe9af90e3d86db [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "libANGLE/Program.h"
#include <algorithm>
#include "common/bitset_utils.h"
#include "common/debug.h"
#include "common/platform.h"
#include "common/string_utils.h"
#include "common/utilities.h"
#include "compiler/translator/blocklayout.h"
#include "libANGLE/Context.h"
#include "libANGLE/MemoryProgramCache.h"
#include "libANGLE/ProgramLinkedResources.h"
#include "libANGLE/ResourceManager.h"
#include "libANGLE/Uniform.h"
#include "libANGLE/VaryingPacking.h"
#include "libANGLE/features.h"
#include "libANGLE/histogram_macros.h"
#include "libANGLE/queryconversions.h"
#include "libANGLE/renderer/GLImplFactory.h"
#include "libANGLE/renderer/ProgramImpl.h"
#include "platform/Platform.h"
namespace gl
{
namespace
{
// This simplified cast function doesn't need to worry about advanced concepts like
// depth range values, or casting to bool.
template <typename DestT, typename SrcT>
DestT UniformStateQueryCast(SrcT value);
// From-Float-To-Integer Casts
template <>
GLint UniformStateQueryCast(GLfloat value)
{
return clampCast<GLint>(roundf(value));
}
template <>
GLuint UniformStateQueryCast(GLfloat value)
{
return clampCast<GLuint>(roundf(value));
}
// From-Integer-to-Integer Casts
template <>
GLint UniformStateQueryCast(GLuint value)
{
return clampCast<GLint>(value);
}
template <>
GLuint UniformStateQueryCast(GLint value)
{
return clampCast<GLuint>(value);
}
// From-Boolean-to-Anything Casts
template <>
GLfloat UniformStateQueryCast(GLboolean value)
{
return (ConvertToBool(value) ? 1.0f : 0.0f);
}
template <>
GLint UniformStateQueryCast(GLboolean value)
{
return (ConvertToBool(value) ? 1 : 0);
}
template <>
GLuint UniformStateQueryCast(GLboolean value)
{
return (ConvertToBool(value) ? 1u : 0u);
}
// Default to static_cast
template <typename DestT, typename SrcT>
DestT UniformStateQueryCast(SrcT value)
{
return static_cast<DestT>(value);
}
template <typename SrcT, typename DestT>
void UniformStateQueryCastLoop(DestT *dataOut, const uint8_t *srcPointer, int components)
{
for (int comp = 0; comp < components; ++comp)
{
// We only work with strides of 4 bytes for uniform components. (GLfloat/GLint)
// Don't use SrcT stride directly since GLboolean has a stride of 1 byte.
size_t offset = comp * 4;
const SrcT *typedSrcPointer = reinterpret_cast<const SrcT *>(&srcPointer[offset]);
dataOut[comp] = UniformStateQueryCast<DestT>(*typedSrcPointer);
}
}
template <typename VarT>
GLuint GetResourceIndexFromName(const std::vector<VarT> &list, const std::string &name)
{
std::string nameAsArrayName = name + "[0]";
for (size_t index = 0; index < list.size(); index++)
{
const VarT &resource = list[index];
if (resource.name == name || (resource.isArray() && resource.name == nameAsArrayName))
{
return static_cast<GLuint>(index);
}
}
return GL_INVALID_INDEX;
}
template <typename VarT>
GLint GetVariableLocation(const std::vector<VarT> &list,
const std::vector<VariableLocation> &locationList,
const std::string &name)
{
size_t nameLengthWithoutArrayIndex;
unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex);
for (size_t location = 0u; location < locationList.size(); ++location)
{
const VariableLocation &variableLocation = locationList[location];
if (!variableLocation.used())
{
continue;
}
const VarT &variable = list[variableLocation.index];
if (angle::BeginsWith(variable.name, name))
{
if (name.length() == variable.name.length())
{
ASSERT(name == variable.name);
// GLES 3.1 November 2016 page 87.
// The string exactly matches the name of the active variable.
return static_cast<GLint>(location);
}
if (name.length() + 3u == variable.name.length() && variable.isArray())
{
ASSERT(name + "[0]" == variable.name);
// The string identifies the base name of an active array, where the string would
// exactly match the name of the variable if the suffix "[0]" were appended to the
// string.
return static_cast<GLint>(location);
}
}
if (variable.isArray() && variableLocation.arrayIndex == arrayIndex &&
nameLengthWithoutArrayIndex + 3u == variable.name.length() &&
angle::BeginsWith(variable.name, name, nameLengthWithoutArrayIndex))
{
ASSERT(name.substr(0u, nameLengthWithoutArrayIndex) + "[0]" == variable.name);
// The string identifies an active element of the array, where the string ends with the
// concatenation of the "[" character, an integer (with no "+" sign, extra leading
// zeroes, or whitespace) identifying an array element, and the "]" character, the
// integer is less than the number of active elements of the array variable, and where
// the string would exactly match the enumerated name of the array if the decimal
// integer were replaced with zero.
return static_cast<GLint>(location);
}
}
return -1;
}
void CopyStringToBuffer(GLchar *buffer, const std::string &string, GLsizei bufSize, GLsizei *length)
{
ASSERT(bufSize > 0);
strncpy(buffer, string.c_str(), bufSize);
buffer[bufSize - 1] = '\0';
if (length)
{
*length = static_cast<GLsizei>(strlen(buffer));
}
}
bool IncludeSameArrayElement(const std::set<std::string> &nameSet, const std::string &name)
{
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(name, &subscripts);
for (auto nameInSet : nameSet)
{
std::vector<unsigned int> arrayIndices;
std::string arrayName = ParseResourceName(nameInSet, &arrayIndices);
if (baseName == arrayName &&
(subscripts.empty() || arrayIndices.empty() || subscripts == arrayIndices))
{
return true;
}
}
return false;
}
std::string GetInterfaceBlockLimitName(ShaderType shaderType, sh::BlockType blockType)
{
std::ostringstream stream;
stream << "GL_MAX_" << GetShaderTypeString(shaderType) << "_";
switch (blockType)
{
case sh::BlockType::BLOCK_UNIFORM:
stream << "UNIFORM_BUFFERS";
break;
case sh::BlockType::BLOCK_BUFFER:
stream << "SHADER_STORAGE_BLOCKS";
break;
default:
UNREACHABLE();
return "";
}
if (shaderType == ShaderType::Geometry)
{
stream << "_EXT";
}
return stream.str();
}
const char *GetInterfaceBlockTypeString(sh::BlockType blockType)
{
switch (blockType)
{
case sh::BlockType::BLOCK_UNIFORM:
return "uniform block";
case sh::BlockType::BLOCK_BUFFER:
return "shader storage block";
default:
UNREACHABLE();
return "";
}
}
void LogInterfaceBlocksExceedLimit(InfoLog &infoLog,
ShaderType shaderType,
sh::BlockType blockType,
GLuint limit)
{
infoLog << GetShaderTypeString(shaderType) << " shader "
<< GetInterfaceBlockTypeString(blockType) << " count exceeds "
<< GetInterfaceBlockLimitName(shaderType, blockType) << " (" << limit << ")";
}
bool ValidateInterfaceBlocksCount(GLuint maxInterfaceBlocks,
const std::vector<sh::InterfaceBlock> &interfaceBlocks,
ShaderType shaderType,
sh::BlockType blockType,
InfoLog &infoLog)
{
GLuint blockCount = 0;
for (const sh::InterfaceBlock &block : interfaceBlocks)
{
if (block.active || block.layout != sh::BLOCKLAYOUT_PACKED)
{
blockCount += (block.arraySize ? block.arraySize : 1);
if (blockCount > maxInterfaceBlocks)
{
LogInterfaceBlocksExceedLimit(infoLog, shaderType, blockType, maxInterfaceBlocks);
return false;
}
}
}
return true;
}
GLuint GetInterfaceBlockIndex(const std::vector<InterfaceBlock> &list, const std::string &name)
{
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(name, &subscripts);
unsigned int numBlocks = static_cast<unsigned int>(list.size());
for (unsigned int blockIndex = 0; blockIndex < numBlocks; blockIndex++)
{
const auto &block = list[blockIndex];
if (block.name == baseName)
{
const bool arrayElementZero =
(subscripts.empty() && (!block.isArray || block.arrayElement == 0));
const bool arrayElementMatches =
(subscripts.size() == 1 && subscripts[0] == block.arrayElement);
if (arrayElementMatches || arrayElementZero)
{
return blockIndex;
}
}
}
return GL_INVALID_INDEX;
}
void GetInterfaceBlockName(const GLuint index,
const std::vector<InterfaceBlock> &list,
GLsizei bufSize,
GLsizei *length,
GLchar *name)
{
ASSERT(index < list.size());
const auto &block = list[index];
if (bufSize > 0)
{
std::string blockName = block.name;
if (block.isArray)
{
blockName += ArrayString(block.arrayElement);
}
CopyStringToBuffer(name, blockName, bufSize, length);
}
}
void InitUniformBlockLinker(const gl::Context *context,
const ProgramState &state,
UniformBlockLinker *blockLinker)
{
for (ShaderType shaderType : AllShaderTypes())
{
Shader *shader = state.getAttachedShader(shaderType);
if (shader)
{
blockLinker->addShaderBlocks(shaderType, &shader->getUniformBlocks(context));
}
}
}
void InitShaderStorageBlockLinker(const gl::Context *context,
const ProgramState &state,
ShaderStorageBlockLinker *blockLinker)
{
for (ShaderType shaderType : AllShaderTypes())
{
Shader *shader = state.getAttachedShader(shaderType);
if (shader != nullptr)
{
blockLinker->addShaderBlocks(shaderType, &shader->getShaderStorageBlocks(context));
}
}
}
// Find the matching varying or field by name.
const sh::ShaderVariable *FindVaryingOrField(const ProgramMergedVaryings &varyings,
const std::string &name)
{
const sh::ShaderVariable *var = nullptr;
for (const auto &ref : varyings)
{
const sh::Varying *varying = ref.second.get();
if (varying->name == name)
{
var = varying;
break;
}
var = FindShaderVarField(*varying, name);
if (var != nullptr)
{
break;
}
}
return var;
}
void AddParentPrefix(const std::string &parentName, std::string *mismatchedFieldName)
{
ASSERT(mismatchedFieldName);
if (mismatchedFieldName->empty())
{
*mismatchedFieldName = parentName;
}
else
{
std::ostringstream stream;
stream << parentName << "." << *mismatchedFieldName;
*mismatchedFieldName = stream.str();
}
}
const char *GetLinkMismatchErrorString(LinkMismatchError linkError)
{
switch (linkError)
{
case LinkMismatchError::TYPE_MISMATCH:
return "Type";
case LinkMismatchError::ARRAY_SIZE_MISMATCH:
return "Array size";
case LinkMismatchError::PRECISION_MISMATCH:
return "Precision";
case LinkMismatchError::STRUCT_NAME_MISMATCH:
return "Structure name";
case LinkMismatchError::FIELD_NUMBER_MISMATCH:
return "Field number";
case LinkMismatchError::FIELD_NAME_MISMATCH:
return "Field name";
case LinkMismatchError::INTERPOLATION_TYPE_MISMATCH:
return "Interpolation type";
case LinkMismatchError::INVARIANCE_MISMATCH:
return "Invariance";
case LinkMismatchError::BINDING_MISMATCH:
return "Binding layout qualifier";
case LinkMismatchError::LOCATION_MISMATCH:
return "Location layout qualifier";
case LinkMismatchError::OFFSET_MISMATCH:
return "Offset layout qualilfier";
case LinkMismatchError::LAYOUT_QUALIFIER_MISMATCH:
return "Layout qualifier";
case LinkMismatchError::MATRIX_PACKING_MISMATCH:
return "Matrix Packing";
default:
UNREACHABLE();
return "";
}
}
LinkMismatchError LinkValidateInterfaceBlockFields(const sh::InterfaceBlockField &blockField1,
const sh::InterfaceBlockField &blockField2,
bool webglCompatibility,
std::string *mismatchedBlockFieldName)
{
if (blockField1.name != blockField2.name)
{
return LinkMismatchError::FIELD_NAME_MISMATCH;
}
// If webgl, validate precision of UBO fields, otherwise don't. See Khronos bug 10287.
