blob: 40f1e8c9c4b42b929b8c580c803cdc7d8e5c6ee5 [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "libGLESv2/BinaryStream.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/Framebuffer.h"
#include "libGLESv2/FramebufferAttachment.h"
#include "libGLESv2/Renderbuffer.h"
#include "libGLESv2/renderer/ShaderExecutable.h"
#include "common/debug.h"
#include "common/version.h"
#include "common/utilities.h"
#include "common/platform.h"
#include "libGLESv2/main.h"
#include "libGLESv2/Shader.h"
#include "libGLESv2/Program.h"
#include "libGLESv2/renderer/ProgramImpl.h"
#include "libGLESv2/renderer/d3d/ShaderD3D.h"
#include "libGLESv2/Context.h"
#include "libGLESv2/Buffer.h"
#include "common/blocklayout.h"
#include "common/features.h"
namespace gl
{
namespace
{
unsigned int ParseAndStripArrayIndex(std::string* name)
{
unsigned int subscript = GL_INVALID_INDEX;
// Strip any trailing array operator and retrieve the subscript
size_t open = name->find_last_of('[');
size_t close = name->find_last_of(']');
if (open != std::string::npos && close == name->length() - 1)
{
subscript = atoi(name->substr(open + 1).c_str());
name->erase(open);
}
return subscript;
}
}
VariableLocation::VariableLocation(const std::string &name, unsigned int element, unsigned int index)
: name(name), element(element), index(index)
{
}
LinkedVarying::LinkedVarying()
{
}
LinkedVarying::LinkedVarying(const std::string &name, GLenum type, GLsizei size, const std::string &semanticName,
unsigned int semanticIndex, unsigned int semanticIndexCount)
: name(name), type(type), size(size), semanticName(semanticName), semanticIndex(semanticIndex), semanticIndexCount(semanticIndexCount)
{
}
LinkResult::LinkResult(bool linkSuccess, const Error &error)
: linkSuccess(linkSuccess),
error(error)
{
}
unsigned int ProgramBinary::mCurrentSerial = 1;
ProgramBinary::ProgramBinary(rx::ProgramImpl *impl)
: RefCountObject(0),
mProgram(impl),
mValidated(false),
mSerial(issueSerial())
{
ASSERT(impl);
for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
mSemanticIndex[index] = -1;
}
}
ProgramBinary::~ProgramBinary()
{
reset();
SafeDelete(mProgram);
}
unsigned int ProgramBinary::getSerial() const
{
return mSerial;
}
unsigned int ProgramBinary::issueSerial()
{
return mCurrentSerial++;
}
GLuint ProgramBinary::getAttributeLocation(const char *name)
{
if (name)
{
for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
if (mLinkedAttribute[index].name == std::string(name))
{
return index;
}
}
}
return -1;
}
int ProgramBinary::getSemanticIndex(int attributeIndex)
{
ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS);
return mSemanticIndex[attributeIndex];
}
// Returns one more than the highest sampler index used.
GLint ProgramBinary::getUsedSamplerRange(SamplerType type)
{
return mProgram->getUsedSamplerRange(type);
}
bool ProgramBinary::usesPointSize() const
{
return mProgram->usesPointSize();
}
GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex, const Caps &caps)
{
return mProgram->getSamplerMapping(type, samplerIndex, caps);
}
GLenum ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex)
{
return mProgram->getSamplerTextureType(type, samplerIndex);
}
GLint ProgramBinary::getUniformLocation(std::string name)
{
return mProgram->getUniformLocation(name);
}
GLuint ProgramBinary::getUniformIndex(std::string name)
{
return mProgram->getUniformIndex(name);
}
GLuint ProgramBinary::getUniformBlockIndex(std::string name)
{
return mProgram->getUniformBlockIndex(name);
}
UniformBlock *ProgramBinary::getUniformBlockByIndex(GLuint blockIndex)
{
return mProgram->getUniformBlockByIndex(blockIndex);
}
GLint ProgramBinary::getFragDataLocation(const char *name) const
{
std::string baseName(name);
unsigned int arrayIndex;
arrayIndex = ParseAndStripArrayIndex(&baseName);
for (auto locationIt = mOutputVariables.begin(); locationIt != mOutputVariables.end(); locationIt++)
{
const VariableLocation &outputVariable = locationIt->second;
if (outputVariable.name == baseName && (arrayIndex == GL_INVALID_INDEX || arrayIndex == outputVariable.element))