LinkMismatchError linkError = Program::LinkValidateVariablesBase(
blockField1, blockField2, webglCompatibility, true, mismatchedBlockFieldName);
if (linkError != LinkMismatchError::NO_MISMATCH)
{
AddParentPrefix(blockField1.name, mismatchedBlockFieldName);
return linkError;
}
if (blockField1.isRowMajorLayout != blockField2.isRowMajorLayout)
{
AddParentPrefix(blockField1.name, mismatchedBlockFieldName);
return LinkMismatchError::MATRIX_PACKING_MISMATCH;
}
return LinkMismatchError::NO_MISMATCH;
}
LinkMismatchError AreMatchingInterfaceBlocks(const sh::InterfaceBlock &interfaceBlock1,
const sh::InterfaceBlock &interfaceBlock2,
bool webglCompatibility,
std::string *mismatchedBlockFieldName)
{
// validate blocks for the same member types
if (interfaceBlock1.fields.size() != interfaceBlock2.fields.size())
{
return LinkMismatchError::FIELD_NUMBER_MISMATCH;
}
if (interfaceBlock1.arraySize != interfaceBlock2.arraySize)
{
return LinkMismatchError::ARRAY_SIZE_MISMATCH;
}
if (interfaceBlock1.layout != interfaceBlock2.layout ||
interfaceBlock1.binding != interfaceBlock2.binding)
{
return LinkMismatchError::LAYOUT_QUALIFIER_MISMATCH;
}
const unsigned int numBlockMembers = static_cast<unsigned int>(interfaceBlock1.fields.size());
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++)
{
const sh::InterfaceBlockField &member1 = interfaceBlock1.fields[blockMemberIndex];
const sh::InterfaceBlockField &member2 = interfaceBlock2.fields[blockMemberIndex];
LinkMismatchError linkError = LinkValidateInterfaceBlockFields(
member1, member2, webglCompatibility, mismatchedBlockFieldName);
if (linkError != LinkMismatchError::NO_MISMATCH)
{
return linkError;
}
}
return LinkMismatchError::NO_MISMATCH;
}
using ShaderInterfaceBlock = std::pair<ShaderType, const sh::InterfaceBlock *>;
using InterfaceBlockMap = std::map<std::string, ShaderInterfaceBlock>;
void InitializeInterfaceBlockMap(const std::vector<sh::InterfaceBlock> &interfaceBlocks,
ShaderType shaderType,
InterfaceBlockMap *linkedInterfaceBlocks,
GLuint *blockCount)
{
ASSERT(linkedInterfaceBlocks && blockCount);
for (const sh::InterfaceBlock &interfaceBlock : interfaceBlocks)
{
(*linkedInterfaceBlocks)[interfaceBlock.name] = std::make_pair(shaderType, &interfaceBlock);
if (IsActiveInterfaceBlock(interfaceBlock))
{
*blockCount += std::max(interfaceBlock.arraySize, 1u);
}
}
}
bool ValidateGraphicsInterfaceBlocksPerShader(
const std::vector<sh::InterfaceBlock> &interfaceBlocksToLink,
ShaderType shaderType,
bool webglCompatibility,
InterfaceBlockMap *linkedBlocks,
GLuint *combinedInterfaceBlockCount,
InfoLog &infoLog)
{
ASSERT(linkedBlocks && combinedInterfaceBlockCount);
for (const sh::InterfaceBlock &block : interfaceBlocksToLink)
{
const auto &entry = linkedBlocks->find(block.name);
if (entry != linkedBlocks->end())
{
const sh::InterfaceBlock &linkedBlock = *(entry->second.second);
std::string mismatchedStructFieldName;
LinkMismatchError linkError = AreMatchingInterfaceBlocks(
block, linkedBlock, webglCompatibility, &mismatchedStructFieldName);
if (linkError != LinkMismatchError::NO_MISMATCH)
{
LogLinkMismatch(infoLog, block.name, GetInterfaceBlockTypeString(block.blockType),
linkError, mismatchedStructFieldName, entry->second.first,
shaderType);
return false;
}
}
else
{
(*linkedBlocks)[block.name] = std::make_pair(shaderType, &block);
}
// [OpenGL ES 3.1] Chapter 7.6.2 Page 105:
// If a uniform block is used by multiple shader stages, each such use counts separately
// against this combined limit.
// [OpenGL ES 3.1] Chapter 7.8 Page 111:
// If a shader storage block in a program is referenced by multiple shaders, each such
// reference counts separately against this combined limit.
if (IsActiveInterfaceBlock(block))
{
*combinedInterfaceBlockCount += std::max(block.arraySize, 1u);
}
}
return true;
}
bool ValidateGraphicsInterfaceBlocks(
const ShaderMap<const std::vector<sh::InterfaceBlock> *> &shaderInterfaceBlocks,
InfoLog &infoLog,
bool webglCompatibility,
sh::BlockType blockType,
GLuint maxCombinedInterfaceBlocks)
{
// Check that interface blocks defined in the graphics shaders are identical
InterfaceBlockMap linkedInterfaceBlocks;
GLuint blockCount = 0u;
bool interfaceBlockMapInitialized = false;
for (ShaderType shaderType : kAllGraphicsShaderTypes)
{
if (!shaderInterfaceBlocks[shaderType])
{
continue;
}
if (!interfaceBlockMapInitialized)
{
InitializeInterfaceBlockMap(*shaderInterfaceBlocks[shaderType], shaderType,
&linkedInterfaceBlocks, &blockCount);
interfaceBlockMapInitialized = true;
}
else if (!ValidateGraphicsInterfaceBlocksPerShader(
*shaderInterfaceBlocks[shaderType], shaderType, webglCompatibility,
&linkedInterfaceBlocks, &blockCount, infoLog))
{
return false;
}
}
if (blockCount > maxCombinedInterfaceBlocks)
{
switch (blockType)
{
case sh::BlockType::BLOCK_UNIFORM:
infoLog << "The sum of the number of active uniform blocks exceeds "
"MAX_COMBINED_UNIFORM_BLOCKS ("
<< maxCombinedInterfaceBlocks << ").";
break;
case sh::BlockType::BLOCK_BUFFER:
infoLog << "The sum of the number of active shader storage blocks exceeds "
"MAX_COMBINED_SHADER_STORAGE_BLOCKS ("
<< maxCombinedInterfaceBlocks << ").";
break;
default:
UNREACHABLE();
}
return false;
}
return true;
}
} // anonymous namespace
const char *const g_fakepath = "C:\\fakepath";
// InfoLog implementation.
InfoLog::InfoLog()
{
}
InfoLog::~InfoLog()
{
}
size_t InfoLog::getLength() const
{
if (!mLazyStream)
{
return 0;
}
const std::string &logString = mLazyStream->str();
return logString.empty() ? 0 : logString.length() + 1;
}
void InfoLog::getLog(GLsizei bufSize, GLsizei *length, char *infoLog) const
{
size_t index = 0;
if (bufSize > 0)
{
const std::string logString(str());
if (!logString.empty())
{
index = std::min(static_cast<size_t>(bufSize) - 1, logString.length());
memcpy(infoLog, logString.c_str(), index);
}
infoLog[index] = '\0';
}
if (length)
{
*length = static_cast<GLsizei>(index);
}
}
// append a santized message to the program info log.
// The D3D compiler includes a fake file path in some of the warning or error
// messages, so lets remove all occurrences of this fake file path from the log.
void InfoLog::appendSanitized(const char *message)
{
ensureInitialized();
std::string msg(message);
size_t found;
do
{
found = msg.find(g_fakepath);
if (found != std::string::npos)
{
msg.erase(found, strlen(g_fakepath));
}
}
while (found != std::string::npos);
*mLazyStream << message << std::endl;
}
void InfoLog::reset()
{
if (mLazyStream)
{
mLazyStream.reset(nullptr);
}
}
bool InfoLog::empty() const
{
if (!mLazyStream)
{
return true;
}
return mLazyStream->rdbuf()->in_avail() == 0;
}
void LogLinkMismatch(InfoLog &infoLog,
const std::string &variableName,
const char *variableType,
LinkMismatchError linkError,
const std::string &mismatchedStructOrBlockFieldName,
ShaderType shaderType1,
ShaderType shaderType2)
{
std::ostringstream stream;
stream << GetLinkMismatchErrorString(linkError) << "s of " << variableType << " '"
<< variableName;
if (!mismatchedStructOrBlockFieldName.empty())
{
stream << "' member '" << variableName << "." << mismatchedStructOrBlockFieldName;
}
stream << "' differ between " << GetShaderTypeString(shaderType1) << " and "
<< GetShaderTypeString(shaderType2) << " shaders.";
infoLog << stream.str();
}
bool IsActiveInterfaceBlock(const sh::InterfaceBlock &interfaceBlock)
{
// Only 'packed' blocks are allowed to be considered inactive.
return interfaceBlock.active || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED;
}
// VariableLocation implementation.
VariableLocation::VariableLocation() : arrayIndex(0), index(kUnused), ignored(false)
{
}
VariableLocation::VariableLocation(unsigned int arrayIndex, unsigned int index)
: arrayIndex(arrayIndex), index(index), ignored(false)
{
ASSERT(arrayIndex != GL_INVALID_INDEX);
}
// SamplerBindings implementation.
SamplerBinding::SamplerBinding(TextureType textureTypeIn, size_t elementCount, bool unreferenced)
: textureType(textureTypeIn), boundTextureUnits(elementCount, 0), unreferenced(unreferenced)
{
}
SamplerBinding::SamplerBinding(const SamplerBinding &other) = default;
SamplerBinding::~SamplerBinding() = default;
// ProgramBindings implementation.
ProgramBindings::ProgramBindings()
{
}
ProgramBindings::~ProgramBindings()
{
}
void ProgramBindings::bindLocation(GLuint index, const std::string &name)
{
mBindings[name] = index;
}
int ProgramBindings::getBinding(const std::string &name) const
{
auto iter = mBindings.find(name);
return (iter != mBindings.end()) ? iter->second : -1;
}
ProgramBindings::const_iterator ProgramBindings::begin() const
{
return mBindings.begin();
}
ProgramBindings::const_iterator ProgramBindings::end() const
{
return mBindings.end();
}
// ImageBinding implementation.
ImageBinding::ImageBinding(size_t count) : boundImageUnits(count, 0)
{
}
ImageBinding::ImageBinding(GLuint imageUnit, size_t count)
{
for (size_t index = 0; index < count; ++index)
{
boundImageUnits.push_back(imageUnit + static_cast<GLuint>(index));
}
}
ImageBinding::ImageBinding(const ImageBinding &other) = default;
ImageBinding::~ImageBinding() = default;
// ProgramState implementation.
ProgramState::ProgramState()
: mLabel(),
mAttachedShaders({}),
mTransformFeedbackBufferMode(GL_INTERLEAVED_ATTRIBS),
mMaxActiveAttribLocation(0),
mSamplerUniformRange(0, 0),
mImageUniformRange(0, 0),
mAtomicCounterUniformRange(0, 0),
mBinaryRetrieveableHint(false),
mNumViews(-1),
// [GL_EXT_geometry_shader] Table 20.22
mGeometryShaderInputPrimitiveType(GL_TRIANGLES),
mGeometryShaderOutputPrimitiveType(GL_TRIANGLE_STRIP),
mGeometryShaderInvocations(1),
mGeometryShaderMaxVertices(0)
{
mComputeShaderLocalSize.fill(1);
}
ProgramState::~ProgramState()
{
ASSERT(!hasAttachedShader());
}
const std::string &ProgramState::getLabel()
{
return mLabel;
}
Shader *ProgramState::getAttachedShader(ShaderType shaderType) const
{
ASSERT(shaderType != ShaderType::InvalidEnum);
return mAttachedShaders[shaderType];
}
GLuint ProgramState::getUniformIndexFromName(const std::string &name) const
{
return GetResourceIndexFromName(mUniforms, name);
}
GLuint ProgramState::getBufferVariableIndexFromName(const std::string &name) const
{
return GetResourceIndexFromName(mBufferVariables, name);
}
GLuint ProgramState::getUniformIndexFromLocation(GLint location) const
{
ASSERT(location >= 0 && static_cast<size_t>(location) < mUniformLocations.size());
return mUniformLocations[location].index;
}
Optional<GLuint> ProgramState::getSamplerIndex(GLint location) const
{
GLuint index = getUniformIndexFromLocation(location);
if (!isSamplerUniformIndex(index))
{
return Optional<GLuint>::Invalid();
}
return getSamplerIndexFromUniformIndex(index);
}
bool ProgramState::isSamplerUniformIndex(GLuint index) const
{
return mSamplerUniformRange.contains(index);
}
GLuint ProgramState::getSamplerIndexFromUniformIndex(GLuint uniformIndex) const
{
ASSERT(isSamplerUniformIndex(uniformIndex));
return uniformIndex - mSamplerUniformRange.low();
}
GLuint ProgramState::getAttributeLocation(const std::string &name) const
{
for (const sh::Attribute &attribute : mAttributes)
{
if (attribute.name == name)
{
return attribute.location;
}
}
return static_cast<GLuint>(-1);
}
bool ProgramState::hasAttachedShader() const
{
for (const Shader *shader : mAttachedShaders)
{
if (shader)
{
return true;
}
}
return false;
}
Program::Program(rx::GLImplFactory *factory, ShaderProgramManager *manager, GLuint handle)
: mProgram(factory->createProgram(mState)),
mValidated(false),
mLinked(false),
mDeleteStatus(false),
mRefCount(0),
mResourceManager(manager),
mHandle(handle)
{
ASSERT(mProgram);
unlink();
}
Program::~Program()
{
ASSERT(!mProgram);
}
void Program::onDestroy(const Context *context)
{
for (ShaderType shaderType : AllShaderTypes())
{
if (mState.mAttachedShaders[shaderType])
{
mState.mAttachedShaders[shaderType]->release(context);
mState.mAttachedShaders[shaderType] = nullptr;
}
}
// TODO(jmadill): Handle error in the Context.
ANGLE_SWALLOW_ERR(mProgram->destroy(context));
ASSERT(!mState.hasAttachedShader());
SafeDelete(mProgram);
delete this;
}
void Program::setLabel(const std::string &label)
{
mState.mLabel = label;
}
const std::string &Program::getLabel() const
{
return mState.mLabel;
}
void Program::attachShader(Shader *shader)
{
ShaderType shaderType = shader->getType();
ASSERT(shaderType != ShaderType::InvalidEnum);
mState.mAttachedShaders[shaderType] = shader;
mState.mAttachedShaders[shaderType]->addRef();
}
void Program::detachShader(const Context *context, Shader *shader)
{
ShaderType shaderType = shader->getType();
ASSERT(shaderType != ShaderType::InvalidEnum);
ASSERT(mState.mAttachedShaders[shaderType] == shader);
shader->release(context);
mState.mAttachedShaders[shaderType] = nullptr;
}
int Program::getAttachedShadersCount() const
{
int numAttachedShaders = 0;
for (const Shader *shader : mState.mAttachedShaders)
{
if (shader)
{
++numAttachedShaders;
}
}
return numAttachedShaders;
}
const Shader *Program::getAttachedShader(ShaderType shaderType) const
{
return mState.getAttachedShader(shaderType);
}
void Program::bindAttributeLocation(GLuint index, const char *name)
{
mAttributeBindings.bindLocation(index, name);
}
void Program::bindUniformLocation(GLuint index, const char *name)
{
mUniformLocationBindings.bindLocation(index, name);
}
void Program::bindFragmentInputLocation(GLint index, const char *name)
{
mFragmentInputBindings.bindLocation(index, name);
}
BindingInfo Program::getFragmentInputBindingInfo(const Context *context, GLint index) const
{
BindingInfo ret;
ret.type = GL_NONE;
ret.valid = false;
Shader *fragmentShader = mState.getAttachedShader(ShaderType::Fragment);
ASSERT(fragmentShader);
// Find the actual fragment shader varying we're interested in
const std::vector<sh::Varying> &inputs = fragmentShader->getInputVaryings(context);
for (const auto &binding : mFragmentInputBindings)
{
if (binding.second != static_cast<GLuint>(index))
continue;
ret.valid = true;
size_t nameLengthWithoutArrayIndex;
unsigned int arrayIndex = ParseArrayIndex(binding.first, &nameLengthWithoutArrayIndex);
for (const auto &in : inputs)
{
if (in.name.length() == nameLengthWithoutArrayIndex &&
angle::BeginsWith(in.name, binding.first, nameLengthWithoutArrayIndex))
{
if (in.isArray())
{
// The client wants to bind either "name" or "name[0]".
// GL ES 3.1 spec refers to active array names with language such as:
// "if the string identifies the base name of an active array, where the
// string would exactly match the name of the variable if the suffix "[0]"
// were appended to the string".
if (arrayIndex == GL_INVALID_INDEX)
arrayIndex = 0;
ret.name = in.mappedName + "[" + ToString(arrayIndex) + "]";
}
else
{
ret.name = in.mappedName;
}
ret.type = in.type;
return ret;
}
}
}
return ret;
}
void Program::pathFragmentInputGen(const Context *context,
GLint index,
GLenum genMode,
GLint components,
const GLfloat *coeffs)
{
// If the location is -1 then the command is silently ignored
if (index == -1)
return;
const auto &binding = getFragmentInputBindingInfo(context, index);
// If the input doesn't exist then then the command is silently ignored
// This could happen through optimization for example, the shader translator
// decides that a variable is not actually being used and optimizes it away.
if (binding.name.empty())
return;
mProgram->setPathFragmentInputGen(binding.name, genMode, components, coeffs);
}
// The attached shaders are checked for linking errors by matching up their variables.
// Uniform, input and output variables get collected.
// The code gets compiled into binaries.
Error Program::link(const gl::Context *context)
{
const auto &data = context->getContextState();
auto *platform = ANGLEPlatformCurrent();
double startTime = platform->currentTime(platform);
unlink();
mInfoLog.reset();
// Validate we have properly attached shaders before checking the cache.
if (!linkValidateShaders(context, mInfoLog))
{
return NoError();
}
ProgramHash programHash;
MemoryProgramCache *cache = context->getMemoryProgramCache();
if (cache)
{
ANGLE_TRY_RESULT(cache->getProgram(context, this, &mState, &programHash), mLinked);
ANGLE_HISTOGRAM_BOOLEAN("GPU.ANGLE.ProgramCache.LoadBinarySuccess", mLinked);
}
if (mLinked)
{
double delta = platform->currentTime(platform) - startTime;
int us = static_cast<int>(delta * 1000000.0);
ANGLE_HISTOGRAM_COUNTS("GPU.ANGLE.ProgramCache.ProgramCacheHitTimeUS", us);
return NoError();
}
// Cache load failed, fall through to normal linking.
unlink();
// Re-link shaders after the unlink call.
ASSERT(linkValidateShaders(context, mInfoLog));
if (mState.mAttachedShaders[ShaderType::Compute])
{
if (!linkUniforms(context, mInfoLog, mUniformLocationBindings))
{
return NoError();
}
if (!linkInterfaceBlocks(context, mInfoLog))
{
return NoError();
}
ProgramLinkedResources resources = {
{0, PackMode::ANGLE_RELAXED},
{&mState.mUniformBlocks, &mState.mUniforms},
{&mState.mShaderStorageBlocks, &mState.mBufferVariables},
{&mState.mAtomicCounterBuffers}};
InitUniformBlockLinker(context, mState, &resources.uniformBlockLinker);
InitShaderStorageBlockLinker(context, mState, &resources.shaderStorageBlockLinker);
ANGLE_TRY_RESULT(mProgram->link(context, resources, mInfoLog), mLinked);
if (!mLinked)
{
return NoError();
}
}
else
{
if (!linkAttributes(context, mInfoLog))
{
return NoError();
}
if (!linkVaryings(context, mInfoLog))
{
return NoError();
}
if (!linkUniforms(context, mInfoLog, mUniformLocationBindings))
{
return NoError();
}
if (!linkInterfaceBlocks(context, mInfoLog))
{
return NoError();
}
if (!linkValidateGlobalNames(context, mInfoLog))
{
return NoError();
}
const auto &mergedVaryings = getMergedVaryings(context);
ASSERT(mState.mAttachedShaders[ShaderType::Vertex]);
mState.mNumViews = mState.mAttachedShaders[ShaderType::Vertex]->getNumViews(context);
linkOutputVariables(context);
// Map the varyings to the register file
// In WebGL, we use a slightly different handling for packing variables.
gl::PackMode packMode = PackMode::ANGLE_RELAXED;
if (data.getLimitations().noFlexibleVaryingPacking)
{
// D3D9 pack mode is strictly more strict than WebGL, so takes priority.
packMode = PackMode::ANGLE_NON_CONFORMANT_D3D9;
}
else if (data.getExtensions().webglCompatibility)
{
packMode = PackMode::WEBGL_STRICT;
}
ProgramLinkedResources resources = {
{data.getCaps().maxVaryingVectors, packMode},
{&mState.mUniformBlocks, &mState.mUniforms},
{&mState.mShaderStorageBlocks, &mState.mBufferVariables},
{&mState.mAtomicCounterBuffers}};
InitUniformBlockLinker(context, mState, &resources.uniformBlockLinker);
InitShaderStorageBlockLinker(context, mState, &resources.shaderStorageBlockLinker);
if (!linkValidateTransformFeedback(context, mInfoLog, mergedVaryings, context->getCaps()))
{
return NoError();
}
if (!resources.varyingPacking.collectAndPackUserVaryings(
mInfoLog, mergedVaryings, mState.getTransformFeedbackVaryingNames()))
{
return NoError();
}
ANGLE_TRY_RESULT(mProgram->link(context, resources, mInfoLog), mLinked);
if (!mLinked)
{
return NoError();
}
gatherTransformFeedbackVaryings(mergedVaryings);
}
initInterfaceBlockBindings();
setUniformValuesFromBindingQualifiers();
// According to GLES 3.0/3.1 spec for LinkProgram and UseProgram,
// Only successfully linked program can replace the executables.
ASSERT(mLinked);
updateLinkedShaderStages();
// Mark implementation-specific unreferenced uniforms as ignored.
mProgram->markUnusedUniformLocations(&mState.mUniformLocations, &mState.mSamplerBindings);
// Save to the program cache.
if (cache && (mState.mLinkedTransformFeedbackVaryings.empty() ||
!context->getWorkarounds().disableProgramCachingForTransformFeedback))
{
cache->putProgram(programHash, context, this);
}
double delta = platform->currentTime(platform) - startTime;
int us = static_cast<int>(delta * 1000000.0);
ANGLE_HISTOGRAM_COUNTS("GPU.ANGLE.ProgramCache.ProgramCacheMissTimeUS", us);
return NoError();
}
void Program::updateLinkedShaderStages()
{
mState.mLinkedShaderStages.reset();
for (const Shader *shader : mState.mAttachedShaders)
{
if (shader)
{
mState.mLinkedShaderStages.set(shader->getType());
}
}
}
void ProgramState::updateTransformFeedbackStrides()
{
if (mTransformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS)
{
mTransformFeedbackStrides.resize(1);
size_t totalSize = 0;
for (auto &varying : mLinkedTransformFeedbackVaryings)
{
totalSize += varying.size() * VariableExternalSize(varying.type);
}
mTransformFeedbackStrides[0] = static_cast<GLsizei>(totalSize);
}
else
{
mTransformFeedbackStrides.resize(mLinkedTransformFeedbackVaryings.size());
for (size_t i = 0; i < mLinkedTransformFeedbackVaryings.size(); i++)
{
auto &varying = mLinkedTransformFeedbackVaryings[i];
mTransformFeedbackStrides[i] =
static_cast<GLsizei>(varying.size() * VariableExternalSize(varying.type));
}
}
}
// Returns the program object to an unlinked state, before re-linking, or at destruction
void Program::unlink()
{
mState.mAttributes.clear();
mState.mAttributesTypeMask.reset();
mState.mAttributesMask.reset();
mState.mActiveAttribLocationsMask.reset();
mState.mMaxActiveAttribLocation = 0;
mState.mLinkedTransformFeedbackVaryings.clear();
mState.mUniforms.clear();
mState.mUniformLocations.clear();
mState.mUniformBlocks.clear();
mState.mActiveUniformBlockBindings.reset();
mState.mAtomicCounterBuffers.clear();
mState.mOutputVariables.clear();
mState.mOutputLocations.clear();
mState.mOutputVariableTypes.clear();
mState.mDrawBufferTypeMask.reset();
mState.mActiveOutputVariables.reset();
mState.mComputeShaderLocalSize.fill(1);
mState.mSamplerBindings.clear();
mState.mImageBindings.clear();
mState.mNumViews = -1;
mState.mGeometryShaderInputPrimitiveType = GL_TRIANGLES;
mState.mGeometryShaderOutputPrimitiveType = GL_TRIANGLE_STRIP;
mState.mGeometryShaderInvocations = 1;
mState.mGeometryShaderMaxVertices = 0;
mValidated = false;
mLinked = false;
mInfoLog.reset();
}
bool Program::isLinked() const
{
return mLinked;
}
bool Program::hasLinkedShaderStage(ShaderType shaderType) const
{
ASSERT(shaderType != ShaderType::InvalidEnum);
return mState.mLinkedShaderStages[shaderType];
}
Error Program::loadBinary(const Context *context,
GLenum binaryFormat,
const void *binary,
GLsizei length)
{
unlink();
#if ANGLE_PROGRAM_BINARY_LOAD != ANGLE_ENABLED
return NoError();
#else
ASSERT(binaryFormat == GL_PROGRAM_BINARY_ANGLE);
if (binaryFormat != GL_PROGRAM_BINARY_ANGLE)
{
mInfoLog << "Invalid program binary format.";
return NoError();
}
const uint8_t *bytes = reinterpret_cast<const uint8_t *>(binary);
ANGLE_TRY_RESULT(
MemoryProgramCache::Deserialize(context, this, &mState, bytes, length, mInfoLog), mLinked);
// Currently we require the full shader text to compute the program hash.