{
return static_cast<GLint>(locationIt->first);
}
}
return -1;
}
size_t ProgramBinary::getTransformFeedbackVaryingCount() const
{
return mProgram->getTransformFeedbackLinkedVaryings().size();
}
const LinkedVarying &ProgramBinary::getTransformFeedbackVarying(size_t idx) const
{
return mProgram->getTransformFeedbackLinkedVaryings()[idx];
}
GLenum ProgramBinary::getTransformFeedbackBufferMode() const
{
return mProgram->getTransformFeedbackBufferMode();
}
void ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat *v) {
mProgram->setUniform1fv(location, count, v);
}
void ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) {
mProgram->setUniform2fv(location, count, v);
}
void ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) {
mProgram->setUniform3fv(location, count, v);
}
void ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) {
mProgram->setUniform4fv(location, count, v);
}
void ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v) {
mProgram->setUniform1iv(location, count, v);
}
void ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v) {
mProgram->setUniform2iv(location, count, v);
}
void ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v) {
mProgram->setUniform3iv(location, count, v);
}
void ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v) {
mProgram->setUniform4iv(location, count, v);
}
void ProgramBinary::setUniform1uiv(GLint location, GLsizei count, const GLuint *v) {
mProgram->setUniform1uiv(location, count, v);
}
void ProgramBinary::setUniform2uiv(GLint location, GLsizei count, const GLuint *v) {
mProgram->setUniform2uiv(location, count, v);
}
void ProgramBinary::setUniform3uiv(GLint location, GLsizei count, const GLuint *v) {
mProgram->setUniform3uiv(location, count, v);
}
void ProgramBinary::setUniform4uiv(GLint location, GLsizei count, const GLuint *v) {
mProgram->setUniform4uiv(location, count, v);
}
void ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) {
mProgram->setUniformMatrix2fv(location, count, transpose, v);
}
void ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) {
mProgram->setUniformMatrix3fv(location, count, transpose, v);
}
void ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) {
mProgram->setUniformMatrix4fv(location, count, transpose, v);
}
void ProgramBinary::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) {
mProgram->setUniformMatrix2x3fv(location, count, transpose, v);
}
void ProgramBinary::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) {
mProgram->setUniformMatrix2x4fv(location, count, transpose, v);
}
void ProgramBinary::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) {
mProgram->setUniformMatrix3x2fv(location, count, transpose, v);
}
void ProgramBinary::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) {
mProgram->setUniformMatrix3x4fv(location, count, transpose, v);
}
void ProgramBinary::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) {
mProgram->setUniformMatrix4x2fv(location, count, transpose, v);
}
void ProgramBinary::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v) {
mProgram->setUniformMatrix4x3fv(location, count, transpose, v);
}
void ProgramBinary::getUniformfv(GLint location, GLfloat *v) {
mProgram->getUniformfv(location, v);
}
void ProgramBinary::getUniformiv(GLint location, GLint *v) {
mProgram->getUniformiv(location, v);
}
void ProgramBinary::getUniformuiv(GLint location, GLuint *v) {
mProgram->getUniformuiv(location, v);
}
void ProgramBinary::updateSamplerMapping()
{
return mProgram->updateSamplerMapping();
}
// Applies all the uniforms set for this program object to the renderer
Error ProgramBinary::applyUniforms()
{
return mProgram->applyUniforms();
}
Error ProgramBinary::applyUniformBuffers(const std::vector<gl::Buffer*> boundBuffers, const Caps &caps)
{
return mProgram->applyUniformBuffers(boundBuffers, caps);
}
bool ProgramBinary::linkVaryings(InfoLog &infoLog, Shader *fragmentShader, Shader *vertexShader)
{