// TODO(jmadill): Store the binary in the internal program cache.
return NoError();
#endif // #if ANGLE_PROGRAM_BINARY_LOAD == ANGLE_ENABLED
}
Error Program::saveBinary(const Context *context,
GLenum *binaryFormat,
void *binary,
GLsizei bufSize,
GLsizei *length) const
{
if (binaryFormat)
{
*binaryFormat = GL_PROGRAM_BINARY_ANGLE;
}
angle::MemoryBuffer memoryBuf;
MemoryProgramCache::Serialize(context, this, &memoryBuf);
GLsizei streamLength = static_cast<GLsizei>(memoryBuf.size());
const uint8_t *streamState = memoryBuf.data();
if (streamLength > bufSize)
{
if (length)
{
*length = 0;
}
// TODO: This should be moved to the validation layer but computing the size of the binary before saving
// it causes the save to happen twice. It may be possible to write the binary to a separate buffer, validate
// sizes and then copy it.
return InternalError();
}
if (binary)
{
char *ptr = reinterpret_cast<char*>(binary);
memcpy(ptr, streamState, streamLength);
ptr += streamLength;
ASSERT(ptr - streamLength == binary);
}
if (length)
{
*length = streamLength;
}
return NoError();
}
GLint Program::getBinaryLength(const Context *context) const
{
GLint length;
Error error = saveBinary(context, nullptr, nullptr, std::numeric_limits<GLint>::max(), &length);
if (error.isError())
{
return 0;
}
return length;
}
void Program::setBinaryRetrievableHint(bool retrievable)
{
// TODO(jmadill) : replace with dirty bits
mProgram->setBinaryRetrievableHint(retrievable);
mState.mBinaryRetrieveableHint = retrievable;
}
bool Program::getBinaryRetrievableHint() const
{
return mState.mBinaryRetrieveableHint;
}
void Program::setSeparable(bool separable)
{
// TODO(yunchao) : replace with dirty bits
if (mState.mSeparable != separable)
{
mProgram->setSeparable(separable);
mState.mSeparable = separable;
}
}
bool Program::isSeparable() const
{
return mState.mSeparable;
}
void Program::release(const Context *context)
{
mRefCount--;
if (mRefCount == 0 && mDeleteStatus)
{
mResourceManager->deleteProgram(context, mHandle);
}
}
void Program::addRef()
{
mRefCount++;
}
unsigned int Program::getRefCount() const
{
return mRefCount;
}
int Program::getInfoLogLength() const
{
return static_cast<int>(mInfoLog.getLength());
}
void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog) const
{
return mInfoLog.getLog(bufSize, length, infoLog);
}
void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders) const
{
int total = 0;
for (const Shader *shader : mState.mAttachedShaders)
{
if (shader && (total < maxCount))
{
shaders[total] = shader->getHandle();
++total;
}
}
if (count)
{
*count = total;
}
}
GLuint Program::getAttributeLocation(const std::string &name) const
{
return mState.getAttributeLocation(name);
}
bool Program::isAttribLocationActive(size_t attribLocation) const
{
ASSERT(attribLocation < mState.mActiveAttribLocationsMask.size());
return mState.mActiveAttribLocationsMask[attribLocation];
}
void Program::getActiveAttribute(GLuint index,
GLsizei bufsize,
GLsizei *length,
GLint *size,
GLenum *type,
GLchar *name) const
{
if (!mLinked)
{
if (bufsize > 0)
{
name[0] = '\0';
}
if (length)
{
*length = 0;
}
*type = GL_NONE;
*size = 1;
return;
}
ASSERT(index < mState.mAttributes.size());
const sh::Attribute &attrib = mState.mAttributes[index];
if (bufsize > 0)
{
CopyStringToBuffer(name, attrib.name, bufsize, length);
}
// Always a single 'type' instance
*size = 1;
*type = attrib.type;
}
GLint Program::getActiveAttributeCount() const
{
if (!mLinked)
{
return 0;
}
return static_cast<GLint>(mState.mAttributes.size());
}
GLint Program::getActiveAttributeMaxLength() const
{
if (!mLinked)
{
return 0;
}
size_t maxLength = 0;
for (const sh::Attribute &attrib : mState.mAttributes)
{
maxLength = std::max(attrib.name.length() + 1, maxLength);
}
return static_cast<GLint>(maxLength);
}
GLuint Program::getInputResourceIndex(const GLchar *name) const
{
return GetResourceIndexFromName(mState.mAttributes, std::string(name));
}
GLuint Program::getOutputResourceIndex(const GLchar *name) const
{
return GetResourceIndexFromName(mState.mOutputVariables, std::string(name));
}
size_t Program::getOutputResourceCount() const
{
return (mLinked ? mState.mOutputVariables.size() : 0);
}
template <typename T>
void Program::getResourceName(GLuint index,
const std::vector<T> &resources,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
if (length)
{
*length = 0;
}
if (!mLinked)
{
if (bufSize > 0)
{
name[0] = '\0';
}
return;
}
ASSERT(index < resources.size());
const auto &resource = resources[index];
if (bufSize > 0)
{
CopyStringToBuffer(name, resource.name, bufSize, length);
}
}
void Program::getInputResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
getResourceName(index, mState.mAttributes, bufSize, length, name);
}
void Program::getOutputResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
getResourceName(index, mState.mOutputVariables, bufSize, length, name);
}
void Program::getUniformResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
getResourceName(index, mState.mUniforms, bufSize, length, name);
}
void Program::getBufferVariableResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
getResourceName(index, mState.mBufferVariables, bufSize, length, name);
}
const sh::Attribute &Program::getInputResource(GLuint index) const
{
ASSERT(index < mState.mAttributes.size());
return mState.mAttributes[index];
}
const sh::OutputVariable &Program::getOutputResource(GLuint index) const
{
ASSERT(index < mState.mOutputVariables.size());
return mState.mOutputVariables[index];
}
GLint Program::getFragDataLocation(const std::string &name) const
{
return GetVariableLocation(mState.mOutputVariables, mState.mOutputLocations, name);
}
void Program::getActiveUniform(GLuint index,
GLsizei bufsize,
GLsizei *length,
GLint *size,
GLenum *type,
GLchar *name) const
{
if (mLinked)
{
// index must be smaller than getActiveUniformCount()
ASSERT(index < mState.mUniforms.size());
const LinkedUniform &uniform = mState.mUniforms[index];
if (bufsize > 0)
{
std::string string = uniform.name;
CopyStringToBuffer(name, string, bufsize, length);
}
*size = clampCast<GLint>(uniform.getBasicTypeElementCount());
*type = uniform.type;
}
else
{
if (bufsize > 0)
{
name[0] = '\0';
}
if (length)
{
*length = 0;
}
*size = 0;
*type = GL_NONE;
}
}
GLint Program::getActiveUniformCount() const
{
if (mLinked)
{
return static_cast<GLint>(mState.mUniforms.size());
}
else
{
return 0;
}
}
size_t Program::getActiveBufferVariableCount() const
{
return mLinked ? mState.mBufferVariables.size() : 0;
}
GLint Program::getActiveUniformMaxLength() const
{
size_t maxLength = 0;
if (mLinked)
{
for (const LinkedUniform &uniform : mState.mUniforms)
{
if (!uniform.name.empty())
{
size_t length = uniform.name.length() + 1u;
if (uniform.isArray())
{
length += 3; // Counting in "[0]".
}
maxLength = std::max(length, maxLength);
}
}
}
return static_cast<GLint>(maxLength);
}
bool Program::isValidUniformLocation(GLint location) const
{
ASSERT(angle::IsValueInRangeForNumericType<GLint>(mState.mUniformLocations.size()));
return (location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size() &&
mState.mUniformLocations[static_cast<size_t>(location)].used());
}
const LinkedUniform &Program::getUniformByLocation(GLint location) const
{
ASSERT(location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size());
return mState.mUniforms[mState.getUniformIndexFromLocation(location)];
}
const VariableLocation &Program::getUniformLocation(GLint location) const
{
ASSERT(location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size());
return mState.mUniformLocations[location];
}
const std::vector<VariableLocation> &Program::getUniformLocations() const
{
return mState.mUniformLocations;
}
const LinkedUniform &Program::getUniformByIndex(GLuint index) const
{
ASSERT(index < static_cast<size_t>(mState.mUniforms.size()));
return mState.mUniforms[index];
}
const BufferVariable &Program::getBufferVariableByIndex(GLuint index) const
{
ASSERT(index < static_cast<size_t>(mState.mBufferVariables.size()));
return mState.mBufferVariables[index];
}
GLint Program::getUniformLocation(const std::string &name) const
{
return GetVariableLocation(mState.mUniforms, mState.mUniformLocations, name);
}
GLuint Program::getUniformIndex(const std::string &name) const
{
return mState.getUniformIndexFromName(name);
}
void Program::setUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v);
mProgram->setUniform1fv(location, clampedCount, v);
}
void Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v);
mProgram->setUniform2fv(location, clampedCount, v);
}
void Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v);
mProgram->setUniform3fv(location, clampedCount, v);
}
void Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v);
mProgram->setUniform4fv(location, clampedCount, v);
}
Program::SetUniformResult Program::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v);
mProgram->setUniform1iv(location, clampedCount, v);
if (mState.isSamplerUniformIndex(locationInfo.index))
{
updateSamplerUniform(locationInfo, clampedCount, v);
return SetUniformResult::SamplerChanged;
}
return SetUniformResult::NoSamplerChange;
}
void Program::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v);
mProgram->setUniform2iv(location, clampedCount, v);
}
void Program::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v);
mProgram->setUniform3iv(location, clampedCount, v);
}
void Program::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v);
mProgram->setUniform4iv(location, clampedCount, v);
}
void Program::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v);
mProgram->setUniform1uiv(location, clampedCount, v);
}
void Program::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v);
mProgram->setUniform2uiv(location, clampedCount, v);
}
void Program::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v);
mProgram->setUniform3uiv(location, clampedCount, v);
}
void Program::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v);
mProgram->setUniform4uiv(location, clampedCount, v);
}
void Program::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<2, 2>(location, count, transpose, v);
mProgram->setUniformMatrix2fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<3, 3>(location, count, transpose, v);
mProgram->setUniformMatrix3fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<4, 4>(location, count, transpose, v);
mProgram->setUniformMatrix4fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<2, 3>(location, count, transpose, v);
mProgram->setUniformMatrix2x3fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<2, 4>(location, count, transpose, v);
mProgram->setUniformMatrix2x4fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<3, 2>(location, count, transpose, v);
mProgram->setUniformMatrix3x2fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<3, 4>(location, count, transpose, v);
mProgram->setUniformMatrix3x4fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<4, 2>(location, count, transpose, v);
mProgram->setUniformMatrix4x2fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<4, 3>(location, count, transpose, v);
mProgram->setUniformMatrix4x3fv(location, clampedCount, transpose, v);
}
void Program::getUniformfv(const Context *context, GLint location, GLfloat *v) const
{
const auto &uniformLocation = mState.getUniformLocations()[location];
const auto &uniform = mState.getUniforms()[uniformLocation.index];
GLenum nativeType = gl::VariableComponentType(uniform.type);
if (nativeType == GL_FLOAT)
{
mProgram->getUniformfv(context, location, v);
}
else
{
getUniformInternal(context, v, location, nativeType,
gl::VariableComponentCount(uniform.type));
}
}
void Program::getUniformiv(const Context *context, GLint location, GLint *v) const
{
const auto &uniformLocation = mState.getUniformLocations()[location];
const auto &uniform = mState.getUniforms()[uniformLocation.index];
GLenum nativeType = gl::VariableComponentType(uniform.type);
if (nativeType == GL_INT || nativeType == GL_BOOL)
{
mProgram->getUniformiv(context, location, v);
}
else
{
getUniformInternal(context, v, location, nativeType,
gl::VariableComponentCount(uniform.type));
}
}
void Program::getUniformuiv(const Context *context, GLint location, GLuint *v) const
{
const auto &uniformLocation = mState.getUniformLocations()[location];
const auto &uniform = mState.getUniforms()[uniformLocation.index];
GLenum nativeType = gl::VariableComponentType(uniform.type);
if (nativeType == GL_UNSIGNED_INT)
{
mProgram->getUniformuiv(context, location, v);
}
else
{
getUniformInternal(context, v, location, nativeType,
gl::VariableComponentCount(uniform.type));
}
}
void Program::flagForDeletion()
{
mDeleteStatus = true;
}
bool Program::isFlaggedForDeletion() const
{
return mDeleteStatus;
}
void Program::validate(const Caps &caps)
{
mInfoLog.reset();
if (mLinked)
{
mValidated = ConvertToBool(mProgram->validate(caps, &mInfoLog));
}
else
{
mInfoLog << "Program has not been successfully linked.";
}
}
bool Program::validateSamplers(InfoLog *infoLog, const Caps &caps)
{
// Skip cache if we're using an infolog, so we get the full error.