std::vector<PackedVarying> &fragmentVaryings = fragmentShader->getVaryings();
std::vector<PackedVarying> &vertexVaryings = vertexShader->getVaryings();
for (size_t fragVaryingIndex = 0; fragVaryingIndex < fragmentVaryings.size(); fragVaryingIndex++)
{
PackedVarying *input = &fragmentVaryings[fragVaryingIndex];
bool matched = false;
// Built-in varyings obey special rules
if (input->isBuiltIn())
{
continue;
}
for (size_t vertVaryingIndex = 0; vertVaryingIndex < vertexVaryings.size(); vertVaryingIndex++)
{
PackedVarying *output = &vertexVaryings[vertVaryingIndex];
if (output->name == input->name)
{
if (!linkValidateVaryings(infoLog, output->name, *input, *output))
{
return false;
}
output->registerIndex = input->registerIndex;
output->columnIndex = input->columnIndex;
matched = true;
break;
}
}
// We permit unmatched, unreferenced varyings
if (!matched && input->staticUse)
{
infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str());
return false;
}
}
return true;
}
LinkResult ProgramBinary::load(InfoLog &infoLog, GLenum binaryFormat, const void *binary, GLsizei length)
{
#if ANGLE_PROGRAM_BINARY_LOAD == ANGLE_ENABLED
return LinkResult(false, Error(GL_NO_ERROR));
#else
ASSERT(binaryFormat == mProgram->getBinaryFormat());
reset();
BinaryInputStream stream(binary, length);
GLenum format = stream.readInt<GLenum>();
if (format != mProgram->getBinaryFormat())
{
infoLog.append("Invalid program binary format.");
return LinkResult(false, Error(GL_NO_ERROR));
}
int majorVersion = stream.readInt<int>();
int minorVersion = stream.readInt<int>();
if (majorVersion != ANGLE_MAJOR_VERSION || minorVersion != ANGLE_MINOR_VERSION)
{
infoLog.append("Invalid program binary version.");
return LinkResult(false, Error(GL_NO_ERROR));
}
unsigned char commitString[ANGLE_COMMIT_HASH_SIZE];
stream.readBytes(commitString, ANGLE_COMMIT_HASH_SIZE);
if (memcmp(commitString, ANGLE_COMMIT_HASH, sizeof(unsigned char) * ANGLE_COMMIT_HASH_SIZE) != 0)
{
infoLog.append("Invalid program binary version.");
return LinkResult(false, Error(GL_NO_ERROR));
}
int compileFlags = stream.readInt<int>();
if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL)
{
infoLog.append("Mismatched compilation flags.");
return LinkResult(false, Error(GL_NO_ERROR));
}
for (int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
{
stream.readInt(&mLinkedAttribute[i].type);
stream.readString(&mLinkedAttribute[i].name);
stream.readInt(&mProgram->getShaderAttributes()[i].type);
stream.readString(&mProgram->getShaderAttributes()[i].name);
stream.readInt(&mSemanticIndex[i]);
}
initAttributesByLayout();
LinkResult result = mProgram->load(infoLog, &stream);
if (result.error.isError() || !result.linkSuccess)
{
return result;
}
return LinkResult(true, Error(GL_NO_ERROR));
#endif // #if ANGLE_PROGRAM_BINARY_LOAD == ANGLE_ENABLED
}
Error ProgramBinary::save(GLenum *binaryFormat, void *binary, GLsizei bufSize, GLsizei *length)
{
if (binaryFormat)
{
*binaryFormat = mProgram->getBinaryFormat();
}
BinaryOutputStream stream;
stream.writeInt(mProgram->getBinaryFormat());
stream.writeInt(ANGLE_MAJOR_VERSION);
stream.writeInt(ANGLE_MINOR_VERSION);
stream.writeBytes(reinterpret_cast<const unsigned char*>(ANGLE_COMMIT_HASH), ANGLE_COMMIT_HASH_SIZE);
stream.writeInt(ANGLE_COMPILE_OPTIMIZATION_LEVEL);
for (unsigned int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
{
stream.writeInt(mLinkedAttribute[i].type);
stream.writeString(mLinkedAttribute[i].name);
stream.writeInt(mProgram->getShaderAttributes()[i].type);
stream.writeString(mProgram->getShaderAttributes()[i].name);
stream.writeInt(mSemanticIndex[i]);
}
mProgram->save(&stream);
GLsizei streamLength = stream.length();
const void *streamData = stream.data();
if (streamLength > bufSize)
{
if (length)
{
*length = 0;
}
// TODO: This should be moved to the validation layer but computing the size of the binary before saving
// it causes the save to happen twice. It may be possible to write the binary to a separate buffer, validate
// sizes and then copy it.
return Error(GL_INVALID_OPERATION);
}
if (binary)
{
char *ptr = (char*) binary;
memcpy(ptr, streamData, streamLength);
ptr += streamLength;
ASSERT(ptr - streamLength == binary);
}
if (length)
{
*length = streamLength;
}
return Error(GL_NO_ERROR);
}
GLint ProgramBinary::getLength()
{
GLint length;
Error error = save(NULL, NULL, INT_MAX, &length);
if (error.isError())
{
return 0;
}
return length;
}
LinkResult ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, Shader *fragmentShader, Shader *vertexShader,
const std::vector<std::string>& transformFeedbackVaryings, GLenum transformFeedbackBufferMode, const Caps &caps)
{
if (!fragmentShader || !fragmentShader->isCompiled())
{
return LinkResult(false, Error(GL_NO_ERROR));
}
ASSERT(fragmentShader->getType() == GL_FRAGMENT_SHADER);
if (!vertexShader || !vertexShader->isCompiled())
{
return LinkResult(false, Error(GL_NO_ERROR));
}
ASSERT(vertexShader->getType() == GL_VERTEX_SHADER);
reset();
int registers;
std::vector<LinkedVarying> linkedVaryings;
LinkResult result = mProgram->link(infoLog, fragmentShader, vertexShader, transformFeedbackVaryings, transformFeedbackBufferMode,
&registers, &linkedVaryings, &mOutputVariables, caps);
if (result.error.isError() || !result.linkSuccess)
{
return result;
}
if (!linkAttributes(infoLog, attributeBindings, vertexShader))
{
return LinkResult(false, Error(GL_NO_ERROR));
}
if (!mProgram->linkUniforms(infoLog, *vertexShader, *fragmentShader, caps))
{
return LinkResult(false, Error(GL_NO_ERROR));
}
if (!linkUniformBlocks(infoLog, *vertexShader, *fragmentShader, caps))
{
return LinkResult(false, Error(GL_NO_ERROR));
}
if (!gatherTransformFeedbackLinkedVaryings(infoLog, linkedVaryings, transformFeedbackVaryings,
transformFeedbackBufferMode, &mProgram->getTransformFeedbackLinkedVaryings(), caps))
{
return LinkResult(false, Error(GL_NO_ERROR));
}
// TODO: The concept of "executables" is D3D only, and as such this belongs in ProgramD3D. It must be called,
// however, last in this function, so it can't simply be moved to ProgramD3D::link without further shuffling.
result = mProgram->compileProgramExecutables(infoLog, fragmentShader, vertexShader, registers);
if (result.error.isError() || !result.linkSuccess)
{
infoLog.append("Failed to create D3D shaders.");
reset();
return result;
}
return LinkResult(true, Error(GL_NO_ERROR));
}
bool ProgramBinary::linkUniformBlocks(gl::InfoLog &infoLog, const gl::Shader &vertexShader, const gl::Shader &fragmentShader,
const gl::Caps &caps)
{
const std::vector<sh::InterfaceBlock> &vertexInterfaceBlocks = vertexShader.getInterfaceBlocks();
const std::vector<sh::InterfaceBlock> &fragmentInterfaceBlocks = fragmentShader.getInterfaceBlocks();
// Check that interface blocks defined in the vertex and fragment shaders are identical
typedef std::map<std::string, const sh::InterfaceBlock*> UniformBlockMap;
UniformBlockMap linkedUniformBlocks;
for (unsigned int blockIndex = 0; blockIndex < vertexInterfaceBlocks.size(); blockIndex++)
{
const sh::InterfaceBlock &vertexInterfaceBlock = vertexInterfaceBlocks[blockIndex];
linkedUniformBlocks[vertexInterfaceBlock.name] = &vertexInterfaceBlock;
}
for (unsigned int blockIndex = 0; blockIndex < fragmentInterfaceBlocks.size(); blockIndex++)
{
const sh::InterfaceBlock &fragmentInterfaceBlock = fragmentInterfaceBlocks[blockIndex];
UniformBlockMap::const_iterator entry = linkedUniformBlocks.find(fragmentInterfaceBlock.name);
if (entry != linkedUniformBlocks.end())
{
const sh::InterfaceBlock &vertexInterfaceBlock = *entry->second;
if (!areMatchingInterfaceBlocks(infoLog, vertexInterfaceBlock, fragmentInterfaceBlock))
{
return false;
}
}
}
for (unsigned int blockIndex = 0; blockIndex < vertexInterfaceBlocks.size(); blockIndex++)
{
const sh::InterfaceBlock &interfaceBlock = vertexInterfaceBlocks[blockIndex];
// Note: shared and std140 layouts are always considered active
if (interfaceBlock.staticUse || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED)
{
if (!mProgram->defineUniformBlock(infoLog, vertexShader, interfaceBlock, caps))
{
return false;
}
}
}
for (unsigned int blockIndex = 0; blockIndex < fragmentInterfaceBlocks.size(); blockIndex++)
{
const sh::InterfaceBlock &interfaceBlock = fragmentInterfaceBlocks[blockIndex];
// Note: shared and std140 layouts are always considered active
if (interfaceBlock.staticUse || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED)
{
if (!mProgram->defineUniformBlock(infoLog, fragmentShader, interfaceBlock, caps))
{
return false;
}
}
}
return true;
}