// Also skip the cache if the sample mapping has changed, or if we haven't ever validated.
if (infoLog == nullptr && mCachedValidateSamplersResult.valid())
{
return mCachedValidateSamplersResult.value();
}
if (mTextureUnitTypesCache.empty())
{
mTextureUnitTypesCache.resize(caps.maxCombinedTextureImageUnits, TextureType::InvalidEnum);
}
else
{
std::fill(mTextureUnitTypesCache.begin(), mTextureUnitTypesCache.end(),
TextureType::InvalidEnum);
}
// if any two active samplers in a program are of different types, but refer to the same
// texture image unit, and this is the current program, then ValidateProgram will fail, and
// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
for (const auto &samplerBinding : mState.mSamplerBindings)
{
if (samplerBinding.unreferenced)
continue;
TextureType textureType = samplerBinding.textureType;
for (GLuint textureUnit : samplerBinding.boundTextureUnits)
{
if (textureUnit >= caps.maxCombinedTextureImageUnits)
{
if (infoLog)
{
(*infoLog) << "Sampler uniform (" << textureUnit
<< ") exceeds GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS ("
<< caps.maxCombinedTextureImageUnits << ")";
}
mCachedValidateSamplersResult = false;
return false;
}
if (mTextureUnitTypesCache[textureUnit] != TextureType::InvalidEnum)
{
if (textureType != mTextureUnitTypesCache[textureUnit])
{
if (infoLog)
{
(*infoLog) << "Samplers of conflicting types refer to the same texture "
"image unit ("
<< textureUnit << ").";
}
mCachedValidateSamplersResult = false;
return false;
}
}
else
{
mTextureUnitTypesCache[textureUnit] = textureType;
}
}
}
mCachedValidateSamplersResult = true;
return true;
}
bool Program::isValidated() const
{
return mValidated;
}
GLuint Program::getActiveUniformBlockCount() const
{
return static_cast<GLuint>(mState.mUniformBlocks.size());
}
GLuint Program::getActiveAtomicCounterBufferCount() const
{
return static_cast<GLuint>(mState.mAtomicCounterBuffers.size());
}
GLuint Program::getActiveShaderStorageBlockCount() const
{
return static_cast<GLuint>(mState.mShaderStorageBlocks.size());
}
void Program::getActiveUniformBlockName(const GLuint blockIndex,
GLsizei bufSize,
GLsizei *length,
GLchar *blockName) const
{
GetInterfaceBlockName(blockIndex, mState.mUniformBlocks, bufSize, length, blockName);
}
void Program::getActiveShaderStorageBlockName(const GLuint blockIndex,
GLsizei bufSize,
GLsizei *length,
GLchar *blockName) const
{
GetInterfaceBlockName(blockIndex, mState.mShaderStorageBlocks, bufSize, length, blockName);
}
template <typename T>
GLint Program::getActiveInterfaceBlockMaxNameLength(const std::vector<T> &resources) const
{
int maxLength = 0;
if (mLinked)
{
for (const T &resource : resources)
{
if (!resource.name.empty())
{
int length = static_cast<int>(resource.nameWithArrayIndex().length());
maxLength = std::max(length + 1, maxLength);
}
}
}
return maxLength;
}
GLint Program::getActiveUniformBlockMaxNameLength() const
{
return getActiveInterfaceBlockMaxNameLength(mState.mUniformBlocks);
}
GLint Program::getActiveShaderStorageBlockMaxNameLength() const
{
return getActiveInterfaceBlockMaxNameLength(mState.mShaderStorageBlocks);
}
GLuint Program::getUniformBlockIndex(const std::string &name) const
{
return GetInterfaceBlockIndex(mState.mUniformBlocks, name);
}
GLuint Program::getShaderStorageBlockIndex(const std::string &name) const
{
return GetInterfaceBlockIndex(mState.mShaderStorageBlocks, name);
}
const InterfaceBlock &Program::getUniformBlockByIndex(GLuint index) const
{
ASSERT(index < static_cast<GLuint>(mState.mUniformBlocks.size()));
return mState.mUniformBlocks[index];
}
const InterfaceBlock &Program::getShaderStorageBlockByIndex(GLuint index) const
{
ASSERT(index < static_cast<GLuint>(mState.mShaderStorageBlocks.size()));
return mState.mShaderStorageBlocks[index];
}
void Program::bindUniformBlock(GLuint uniformBlockIndex, GLuint uniformBlockBinding)
{
mState.mUniformBlocks[uniformBlockIndex].binding = uniformBlockBinding;
mState.mActiveUniformBlockBindings.set(uniformBlockIndex, uniformBlockBinding != 0);
mProgram->setUniformBlockBinding(uniformBlockIndex, uniformBlockBinding);
}
GLuint Program::getUniformBlockBinding(GLuint uniformBlockIndex) const
{
return mState.getUniformBlockBinding(uniformBlockIndex);
}
GLuint Program::getShaderStorageBlockBinding(GLuint shaderStorageBlockIndex) const
{
return mState.getShaderStorageBlockBinding(shaderStorageBlockIndex);
}
void Program::setTransformFeedbackVaryings(GLsizei count, const GLchar *const *varyings, GLenum bufferMode)
{
mState.mTransformFeedbackVaryingNames.resize(count);
for (GLsizei i = 0; i < count; i++)
{
mState.mTransformFeedbackVaryingNames[i] = varyings[i];
}
mState.mTransformFeedbackBufferMode = bufferMode;
}
void Program::getTransformFeedbackVarying(GLuint index, GLsizei bufSize, GLsizei *length, GLsizei *size, GLenum *type, GLchar *name) const
{
if (mLinked)
{
ASSERT(index < mState.mLinkedTransformFeedbackVaryings.size());
const auto &var = mState.mLinkedTransformFeedbackVaryings[index];
std::string varName = var.nameWithArrayIndex();
GLsizei lastNameIdx = std::min(bufSize - 1, static_cast<GLsizei>(varName.length()));
if (length)
{
*length = lastNameIdx;
}
if (size)
{
*size = var.size();
}
if (type)
{
*type = var.type;
}
if (name)
{
memcpy(name, varName.c_str(), lastNameIdx);
name[lastNameIdx] = '\0';
}
}
}
GLsizei Program::getTransformFeedbackVaryingCount() const
{
if (mLinked)
{
return static_cast<GLsizei>(mState.mLinkedTransformFeedbackVaryings.size());
}
else
{
return 0;
}
}
GLsizei Program::getTransformFeedbackVaryingMaxLength() const
{
if (mLinked)
{
GLsizei maxSize = 0;
for (const auto &var : mState.mLinkedTransformFeedbackVaryings)
{
maxSize =
std::max(maxSize, static_cast<GLsizei>(var.nameWithArrayIndex().length() + 1));
}
return maxSize;
}
else
{
return 0;
}
}
GLenum Program::getTransformFeedbackBufferMode() const
{
return mState.mTransformFeedbackBufferMode;
}
bool Program::linkValidateShaders(const Context *context, InfoLog &infoLog)
{
Shader *vertexShader = mState.mAttachedShaders[ShaderType::Vertex];
Shader *fragmentShader = mState.mAttachedShaders[ShaderType::Fragment];
Shader *computeShader = mState.mAttachedShaders[ShaderType::Compute];
Shader *geometryShader = mState.mAttachedShaders[ShaderType::Geometry];
bool isComputeShaderAttached = (computeShader != nullptr);
bool isGraphicsShaderAttached =
(vertexShader != nullptr || fragmentShader != nullptr || geometryShader != nullptr);
// Check whether we both have a compute and non-compute shaders attached.
// If there are of both types attached, then linking should fail.
// OpenGL ES 3.10, 7.3 Program Objects, under LinkProgram
if (isComputeShaderAttached == true && isGraphicsShaderAttached == true)
{
infoLog << "Both compute and graphics shaders are attached to the same program.";
return false;
}
if (computeShader)
{
if (!computeShader->isCompiled(context))
{
infoLog << "Attached compute shader is not compiled.";
return false;
}
ASSERT(computeShader->getType() == ShaderType::Compute);
mState.mComputeShaderLocalSize = computeShader->getWorkGroupSize(context);
// GLSL ES 3.10, 4.4.1.1 Compute Shader Inputs
// If the work group size is not specified, a link time error should occur.
if (!mState.mComputeShaderLocalSize.isDeclared())
{
infoLog << "Work group size is not specified.";
return false;
}
}
else
{
if (!fragmentShader || !fragmentShader->isCompiled(context))
{
infoLog << "No compiled fragment shader when at least one graphics shader is attached.";
return false;
}
ASSERT(fragmentShader->getType() == ShaderType::Fragment);
if (!vertexShader || !vertexShader->isCompiled(context))
{
infoLog << "No compiled vertex shader when at least one graphics shader is attached.";
return false;
}
ASSERT(vertexShader->getType() == ShaderType::Vertex);
int vertexShaderVersion = vertexShader->getShaderVersion(context);
if (fragmentShader->getShaderVersion(context) != vertexShaderVersion)
{
infoLog << "Fragment shader version does not match vertex shader version.";
return false;
}
if (geometryShader)
{
// [GL_EXT_geometry_shader] Chapter 7
// Linking can fail for a variety of reasons as specified in the OpenGL ES Shading
// Language Specification, as well as any of the following reasons:
// * One or more of the shader objects attached to <program> are not compiled
// successfully.
// * The shaders do not use the same shader language version.