bool ProgramBinary::areMatchingInterfaceBlocks(gl::InfoLog &infoLog, const sh::InterfaceBlock &vertexInterfaceBlock,
const sh::InterfaceBlock &fragmentInterfaceBlock)
{
const char* blockName = vertexInterfaceBlock.name.c_str();
// validate blocks for the same member types
if (vertexInterfaceBlock.fields.size() != fragmentInterfaceBlock.fields.size())
{
infoLog.append("Types for interface block '%s' differ between vertex and fragment shaders", blockName);
return false;
}
if (vertexInterfaceBlock.arraySize != fragmentInterfaceBlock.arraySize)
{
infoLog.append("Array sizes differ for interface block '%s' between vertex and fragment shaders", blockName);
return false;
}
if (vertexInterfaceBlock.layout != fragmentInterfaceBlock.layout || vertexInterfaceBlock.isRowMajorLayout != fragmentInterfaceBlock.isRowMajorLayout)
{
infoLog.append("Layout qualifiers differ for interface block '%s' between vertex and fragment shaders", blockName);
return false;
}
const unsigned int numBlockMembers = vertexInterfaceBlock.fields.size();
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++)
{
const sh::InterfaceBlockField &vertexMember = vertexInterfaceBlock.fields[blockMemberIndex];
const sh::InterfaceBlockField &fragmentMember = fragmentInterfaceBlock.fields[blockMemberIndex];
if (vertexMember.name != fragmentMember.name)
{
infoLog.append("Name mismatch for field %d of interface block '%s': (in vertex: '%s', in fragment: '%s')",
blockMemberIndex, blockName, vertexMember.name.c_str(), fragmentMember.name.c_str());
return false;
}
std::string memberName = "interface block '" + vertexInterfaceBlock.name + "' member '" + vertexMember.name + "'";
if (!gl::ProgramBinary::linkValidateInterfaceBlockFields(infoLog, memberName, vertexMember, fragmentMember))
{
return false;
}
}
return true;
}
// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices
bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, const Shader *vertexShader)
{
const rx::ShaderD3D *vertexShaderD3D = rx::ShaderD3D::makeShaderD3D(vertexShader->getImplementation());
unsigned int usedLocations = 0;
const std::vector<sh::Attribute> &shaderAttributes = vertexShader->getActiveAttributes();
// Link attributes that have a binding location
for (unsigned int attributeIndex = 0; attributeIndex < shaderAttributes.size(); attributeIndex++)
{
const sh::Attribute &attribute = shaderAttributes[attributeIndex];
ASSERT(attribute.staticUse);
const int location = attribute.location == -1 ? attributeBindings.getAttributeBinding(attribute.name) : attribute.location;
mProgram->getShaderAttributes()[attributeIndex] = attribute;
if (location != -1) // Set by glBindAttribLocation or by location layout qualifier
{
const int rows = VariableRegisterCount(attribute.type);
if (rows + location > MAX_VERTEX_ATTRIBS)
{
infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute.name.c_str(), location);
return false;
}
for (int row = 0; row < rows; row++)
{
const int rowLocation = location + row;
sh::ShaderVariable &linkedAttribute = mLinkedAttribute[rowLocation];
// In GLSL 3.00, attribute aliasing produces a link error
// In GLSL 1.00, attribute aliasing is allowed
if (mProgram->getShaderVersion() >= 300)
{
if (!linkedAttribute.name.empty())
{
infoLog.append("Attribute '%s' aliases attribute '%s' at location %d", attribute.name.c_str(), linkedAttribute.name.c_str(), rowLocation);
return false;
}
}
linkedAttribute = attribute;
usedLocations |= 1 << rowLocation;
}
}
}
// Link attributes that don't have a binding location
for (unsigned int attributeIndex = 0; attributeIndex < shaderAttributes.size(); attributeIndex++)
{
const sh::Attribute &attribute = shaderAttributes[attributeIndex];
ASSERT(attribute.staticUse);
const int location = attribute.location == -1 ? attributeBindings.getAttributeBinding(attribute.name) : attribute.location;
if (location == -1) // Not set by glBindAttribLocation or by location layout qualifier
{
int rows = VariableRegisterCount(attribute.type);
int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS);
if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS)
{
infoLog.append("Too many active attributes (%s)", attribute.name.c_str());
return false; // Fail to link
}
mLinkedAttribute[availableIndex] = attribute;
}
}
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; )
{
int index = vertexShaderD3D->getSemanticIndex(mLinkedAttribute[attributeIndex].name);
int rows = VariableRegisterCount(mLinkedAttribute[attributeIndex].type);
for (int r = 0; r < rows; r++)
{
mSemanticIndex[attributeIndex++] = index++;
}
}
initAttributesByLayout();
return true;
}
bool ProgramBinary::linkValidateVariablesBase(InfoLog &infoLog, const std::string &variableName, const sh::ShaderVariable &vertexVariable,
const sh::ShaderVariable &fragmentVariable, bool validatePrecision)
{
if (vertexVariable.type != fragmentVariable.type)
{
infoLog.append("Types for %s differ between vertex and fragment shaders", variableName.c_str());
return false;
}
if (vertexVariable.arraySize != fragmentVariable.arraySize)
{
infoLog.append("Array sizes for %s differ between vertex and fragment shaders", variableName.c_str());
return false;
}
if (validatePrecision && vertexVariable.precision != fragmentVariable.precision)
{
infoLog.append("Precisions for %s differ between vertex and fragment shaders", variableName.c_str());
return false;
}
if (vertexVariable.fields.size() != fragmentVariable.fields.size())
{
infoLog.append("Structure lengths for %s differ between vertex and fragment shaders", variableName.c_str());
return false;
}
const unsigned int numMembers = vertexVariable.fields.size();
for (unsigned int memberIndex = 0; memberIndex < numMembers; memberIndex++)
{
const sh::ShaderVariable &vertexMember = vertexVariable.fields[memberIndex];
const sh::ShaderVariable &fragmentMember = fragmentVariable.fields[memberIndex];
if (vertexMember.name != fragmentMember.name)
{
infoLog.append("Name mismatch for field '%d' of %s: (in vertex: '%s', in fragment: '%s')",
memberIndex, variableName.c_str(),
vertexMember.name.c_str(), fragmentMember.name.c_str());
return false;
}
const std::string memberName = variableName.substr(0, variableName.length() - 1) + "." +
vertexMember.name + "'";
if (!linkValidateVariablesBase(infoLog, vertexMember.name, vertexMember, fragmentMember, validatePrecision))
{
return false;
}
}
return true;
}
bool ProgramBinary::linkValidateUniforms(InfoLog &infoLog, const std::string &uniformName, const sh::Uniform &vertexUniform, const sh::Uniform &fragmentUniform)
{
if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, true))
{
return false;
}
return true;
}
bool ProgramBinary::linkValidateVaryings(InfoLog &infoLog, const std::string &varyingName, const sh::Varying &vertexVarying, const sh::Varying &fragmentVarying)
{
if (!linkValidateVariablesBase(infoLog, varyingName, vertexVarying, fragmentVarying, false))
{
return false;
}
if (vertexVarying.interpolation != fragmentVarying.interpolation)
{
infoLog.append("Interpolation types for %s differ between vertex and fragment shaders", varyingName.c_str());
return false;
}
return true;
}
bool ProgramBinary::linkValidateInterfaceBlockFields(InfoLog &infoLog, const std::string &uniformName, const sh::InterfaceBlockField &vertexUniform, const sh::InterfaceBlockField &fragmentUniform)
{
if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, true))
{
return false;
}
if (vertexUniform.isRowMajorLayout != fragmentUniform.isRowMajorLayout)
{
infoLog.append("Matrix packings for %s differ between vertex and fragment shaders", uniformName.c_str());
return false;
}
return true;
}
bool ProgramBinary::gatherTransformFeedbackLinkedVaryings(InfoLog &infoLog, const std::vector<LinkedVarying> &linkedVaryings,
const std::vector<std::string> &transformFeedbackVaryingNames,
GLenum transformFeedbackBufferMode,
std::vector<LinkedVarying> *outTransformFeedbackLinkedVaryings,
const Caps &caps) const
{
size_t totalComponents = 0;
// Gather the linked varyings that are used for transform feedback, they should all exist.
outTransformFeedbackLinkedVaryings->clear();
for (size_t i = 0; i < transformFeedbackVaryingNames.size(); i++)
{
bool found = false;
for (size_t j = 0; j < linkedVaryings.size(); j++)
{
if (transformFeedbackVaryingNames[i] == linkedVaryings[j].name)
{
for (size_t k = 0; k < outTransformFeedbackLinkedVaryings->size(); k++)
{
if (outTransformFeedbackLinkedVaryings->at(k).name == linkedVaryings[j].name)
{
infoLog.append("Two transform feedback varyings specify the same output variable (%s).", linkedVaryings[j].name.c_str());
return false;
}
}
size_t componentCount = linkedVaryings[j].semanticIndexCount * 4;
if (transformFeedbackBufferMode == GL_SEPARATE_ATTRIBS &&
componentCount > caps.maxTransformFeedbackSeparateComponents)
{
infoLog.append("Transform feedback varying's %s components (%u) exceed the maximum separate components (%u).",
linkedVaryings[j].name.c_str(), componentCount, caps.maxTransformFeedbackSeparateComponents);
return false;
}
totalComponents += componentCount;
outTransformFeedbackLinkedVaryings->push_back(linkedVaryings[j]);
found = true;
break;
}
}
// All transform feedback varyings are expected to exist since packVaryings checks for them.