// * <program> contains objects to form a geometry shader, and
// - <program> is not separable and contains no objects to form a vertex shader; or
// - the input primitive type, output primitive type, or maximum output vertex count
// is not specified in the compiled geometry shader object.
if (!geometryShader->isCompiled(context))
{
infoLog << "The attached geometry shader isn't compiled.";
return false;
}
if (geometryShader->getShaderVersion(context) != vertexShaderVersion)
{
mInfoLog << "Geometry shader version does not match vertex shader version.";
return false;
}
ASSERT(geometryShader->getType() == ShaderType::Geometry);
Optional<GLenum> inputPrimitive =
geometryShader->getGeometryShaderInputPrimitiveType(context);
if (!inputPrimitive.valid())
{
mInfoLog << "Input primitive type is not specified in the geometry shader.";
return false;
}
Optional<GLenum> outputPrimitive =
geometryShader->getGeometryShaderOutputPrimitiveType(context);
if (!outputPrimitive.valid())
{
mInfoLog << "Output primitive type is not specified in the geometry shader.";
return false;
}
Optional<GLint> maxVertices = geometryShader->getGeometryShaderMaxVertices(context);
if (!maxVertices.valid())
{
mInfoLog << "'max_vertices' is not specified in the geometry shader.";
return false;
}
mState.mGeometryShaderInputPrimitiveType = inputPrimitive.value();
mState.mGeometryShaderOutputPrimitiveType = outputPrimitive.value();
mState.mGeometryShaderMaxVertices = maxVertices.value();
mState.mGeometryShaderInvocations =
geometryShader->getGeometryShaderInvocations(context);
}
}
return true;
}
GLuint Program::getTransformFeedbackVaryingResourceIndex(const GLchar *name) const
{
for (GLuint tfIndex = 0; tfIndex < mState.mLinkedTransformFeedbackVaryings.size(); ++tfIndex)
{
const auto &tf = mState.mLinkedTransformFeedbackVaryings[tfIndex];
if (tf.nameWithArrayIndex() == name)
{
return tfIndex;
}
}
return GL_INVALID_INDEX;
}
const TransformFeedbackVarying &Program::getTransformFeedbackVaryingResource(GLuint index) const
{
ASSERT(index < mState.mLinkedTransformFeedbackVaryings.size());
return mState.mLinkedTransformFeedbackVaryings[index];
}
bool Program::linkVaryings(const Context *context, InfoLog &infoLog) const
{
Shader *previousShader = nullptr;
for (ShaderType shaderType : kAllGraphicsShaderTypes)
{
Shader *currentShader = mState.mAttachedShaders[shaderType];
if (!currentShader)
{
continue;
}
if (previousShader)
{
if (!linkValidateShaderInterfaceMatching(context, previousShader, currentShader,
infoLog))
{
return false;
}
}
previousShader = currentShader;
}
if (!linkValidateBuiltInVaryings(context, infoLog))
{
return false;
}
if (!linkValidateFragmentInputBindings(context, infoLog))
{
return false;
}
return true;
}
// [OpenGL ES 3.1] Chapter 7.4.1 "Shader Interface Matchining" Page 91
// TODO(jiawei.shao@intel.com): add validation on input/output blocks matching
bool Program::linkValidateShaderInterfaceMatching(const Context *context,
gl::Shader *generatingShader,
gl::Shader *consumingShader,
gl::InfoLog &infoLog) const
{
ASSERT(generatingShader->getShaderVersion(context) ==
consumingShader->getShaderVersion(context));
const std::vector<sh::Varying> &outputVaryings = generatingShader->getOutputVaryings(context);
const std::vector<sh::Varying> &inputVaryings = consumingShader->getInputVaryings(context);
bool validateGeometryShaderInputs = consumingShader->getType() == ShaderType::Geometry;
for (const sh::Varying &input : inputVaryings)
{
bool matched = false;
// Built-in varyings obey special rules
if (input.isBuiltIn())
{
continue;
}
for (const sh::Varying &output : outputVaryings)
{
if (input.name == output.name)
{
ASSERT(!output.isBuiltIn());
std::string mismatchedStructFieldName;
LinkMismatchError linkError =
LinkValidateVaryings(output, input, generatingShader->getShaderVersion(context),
validateGeometryShaderInputs, &mismatchedStructFieldName);
if (linkError != LinkMismatchError::NO_MISMATCH)
{
LogLinkMismatch(infoLog, input.name, "varying", linkError,
mismatchedStructFieldName, generatingShader->getType(),
consumingShader->getType());
return false;
}
matched = true;
break;
}
}
// We permit unmatched, unreferenced varyings. Note that this specifically depends on
// whether the input is statically used - a statically used input should fail this test even
// if it is not active. GLSL ES 3.00.6 section 4.3.10.
if (!matched && input.staticUse)
{
infoLog << GetShaderTypeString(consumingShader->getType()) << " varying " << input.name
<< " does not match any " << GetShaderTypeString(generatingShader->getType())
<< " varying";
return false;
}
}
// TODO(jmadill): verify no unmatched output varyings?
return true;
}
bool Program::linkValidateFragmentInputBindings(const Context *context, gl::InfoLog &infoLog) const
{
ASSERT(mState.mAttachedShaders[ShaderType::Fragment]);
std::map<GLuint, std::string> staticFragmentInputLocations;
const std::vector<sh::Varying> &fragmentInputVaryings =
mState.mAttachedShaders[ShaderType::Fragment]->getInputVaryings(context);
for (const sh::Varying &input : fragmentInputVaryings)
{
if (input.isBuiltIn() || !input.staticUse)
{
continue;
}
const auto inputBinding = mFragmentInputBindings.getBinding(input.name);
if (inputBinding == -1)
continue;
const auto it = staticFragmentInputLocations.find(inputBinding);
if (it == std::end(staticFragmentInputLocations))
{
staticFragmentInputLocations.insert(std::make_pair(inputBinding, input.name));
}
else
{
infoLog << "Binding for fragment input " << input.name << " conflicts with "
<< it->second;
return false;
}
}
return true;
}
bool Program::linkUniforms(const Context *context,
InfoLog &infoLog,
const ProgramBindings &uniformLocationBindings)
{
UniformLinker linker(mState);
if (!linker.link(context, infoLog, uniformLocationBindings))
{
return false;
}
linker.getResults(&mState.mUniforms, &mState.mUniformLocations);
linkSamplerAndImageBindings();
if (!linkAtomicCounterBuffers())
{
return false;
}
return true;
}
void Program::linkSamplerAndImageBindings()
{
unsigned int high = static_cast<unsigned int>(mState.mUniforms.size());
unsigned int low = high;
for (auto counterIter = mState.mUniforms.rbegin();
counterIter != mState.mUniforms.rend() && counterIter->isAtomicCounter(); ++counterIter)
{
--low;
}
mState.mAtomicCounterUniformRange = RangeUI(low, high);
high = low;
for (auto imageIter = mState.mUniforms.rbegin();
imageIter != mState.mUniforms.rend() && imageIter->isImage(); ++imageIter)
{
--low;
}
mState.mImageUniformRange = RangeUI(low, high);
// If uniform is a image type, insert it into the mImageBindings array.
for (unsigned int imageIndex : mState.mImageUniformRange)
{
// ES3.1 (section 7.6.1) and GLSL ES3.1 (section 4.4.5), Uniform*i{v} commands
// cannot load values into a uniform defined as an image. if declare without a
// binding qualifier, any uniform image variable (include all elements of
// unbound image array) shoud be bound to unit zero.
auto &imageUniform = mState.mUniforms[imageIndex];
if (imageUniform.binding == -1)
{
mState.mImageBindings.emplace_back(
ImageBinding(imageUniform.getBasicTypeElementCount()));
}
else
{
mState.mImageBindings.emplace_back(
ImageBinding(imageUniform.binding, imageUniform.getBasicTypeElementCount()));
}
}
high = low;
for (auto samplerIter = mState.mUniforms.rbegin() + mState.mImageUniformRange.length();
samplerIter != mState.mUniforms.rend() && samplerIter->isSampler(); ++samplerIter)
{
--low;
}
mState.mSamplerUniformRange = RangeUI(low, high);
// If uniform is a sampler type, insert it into the mSamplerBindings array.
for (unsigned int samplerIndex : mState.mSamplerUniformRange)
{
const auto &samplerUniform = mState.mUniforms[samplerIndex];
TextureType textureType = SamplerTypeToTextureType(samplerUniform.type);
mState.mSamplerBindings.emplace_back(
SamplerBinding(textureType, samplerUniform.getBasicTypeElementCount(), false));
}
}
bool Program::linkAtomicCounterBuffers()
{
for (unsigned int index : mState.mAtomicCounterUniformRange)
{
auto &uniform = mState.mUniforms[index];
uniform.blockInfo.offset = uniform.offset;
uniform.blockInfo.arrayStride = (uniform.isArray() ? 4 : 0);
uniform.blockInfo.matrixStride = 0;
uniform.blockInfo.isRowMajorMatrix = false;
bool found = false;
for (unsigned int bufferIndex = 0; bufferIndex < mState.mAtomicCounterBuffers.size();
++bufferIndex)
{
auto &buffer = mState.mAtomicCounterBuffers[bufferIndex];
if (buffer.binding == uniform.binding)
{
buffer.memberIndexes.push_back(index);
uniform.bufferIndex = bufferIndex;
found = true;
buffer.unionReferencesWith(uniform);
break;
}
}
if (!found)
{
AtomicCounterBuffer atomicCounterBuffer;
atomicCounterBuffer.binding = uniform.binding;
atomicCounterBuffer.memberIndexes.push_back(index);
atomicCounterBuffer.unionReferencesWith(uniform);
mState.mAtomicCounterBuffers.push_back(atomicCounterBuffer);
uniform.bufferIndex = static_cast<int>(mState.mAtomicCounterBuffers.size() - 1);
}
}
// TODO(jie.a.chen@intel.com): Count each atomic counter buffer to validate against
// gl_Max[Vertex|Fragment|Compute|Geometry|Combined]AtomicCounterBuffers.
return true;
}
// Assigns locations to all attributes from the bindings and program locations.
bool Program::linkAttributes(const Context *context, InfoLog &infoLog)
{
const ContextState &data = context->getContextState();
Shader *vertexShader = mState.getAttachedShader(ShaderType::Vertex);
int shaderVersion = vertexShader->getShaderVersion(context);
unsigned int usedLocations = 0;
if (shaderVersion >= 300)
{
// In GLSL ES 3.00.6, aliasing checks should be done with all declared attributes - see GLSL
// ES 3.00.6 section 12.46. Inactive attributes will be pruned after aliasing checks.
mState.mAttributes = vertexShader->getAllAttributes(context);
}
else
{
// In GLSL ES 1.00.17 we only do aliasing checks for active attributes.
mState.mAttributes = vertexShader->getActiveAttributes(context);
}
GLuint maxAttribs = data.getCaps().maxVertexAttributes;
// TODO(jmadill): handle aliasing robustly
if (mState.mAttributes.size() > maxAttribs)
{
infoLog << "Too many vertex attributes.";
return false;
}
std::vector<sh::Attribute *> usedAttribMap(maxAttribs, nullptr);
// Assign locations to attributes that have a binding location and check for attribute aliasing.
for (sh::Attribute &attribute : mState.mAttributes)
{
// GLSL ES 3.10 January 2016 section 4.3.4: Vertex shader inputs can't be arrays or
// structures, so we don't need to worry about adjusting their names or generating entries
// for each member/element (unlike uniforms for example).
ASSERT(!attribute.isArray() && !attribute.isStruct());
int bindingLocation = mAttributeBindings.getBinding(attribute.name);
if (attribute.location == -1 && bindingLocation != -1)
{
attribute.location = bindingLocation;
}
if (attribute.location != -1)
{
// Location is set by glBindAttribLocation or by location layout qualifier
const int regs = VariableRegisterCount(attribute.type);
if (static_cast<GLuint>(regs + attribute.location) > maxAttribs)
{
infoLog << "Attribute (" << attribute.name << ") at location " << attribute.location
<< " is too big to fit";
return false;
}
for (int reg = 0; reg < regs; reg++)
{
const int regLocation = attribute.location + reg;
sh::ShaderVariable *linkedAttribute = usedAttribMap[regLocation];
// In GLSL ES 3.00.6 and in WebGL, attribute aliasing produces a link error.