ASSERT(found);
}
if (transformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS && totalComponents > caps.maxTransformFeedbackInterleavedComponents)
{
infoLog.append("Transform feedback varying total components (%u) exceed the maximum interleaved components (%u).",
totalComponents, caps.maxTransformFeedbackInterleavedComponents);
return false;
}
return true;
}
bool ProgramBinary::isValidated() const
{
return mValidated;
}
void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
{
// Skip over inactive attributes
unsigned int activeAttribute = 0;
unsigned int attribute;
for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
{
if (mLinkedAttribute[attribute].name.empty())
{
continue;
}
if (activeAttribute == index)
{
break;
}
activeAttribute++;
}
if (bufsize > 0)
{
const char *string = mLinkedAttribute[attribute].name.c_str();
strncpy(name, string, bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = strlen(name);
}
}
*size = 1; // Always a single 'type' instance
*type = mLinkedAttribute[attribute].type;
}
GLint ProgramBinary::getActiveAttributeCount() const
{
int count = 0;
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (!mLinkedAttribute[attributeIndex].name.empty())
{
count++;
}
}
return count;
}
GLint ProgramBinary::getActiveAttributeMaxLength() const
{
int maxLength = 0;
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (!mLinkedAttribute[attributeIndex].name.empty())
{
maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength);
}
}
return maxLength;
}
void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
{
ASSERT(index < mProgram->getUniforms().size()); // index must be smaller than getActiveUniformCount()
if (bufsize > 0)
{
std::string string = mProgram->getUniforms()[index]->name;
if (mProgram->getUniforms()[index]->isArray())
{
string += "[0]";
}
strncpy(name, string.c_str(), bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = strlen(name);
}
}
*size = mProgram->getUniforms()[index]->elementCount();
*type = mProgram->getUniforms()[index]->type;
}
GLint ProgramBinary::getActiveUniformCount() const
{
return mProgram->getUniforms().size();
}
GLint ProgramBinary::getActiveUniformMaxLength() const
{
int maxLength = 0;
unsigned int numUniforms = mProgram->getUniforms().size();
for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
{
if (!mProgram->getUniforms()[uniformIndex]->name.empty())
{
int length = (int)(mProgram->getUniforms()[uniformIndex]->name.length() + 1);
if (mProgram->getUniforms()[uniformIndex]->isArray())
{
length += 3; // Counting in "[0]".
}
maxLength = std::max(length, maxLength);
}
}
return maxLength;
}
GLint ProgramBinary::getActiveUniformi(GLuint index, GLenum pname) const
{
const gl::LinkedUniform& uniform = *mProgram->getUniforms()[index];
switch (pname)
{
case GL_UNIFORM_TYPE: return static_cast<GLint>(uniform.type);
case GL_UNIFORM_SIZE: return static_cast<GLint>(uniform.elementCount());
case GL_UNIFORM_NAME_LENGTH: return static_cast<GLint>(uniform.name.size() + 1 + (uniform.isArray() ? 3 : 0));
case GL_UNIFORM_BLOCK_INDEX: return uniform.blockIndex;
case GL_UNIFORM_OFFSET: return uniform.blockInfo.offset;
case GL_UNIFORM_ARRAY_STRIDE: return uniform.blockInfo.arrayStride;
case GL_UNIFORM_MATRIX_STRIDE: return uniform.blockInfo.matrixStride;
case GL_UNIFORM_IS_ROW_MAJOR: return static_cast<GLint>(uniform.blockInfo.isRowMajorMatrix);
default:
UNREACHABLE();
break;
}
return 0;
}
bool ProgramBinary::isValidUniformLocation(GLint location) const
{
ASSERT(rx::IsIntegerCastSafe<GLint>(mProgram->getUniformIndices().size()));
return (location >= 0 && location < static_cast<GLint>(mProgram->getUniformIndices().size()));
}
LinkedUniform *ProgramBinary::getUniformByLocation(GLint location) const
{
return mProgram->getUniformByLocation(location);
}
LinkedUniform *ProgramBinary::getUniformByName(const std::string &name) const
{
return mProgram->getUniformByName(name);
}
void ProgramBinary::getActiveUniformBlockName(GLuint uniformBlockIndex, GLsizei bufSize, GLsizei *length, GLchar *uniformBlockName) const
{
ASSERT(uniformBlockIndex < mProgram->getUniformBlocks().size()); // index must be smaller than getActiveUniformBlockCount()
const UniformBlock &uniformBlock = *mProgram->getUniformBlocks()[uniformBlockIndex];
if (bufSize > 0)
{
std::string string = uniformBlock.name;
if (uniformBlock.isArrayElement())
{
string += ArrayString(uniformBlock.elementIndex);
}
strncpy(uniformBlockName, string.c_str(), bufSize);
uniformBlockName[bufSize - 1] = '\0';
if (length)
{
*length = strlen(uniformBlockName);
}
}
}
void ProgramBinary::getActiveUniformBlockiv(GLuint uniformBlockIndex, GLenum pname, GLint *params) const
{
ASSERT(uniformBlockIndex < mProgram->getUniformBlocks().size()); // index must be smaller than getActiveUniformBlockCount()
const UniformBlock &uniformBlock = *mProgram->getUniformBlocks()[uniformBlockIndex];
switch (pname)
{
case GL_UNIFORM_BLOCK_DATA_SIZE:
*params = static_cast<GLint>(uniformBlock.dataSize);
break;
case GL_UNIFORM_BLOCK_NAME_LENGTH:
*params = static_cast<GLint>(uniformBlock.name.size() + 1 + (uniformBlock.isArrayElement() ? 3 : 0));
break;
case GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS:
*params = static_cast<GLint>(uniformBlock.memberUniformIndexes.size());
break;
case GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES:
{
for (unsigned int blockMemberIndex = 0; blockMemberIndex < uniformBlock.memberUniformIndexes.size(); blockMemberIndex++)
{
params[blockMemberIndex] = static_cast<GLint>(uniformBlock.memberUniformIndexes[blockMemberIndex]);
}
}
break;
case GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER:
*params = static_cast<GLint>(uniformBlock.isReferencedByVertexShader());
break;
case GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER:
*params = static_cast<GLint>(uniformBlock.isReferencedByFragmentShader());
break;
default: UNREACHABLE();
}
}
GLuint ProgramBinary::getActiveUniformBlockCount() const
{
return mProgram->getUniformBlocks().size();
}
GLuint ProgramBinary::getActiveUniformBlockMaxLength() const
{
unsigned int maxLength = 0;
unsigned int numUniformBlocks = mProgram->getUniformBlocks().size();
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < numUniformBlocks; uniformBlockIndex++)
{
const UniformBlock &uniformBlock = *mProgram->getUniformBlocks()[uniformBlockIndex];
if (!uniformBlock.name.empty())
{
const unsigned int length = uniformBlock.name.length() + 1;
// Counting in "[0]".
const unsigned int arrayLength = (uniformBlock.isArrayElement() ? 3 : 0);
maxLength = std::max(length + arrayLength, maxLength);
}
}
return maxLength;
}
void ProgramBinary::validate(InfoLog &infoLog, const Caps &caps)
{
applyUniforms();
if (!validateSamplers(&infoLog, caps))
{
mValidated = false;
}
else
{
mValidated = true;
}
}
bool ProgramBinary::validateSamplers(InfoLog *infoLog, const Caps &caps)
{
return mProgram->validateSamplers(infoLog, caps);
}
struct AttributeSorter
{
AttributeSorter(const int (&semanticIndices)[MAX_VERTEX_ATTRIBS])
: originalIndices(semanticIndices)
{
}
bool operator()(int a, int b)
{
if (originalIndices[a] == -1) return false;
if (originalIndices[b] == -1) return true;
return (originalIndices[a] < originalIndices[b]);
}
const int (&originalIndices)[MAX_VERTEX_ATTRIBS];
};
void ProgramBinary::initAttributesByLayout()
{
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mAttributesByLayout[i] = i;
}
std::sort(&mAttributesByLayout[0], &mAttributesByLayout[MAX_VERTEX_ATTRIBS], AttributeSorter(mSemanticIndex));
}
void ProgramBinary::sortAttributesByLayout(rx::TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS], int sortedSemanticIndices[MAX_VERTEX_ATTRIBS]) const
{
rx::TranslatedAttribute oldTranslatedAttributes[MAX_VERTEX_ATTRIBS];
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
oldTranslatedAttributes[i] = attributes[i];
}
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
int oldIndex = mAttributesByLayout[i];
sortedSemanticIndices[i] = mSemanticIndex[oldIndex];
attributes[i] = oldTranslatedAttributes[oldIndex];
}
}
void ProgramBinary::reset()
{
mOutputVariables.clear();
mProgram->reset();
mValidated = false;
}
}