// In non-WebGL GLSL ES 1.00.17, attribute aliasing is allowed with some
// restrictions - see GLSL ES 1.00.17 section 2.10.4, but ANGLE currently has a bug.
if (linkedAttribute)
{
// TODO(jmadill): fix aliasing on ES2
// if (shaderVersion >= 300 && !webgl)
{
infoLog << "Attribute '" << attribute.name << "' aliases attribute '"
<< linkedAttribute->name << "' at location " << regLocation;
return false;
}
}
else
{
usedAttribMap[regLocation] = &attribute;
}
usedLocations |= 1 << regLocation;
}
}
}
// Assign locations to attributes that don't have a binding location.
for (sh::Attribute &attribute : mState.mAttributes)
{
// Not set by glBindAttribLocation or by location layout qualifier
if (attribute.location == -1)
{
int regs = VariableRegisterCount(attribute.type);
int availableIndex = AllocateFirstFreeBits(&usedLocations, regs, maxAttribs);
if (availableIndex == -1 || static_cast<GLuint>(availableIndex + regs) > maxAttribs)
{
infoLog << "Too many attributes (" << attribute.name << ")";
return false;
}
attribute.location = availableIndex;
}
}
ASSERT(mState.mAttributesTypeMask.none());
ASSERT(mState.mAttributesMask.none());
// Prune inactive attributes. This step is only needed on shaderVersion >= 300 since on earlier
// shader versions we're only processing active attributes to begin with.
if (shaderVersion >= 300)
{
for (auto attributeIter = mState.mAttributes.begin();
attributeIter != mState.mAttributes.end();)
{
if (attributeIter->active)
{
++attributeIter;
}
else
{
attributeIter = mState.mAttributes.erase(attributeIter);
}
}
}
for (const sh::Attribute &attribute : mState.mAttributes)
{
ASSERT(attribute.active);
ASSERT(attribute.location != -1);
unsigned int regs = static_cast<unsigned int>(VariableRegisterCount(attribute.type));
for (unsigned int r = 0; r < regs; r++)
{
unsigned int location = static_cast<unsigned int>(attribute.location) + r;
mState.mActiveAttribLocationsMask.set(location);
mState.mMaxActiveAttribLocation =
std::max(mState.mMaxActiveAttribLocation, location + 1);
// gl_VertexID and gl_InstanceID are active attributes but don't have a bound attribute.
if (!attribute.isBuiltIn())
{
mState.mAttributesTypeMask.setIndex(VariableComponentType(attribute.type),
location);
mState.mAttributesMask.set(location);
}
}
}
return true;
}
bool Program::linkInterfaceBlocks(const Context *context, InfoLog &infoLog)
{
const auto &caps = context->getCaps();
if (mState.mAttachedShaders[ShaderType::Compute])
{
Shader &computeShader = *mState.mAttachedShaders[ShaderType::Compute];
const auto &computeUniformBlocks = computeShader.getUniformBlocks(context);
if (!ValidateInterfaceBlocksCount(caps.maxComputeUniformBlocks, computeUniformBlocks,
ShaderType::Compute, sh::BlockType::BLOCK_UNIFORM,
infoLog))
{
return false;
}
const auto &computeShaderStorageBlocks = computeShader.getShaderStorageBlocks(context);
if (!ValidateInterfaceBlocksCount(caps.maxComputeShaderStorageBlocks,
computeShaderStorageBlocks, ShaderType::Compute,
sh::BlockType::BLOCK_BUFFER, infoLog))
{
return false;
}
return true;
}
ShaderMap<GLuint> maxShaderUniformBlocks = {};
maxShaderUniformBlocks[gl::ShaderType::Vertex] = caps.maxVertexUniformBlocks;
maxShaderUniformBlocks[gl::ShaderType::Fragment] = caps.maxFragmentUniformBlocks;
maxShaderUniformBlocks[gl::ShaderType::Geometry] = caps.maxGeometryUniformBlocks;
ShaderMap<const std::vector<sh::InterfaceBlock> *> graphicsShaderUniformBlocks = {};
for (ShaderType shaderType : kAllGraphicsShaderTypes)
{
Shader *shader = mState.mAttachedShaders[shaderType];
if (!shader)
{
continue;
}
const auto &uniformBlocks = mState.mAttachedShaders[shaderType]->getUniformBlocks(context);
if (!ValidateInterfaceBlocksCount(maxShaderUniformBlocks[shaderType], uniformBlocks,
shaderType, sh::BlockType::BLOCK_UNIFORM, infoLog))
{
return false;
}
graphicsShaderUniformBlocks[shaderType] = &uniformBlocks;
}
bool webglCompatibility = context->getExtensions().webglCompatibility;
if (!ValidateGraphicsInterfaceBlocks(graphicsShaderUniformBlocks, infoLog, webglCompatibility,
sh::BlockType::BLOCK_UNIFORM,
caps.maxCombinedUniformBlocks))
{
return false;
}
if (context->getClientVersion() >= Version(3, 1))
{
ShaderMap<GLuint> maxShaderStorageBlocks = {};
maxShaderStorageBlocks[ShaderType::Vertex] = caps.maxVertexShaderStorageBlocks;
maxShaderStorageBlocks[ShaderType::Fragment] = caps.maxFragmentShaderStorageBlocks;
maxShaderStorageBlocks[ShaderType::Geometry] = caps.maxGeometryShaderStorageBlocks;
ShaderMap<const std::vector<sh::InterfaceBlock> *> graphicsShaderStorageBlocks = {};
for (ShaderType shaderType : kAllGraphicsShaderTypes)
{
Shader *shader = mState.mAttachedShaders[shaderType];
if (!shader)
{
continue;
}
const auto &shaderStorageBlocks = shader->getShaderStorageBlocks(context);
if (!ValidateInterfaceBlocksCount(maxShaderStorageBlocks[shaderType],
shaderStorageBlocks, shaderType,
sh::BlockType::BLOCK_BUFFER, infoLog))
{
return false;
}
graphicsShaderStorageBlocks[shaderType] = &shaderStorageBlocks;
}
if (!ValidateGraphicsInterfaceBlocks(graphicsShaderStorageBlocks, infoLog,
webglCompatibility, sh::BlockType::BLOCK_BUFFER,
caps.maxCombinedShaderStorageBlocks))
{
return false;
}
}
return true;
}
LinkMismatchError Program::LinkValidateVariablesBase(const sh::ShaderVariable &variable1,
const sh::ShaderVariable &variable2,
bool validatePrecision,
bool validateArraySize,
std::string *mismatchedStructOrBlockMemberName)
{
if (variable1.type != variable2.type)
{
return LinkMismatchError::TYPE_MISMATCH;
}
if (validateArraySize && variable1.arraySizes != variable2.arraySizes)
{
return LinkMismatchError::ARRAY_SIZE_MISMATCH;
}
if (validatePrecision && variable1.precision != variable2.precision)
{
return LinkMismatchError::PRECISION_MISMATCH;
}
if (variable1.structName != variable2.structName)
{
return LinkMismatchError::STRUCT_NAME_MISMATCH;
}
if (variable1.fields.size() != variable2.fields.size())
{
return LinkMismatchError::FIELD_NUMBER_MISMATCH;
}
const unsigned int numMembers = static_cast<unsigned int>(variable1.fields.size());
for (unsigned int memberIndex = 0; memberIndex < numMembers; memberIndex++)
{
const sh::ShaderVariable &member1 = variable1.fields[memberIndex];
const sh::ShaderVariable &member2 = variable2.fields[memberIndex];
if (member1.name != member2.name)
{
return LinkMismatchError::FIELD_NAME_MISMATCH;
}
LinkMismatchError linkErrorOnField = LinkValidateVariablesBase(
member1, member2, validatePrecision, true, mismatchedStructOrBlockMemberName);
if (linkErrorOnField != LinkMismatchError::NO_MISMATCH)
{
AddParentPrefix(member1.name, mismatchedStructOrBlockMemberName);
return linkErrorOnField;
}
}
return LinkMismatchError::NO_MISMATCH;
}
LinkMismatchError Program::LinkValidateVaryings(const sh::Varying &outputVarying,
const sh::Varying &inputVarying,
int shaderVersion,
bool validateGeometryShaderInputVarying,
std::string *mismatchedStructFieldName)
{
if (validateGeometryShaderInputVarying)
{
// [GL_EXT_geometry_shader] Section 11.1gs.4.3:
// The OpenGL ES Shading Language doesn't support multi-dimensional arrays as shader inputs
// or outputs.
ASSERT(inputVarying.arraySizes.size() == 1u);
// Geometry shader input varyings are not treated as arrays, so a vertex array output
// varying cannot match a geometry shader input varying.
// [GL_EXT_geometry_shader] Section 7.4.1:
// Geometry shader per-vertex input variables and blocks are required to be declared as
// arrays, with each element representing input or output values for a single vertex of a
// multi-vertex primitive. For the purposes of interface matching, such variables and blocks
// are treated as though they were not declared as arrays.
if (outputVarying.isArray())
{
return LinkMismatchError::ARRAY_SIZE_MISMATCH;
}
}
// Skip the validation on the array sizes between a vertex output varying and a geometry input
// varying as it has been done before.
LinkMismatchError linkError =
LinkValidateVariablesBase(outputVarying, inputVarying, false,
!validateGeometryShaderInputVarying, mismatchedStructFieldName);
if (linkError != LinkMismatchError::NO_MISMATCH)
{
return linkError;
}
if (!sh::InterpolationTypesMatch(outputVarying.interpolation, inputVarying.interpolation))
{
return LinkMismatchError::INTERPOLATION_TYPE_MISMATCH;
}
if (shaderVersion == 100 && outputVarying.isInvariant != inputVarying.isInvariant)
{
return LinkMismatchError::INVARIANCE_MISMATCH;
}
return LinkMismatchError::NO_MISMATCH;
}
bool Program::linkValidateBuiltInVaryings(const Context *context, InfoLog &infoLog) const
{
Shader *vertexShader = mState.mAttachedShaders[ShaderType::Vertex];
Shader *fragmentShader = mState.mAttachedShaders[ShaderType::Fragment];
const auto &vertexVaryings = vertexShader->getOutputVaryings(context);
const auto &fragmentVaryings = fragmentShader->getInputVaryings(context);
int shaderVersion = vertexShader->getShaderVersion(context);
if (shaderVersion != 100)
{
// Only ESSL 1.0 has restrictions on matching input and output invariance
return true;
}
bool glPositionIsInvariant = false;
bool glPointSizeIsInvariant = false;
bool glFragCoordIsInvariant = false;
bool glPointCoordIsInvariant = false;
for (const sh::Varying &varying : vertexVaryings)
{
if (!varying.isBuiltIn())
{
continue;
}
if (varying.name.compare("gl_Position") == 0)
{
glPositionIsInvariant = varying.isInvariant;
}
else if (varying.name.compare("gl_PointSize") == 0)
{
glPointSizeIsInvariant = varying.isInvariant;
}
}
for (const sh::Varying &varying : fragmentVaryings)
{
if (!varying.isBuiltIn())
{
continue;
}
if (varying.name.compare("gl_FragCoord") == 0)
{
glFragCoordIsInvariant = varying.isInvariant;
}
else if (varying.name.compare("gl_PointCoord") == 0)
{
glPointCoordIsInvariant = varying.isInvariant;
}
}
// There is some ambiguity in ESSL 1.00.17 paragraph 4.6.4 interpretation,
// for example, https://cvs.khronos.org/bugzilla/show_bug.cgi?id=13842.
// Not requiring invariance to match is supported by:
// dEQP, WebGL CTS, Nexus 5X GLES
if (glFragCoordIsInvariant && !glPositionIsInvariant)
{
infoLog << "gl_FragCoord can only be declared invariant if and only if gl_Position is "
"declared invariant.";
return false;
}
if (glPointCoordIsInvariant && !glPointSizeIsInvariant)
{
infoLog << "gl_PointCoord can only be declared invariant if and only if gl_PointSize is "
"declared invariant.";
return false;
}
return true;
}
bool Program::linkValidateTransformFeedback(const gl::Context *context,
InfoLog &infoLog,
const ProgramMergedVaryings &varyings,
const Caps &caps) const
{
// Validate the tf names regardless of the actual program varyings.
std::set<std::string> uniqueNames;
for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames)
{
if (context->getClientVersion() < Version(3, 1) &&
tfVaryingName.find('[') != std::string::npos)
{
infoLog << "Capture of array elements is undefined and not supported.";
return false;
}
if (context->getClientVersion() >= Version(3, 1))
{
if (IncludeSameArrayElement(uniqueNames, tfVaryingName))
{
infoLog << "Two transform feedback varyings include the same array element ("
<< tfVaryingName << ").";
return false;
}
}
else
{
if (uniqueNames.count(tfVaryingName) > 0)
{
infoLog << "Two transform feedback varyings specify the same output variable ("
<< tfVaryingName << ").";
return false;
}
}
uniqueNames.insert(tfVaryingName);
}
// Validate against program varyings.
size_t totalComponents = 0;
for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames)
{
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(tfVaryingName, &subscripts);
const sh::ShaderVariable *var = FindVaryingOrField(varyings, baseName);
if (var == nullptr)
{
infoLog << "Transform feedback varying " << tfVaryingName
<< " does not exist in the vertex shader.";
return false;
}
// Validate the matching variable.
if (var->isStruct())
{
infoLog << "Struct cannot be captured directly (" << baseName << ").";
return false;
}
size_t elementCount = 0;
size_t componentCount = 0;
if (var->isArray())
{
if (context->getClientVersion() < Version(3, 1))
{
infoLog << "Capture of arrays is undefined and not supported.";
return false;
}
// GLSL ES 3.10 section 4.3.6: A vertex output can't be an array of arrays.
ASSERT(!var->isArrayOfArrays());
if (!subscripts.empty() && subscripts[0] >= var->getOutermostArraySize())
{
infoLog << "Cannot capture outbound array element '" << tfVaryingName << "'.";
return false;
}
elementCount = (subscripts.empty() ? var->getOutermostArraySize() : 1);
}
else
{
if (!subscripts.empty())
{
infoLog << "Varying '" << baseName
<< "' is not an array to be captured by element.";
return false;
}
elementCount = 1;
}
// TODO(jmadill): Investigate implementation limits on D3D11
componentCount = VariableComponentCount(var->type) * elementCount;
if (mState.mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS &&
componentCount > caps.maxTransformFeedbackSeparateComponents)
{
infoLog << "Transform feedback varying " << tfVaryingName << " components ("
<< componentCount << ") exceed the maximum separate components ("
<< caps.maxTransformFeedbackSeparateComponents << ").";
return false;
}
totalComponents += componentCount;
if (mState.mTransformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS &&
totalComponents > caps.maxTransformFeedbackInterleavedComponents)
{
infoLog << "Transform feedback varying total components (" << totalComponents
<< ") exceed the maximum interleaved components ("
<< caps.maxTransformFeedbackInterleavedComponents << ").";
return false;
}
}
return true;
}
bool Program::linkValidateGlobalNames(const Context *context, InfoLog &infoLog) const
{
const std::vector<sh::Attribute> &attributes =
mState.mAttachedShaders[ShaderType::Vertex]->getActiveAttributes(context);
for (const auto &attrib : attributes)
{
for (ShaderType shaderType : kAllGraphicsShaderTypes)
{
Shader *shader = mState.mAttachedShaders[shaderType];
if (!shader)
{
continue;
}
const std::vector<sh::Uniform> &uniforms = shader->getUniforms(context);
for (const auto &uniform : uniforms)
{
if (uniform.name == attrib.name)
{
infoLog << "Name conflicts between a uniform and an attribute: " << attrib.name;
return false;
}
}
}
}
return true;
}
void Program::gatherTransformFeedbackVaryings(const ProgramMergedVaryings &varyings)
{
// Gather the linked varyings that are used for transform feedback, they should all exist.
mState.mLinkedTransformFeedbackVaryings.clear();
for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames)
{
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(tfVaryingName, &subscripts);
size_t subscript = GL_INVALID_INDEX;
if (!subscripts.empty())
{
subscript = subscripts.back();
}
for (const auto &ref : varyings)
{
const sh::Varying *varying = ref.second.get();
if (baseName == varying->name)
{
mState.mLinkedTransformFeedbackVaryings.emplace_back(
*varying, static_cast<GLuint>(subscript));
break;
}
else if (varying->isStruct())
{
const auto *field = FindShaderVarField(*varying, tfVaryingName);
if (field != nullptr)
{
mState.mLinkedTransformFeedbackVaryings.emplace_back(*field, *varying);
break;
}
}
}
}
mState.updateTransformFeedbackStrides();
}
ProgramMergedVaryings Program::getMergedVaryings(const Context *context) const
{
ProgramMergedVaryings merged;
for (const sh::Varying &varying :
mState.mAttachedShaders[ShaderType::Vertex]->getOutputVaryings(context))
{
merged[varying.name].vertex = &varying;
}
for (const sh::Varying &varying :
mState.mAttachedShaders[ShaderType::Fragment]->getInputVaryings(context))
{
merged[varying.name].fragment = &varying;
}
return merged;
}
void Program::linkOutputVariables(const Context *context)
{
Shader *fragmentShader = mState.mAttachedShaders[ShaderType::Fragment];
ASSERT(fragmentShader != nullptr);
ASSERT(mState.mOutputVariableTypes.empty());
ASSERT(mState.mActiveOutputVariables.none());
ASSERT(mState.mDrawBufferTypeMask.none());
// Gather output variable types
for (const auto &outputVariable : fragmentShader->getActiveOutputVariables(context))
{
if (outputVariable.isBuiltIn() && outputVariable.name != "gl_FragColor" &&
outputVariable.name != "gl_FragData")
{
continue;
}
unsigned int baseLocation =
(outputVariable.location == -1 ? 0u
: static_cast<unsigned int>(outputVariable.location));
// GLSL ES 3.10 section 4.3.6: Output variables cannot be arrays of arrays or arrays of
// structures, so we may use getBasicTypeElementCount().
unsigned int elementCount = outputVariable.getBasicTypeElementCount();
for (unsigned int elementIndex = 0; elementIndex < elementCount; elementIndex++)
{
const unsigned int location = baseLocation + elementIndex;
if (location >= mState.mOutputVariableTypes.size())
{
mState.mOutputVariableTypes.resize(location + 1, GL_NONE);
}
ASSERT(location < mState.mActiveOutputVariables.size());
mState.mActiveOutputVariables.set(location);
mState.mOutputVariableTypes[location] = VariableComponentType(outputVariable.type);
mState.mDrawBufferTypeMask.setIndex(mState.mOutputVariableTypes[location], location);
}
}
// Skip this step for GLES2 shaders.
if (fragmentShader->getShaderVersion(context) == 100)
return;
mState.mOutputVariables = fragmentShader->getActiveOutputVariables(context);
// TODO(jmadill): any caps validation here?
for (unsigned int outputVariableIndex = 0; outputVariableIndex < mState.mOutputVariables.size();
outputVariableIndex++)
{
const sh::OutputVariable &outputVariable = mState.mOutputVariables[outputVariableIndex];
if (outputVariable.isArray())
{
// We're following the GLES 3.1 November 2016 spec section 7.3.1.1 Naming Active
// Resources and including [0] at the end of array variable names.
mState.mOutputVariables[outputVariableIndex].name += "[0]";
mState.mOutputVariables[outputVariableIndex].mappedName += "[0]";
}
// Don't store outputs for gl_FragDepth, gl_FragColor, etc.
if (outputVariable.isBuiltIn())
continue;
// Since multiple output locations must be specified, use 0 for non-specified locations.
unsigned int baseLocation =
(outputVariable.location == -1 ? 0u
: static_cast<unsigned int>(outputVariable.location));
// GLSL ES 3.10 section 4.3.6: Output variables cannot be arrays of arrays or arrays of
// structures, so we may use getBasicTypeElementCount().
unsigned int elementCount = outputVariable.getBasicTypeElementCount();
for (unsigned int elementIndex = 0; elementIndex < elementCount; elementIndex++)
{
const unsigned int location = baseLocation + elementIndex;
if (location >= mState.mOutputLocations.size())
{
mState.mOutputLocations.resize(location + 1);
}
ASSERT(!mState.mOutputLocations.at(location).used());
if (outputVariable.isArray())
{
mState.mOutputLocations[location] =
VariableLocation(elementIndex, outputVariableIndex);
}
else
{
VariableLocation locationInfo;
locationInfo.index = outputVariableIndex;
mState.mOutputLocations[location] = locationInfo;
}
}
}
}
void Program::setUniformValuesFromBindingQualifiers()
{
for (unsigned int samplerIndex : mState.mSamplerUniformRange)
{
const auto &samplerUniform = mState.mUniforms[samplerIndex];
if (samplerUniform.binding != -1)
{
GLint location = getUniformLocation(samplerUniform.name);
ASSERT(location != -1);
std::vector<GLint> boundTextureUnits;
for (unsigned int elementIndex = 0;
elementIndex < samplerUniform.getBasicTypeElementCount(); ++elementIndex)
{
boundTextureUnits.push_back(samplerUniform.binding + elementIndex);
}
setUniform1iv(location, static_cast<GLsizei>(boundTextureUnits.size()),
boundTextureUnits.data());
}
}
}
void Program::initInterfaceBlockBindings()
{
// Set initial bindings from shader.
for (unsigned int blockIndex = 0; blockIndex < mState.mUniformBlocks.size(); blockIndex++)
{
InterfaceBlock &uniformBlock = mState.mUniformBlocks[blockIndex];
bindUniformBlock(blockIndex, uniformBlock.binding);
}
}
void Program::updateSamplerUniform(const VariableLocation &locationInfo,
GLsizei clampedCount,
const GLint *v)
{
ASSERT(mState.isSamplerUniformIndex(locationInfo.index));
GLuint samplerIndex = mState.getSamplerIndexFromUniformIndex(locationInfo.index);
std::vector<GLuint> *boundTextureUnits =
&mState.mSamplerBindings[samplerIndex].boundTextureUnits;
std::copy(v, v + clampedCount, boundTextureUnits->begin() + locationInfo.arrayIndex);
// Invalidate the validation cache.
mCachedValidateSamplersResult.reset();
}
template <typename T>
GLsizei Program::clampUniformCount(const VariableLocation &locationInfo,
GLsizei count,
int vectorSize,
const T *v)
{
if (count == 1)
return 1;
const LinkedUniform &linkedUniform = mState.mUniforms[locationInfo.index];
// OpenGL ES 3.0.4 spec pg 67: "Values for any array element that exceeds the highest array
// element index used, as reported by GetActiveUniform, will be ignored by the GL."
unsigned int remainingElements =
linkedUniform.getBasicTypeElementCount() - locationInfo.arrayIndex;
GLsizei maxElementCount =
static_cast<GLsizei>(remainingElements * linkedUniform.getElementComponents());
if (count * vectorSize > maxElementCount)
{
return maxElementCount / vectorSize;
}
return count;
}
template <size_t cols, size_t rows, typename T>
GLsizei Program::clampMatrixUniformCount(GLint location,
GLsizei count,
GLboolean transpose,
const T *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
if (!transpose)
{
return clampUniformCount(locationInfo, count, cols * rows, v);
}
const LinkedUniform &linkedUniform = mState.mUniforms[locationInfo.index];
// OpenGL ES 3.0.4 spec pg 67: "Values for any array element that exceeds the highest array
// element index used, as reported by GetActiveUniform, will be ignored by the GL."
unsigned int remainingElements =
linkedUniform.getBasicTypeElementCount() - locationInfo.arrayIndex;
return std::min(count, static_cast<GLsizei>(remainingElements));
}
// Driver differences mean that doing the uniform value cast ourselves gives consistent results.
// EG: on NVIDIA drivers, it was observed that getUniformi for MAX_INT+1 returned MIN_INT.
template <typename DestT>
void Program::getUniformInternal(const Context *context,
DestT *dataOut,
GLint location,
GLenum nativeType,
int components) const
{
switch (nativeType)
{
case GL_BOOL:
{
GLint tempValue[16] = {0};
mProgram->getUniformiv(context, location, tempValue);
UniformStateQueryCastLoop<GLboolean>(
dataOut, reinterpret_cast<const uint8_t *>(tempValue), components);
break;
}
case GL_INT:
{
GLint tempValue[16] = {0};
mProgram->getUniformiv(context, location, tempValue);
UniformStateQueryCastLoop<GLint>(dataOut, reinterpret_cast<const uint8_t *>(tempValue),
components);
break;
}
case GL_UNSIGNED_INT:
{
GLuint tempValue[16] = {0};
mProgram->getUniformuiv(context, location, tempValue);
UniformStateQueryCastLoop<GLuint>(dataOut, reinterpret_cast<const uint8_t *>(tempValue),
components);
break;
}
case GL_FLOAT:
{
GLfloat tempValue[16] = {0};
mProgram->getUniformfv(context, location, tempValue);
UniformStateQueryCastLoop<GLfloat>(
dataOut, reinterpret_cast<const uint8_t *>(tempValue), components);
break;
}
default:
UNREACHABLE();
break;
}
}
bool Program::samplesFromTexture(const gl::State &state, GLuint textureID) const
{
// Must be called after samplers are validated.
ASSERT(mCachedValidateSamplersResult.valid() && mCachedValidateSamplersResult.value());
for (const auto &binding : mState.mSamplerBindings)
{
TextureType textureType = binding.textureType;
for (const auto &unit : binding.boundTextureUnits)
{
GLenum programTextureID = state.getSamplerTextureId(unit, textureType);
if (programTextureID == textureID)
{
// TODO(jmadill): Check for appropriate overlap.
return true;
}
}
}
return false;
}
} // namespace gl