blob: c86ad93c2897fe6cb0ed0e1f21c1dc0a8a04d334 [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include <armnn/ArmNN.hpp>
#include "armnn/src/armnnUtils/Permute.hpp"
#include "Utils.hpp"
#include <ActivationFunctor.h>
#include <CpuExecutor.h>
#include <OperationsUtils.h>
#include <boost/assert.hpp>
#include <boost/core/ignore_unused.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <log/log.h>
namespace armnn_driver
{
///
/// Helper classes
///
struct ConversionData
{
ConversionData(armnn::Compute compute)
: m_Compute(compute)
, m_Network(nullptr, nullptr)
{}
const armnn::Compute m_Compute;
armnn::INetworkPtr m_Network;
std::vector<armnn::IOutputSlot*> m_OutputSlotForOperand;
std::vector<android::nn::RunTimePoolInfo> m_MemPools;
};
class LayerInputHandle
{
public:
LayerInputHandle();
LayerInputHandle(bool valid, armnn::IOutputSlot* outputSlot, armnn::TensorInfo tensorInfo);
bool IsValid() const;
void Connect(armnn::IInputSlot& inputSlot);
const armnn::TensorInfo& GetTensorInfo() const;
private:
armnn::IOutputSlot* m_OutputSlot;
bool m_Valid;
armnn::TensorInfo m_TensorInfo;
};
class ConstTensorPin
{
public:
// Creates an invalid tensor pin (can be used to signal errors)
// The optional flag can be set to indicate the tensor values were missing, but it was otherwise valid
ConstTensorPin(bool optional = false);
// @param tensorInfo TensorInfo associated with the tensor.
// @param valueStart Start address of tensor data. Belongs to one of the memory pools associated with
// the model being converted.
// @param numBytes Number of bytes for the tensor data.
ConstTensorPin(const armnn::TensorInfo& tensorInfo, const void* valueStart, uint32_t numBytes,
const armnn::PermutationVector& mappings);
ConstTensorPin(const ConstTensorPin& other) = delete;
ConstTensorPin(ConstTensorPin&& other) = default;
bool IsValid() const;
bool IsOptional() const;
const armnn::ConstTensor& GetConstTensor() const;
const armnn::ConstTensor* GetConstTensorPtr() const;
private:
armnn::ConstTensor m_ConstTensor;
// Owned memory for swizzled tensor data, only required if the tensor needed
// swizzling. Otherwise, @ref m_ConstTensor will reference memory from one of
// the pools associated with the model being converted.
std::vector<uint8_t> m_SwizzledTensorData;
// optional flag to indicate that an invalid tensor pin is not an error, but the optional values were not given
bool m_Optional;
};
} // namespace armnn_driver
///
/// Utility functions
///
namespace
{
using namespace armnn_driver;
using namespace android::nn;
// Convenience function to log the reason for failing to convert a model.
// @return Always returns false (so that it can be used by callers as a quick way to signal an error and return)
template<class... Args>
static bool Fail(const char* formatStr, Args&&... args)
{
ALOGD(formatStr, std::forward<Args>(args)...);
return false;
}
// Convenience function to call an Is*Supported function and log caller name together with reason for lack of support.
// Called as: IsLayerSupported(__func__, Is*Supported, a, b, c, d, e)
template<typename IsLayerSupportedFunc, typename ... Args>
bool IsLayerSupported(const char* funcName, IsLayerSupportedFunc f, Args&&... args)
{
std::vector<char> unsupportedReason(1024+1);
bool isSupported = f(std::forward<Args>(args)..., unsupportedReason.data(), unsupportedReason.size()-1);
if(isSupported)
{
return true;
}
else
{
std::string sUnsupportedReason(unsupportedReason.data());
if (sUnsupportedReason.size() > 0)
{
ALOGD("%s: not supported by armnn: %s", funcName, sUnsupportedReason.c_str());
} else
{
ALOGD("%s: not supported by armnn", funcName);
}
return false;
}
}
armnn::TensorShape GetTensorShapeForOperand(const Operand& operand)
{
return armnn::TensorShape(operand.dimensions.size(), operand.dimensions.data());
}
inline bool IsOperandTypeSupportedForTensors(OperandType type)
{
return type == OperandType::TENSOR_FLOAT32 ||
type == OperandType::TENSOR_QUANT8_ASYMM ||
type == OperandType::TENSOR_INT32;
}
void BroadcastTensor(LayerInputHandle& input0, LayerInputHandle& input1, armnn::IConnectableLayer* startLayer,
armnn::INetwork& network)
{
BOOST_ASSERT(startLayer != nullptr);
const armnn::TensorInfo& inputTensorInfo0 = input0.GetTensorInfo();
const armnn::TensorInfo& inputTensorInfo1 = input1.GetTensorInfo();
if (inputTensorInfo0.GetNumDimensions() != inputTensorInfo1.GetNumDimensions())
{
// If the number of dimensions do not match then we need to add degenerate dimensions
// to the "smaller" tensor using a reshape:
// Small Big
// | |
// Reshape |
// \ /
// Add
bool input0IsBigger = inputTensorInfo0.GetNumDimensions() > inputTensorInfo1.GetNumDimensions();
LayerInputHandle& smallTensorHandle = input0IsBigger ? input1 : input0;
const armnn::TensorInfo& smallTensorDims = smallTensorHandle.GetTensorInfo();
LayerInputHandle& bigTensorHandle = input0IsBigger ? input0 : input1;
const armnn::TensorInfo& bigTensorDims = bigTensorHandle.GetTensorInfo();
const unsigned int bigTensorDimsNumber = bigTensorDims.GetNumDimensions();
std::vector<unsigned int> reshapedDims(bigTensorDimsNumber, 1);
unsigned int sizeDifference = bigTensorDimsNumber - smallTensorDims.GetNumDimensions();
for (unsigned i = sizeDifference; i < bigTensorDimsNumber; ++i)
{
reshapedDims[i] = smallTensorDims.GetShape()[i-sizeDifference];
}
armnn::TensorInfo reshapedInfo = smallTensorDims;
reshapedInfo.SetShape(armnn::TensorShape{ static_cast<unsigned int>(reshapedDims.size()),
reshapedDims.data() });
armnn::ReshapeDescriptor reshapeDesc;
reshapeDesc.m_TargetShape = reshapedInfo.GetShape();
armnn::IConnectableLayer* const reshapeLayer = network.AddReshapeLayer(reshapeDesc);
smallTensorHandle.Connect(reshapeLayer->GetInputSlot(0));
reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapedInfo);
// Connect the outputs from new reshape and original input layer
reshapeLayer->GetOutputSlot(0).Connect(startLayer->GetInputSlot(0));
bigTensorHandle.Connect(startLayer->GetInputSlot(1));
}
else
{
input0.Connect(startLayer->GetInputSlot(0));
input1.Connect(startLayer->GetInputSlot(1));
}
}
void CalcPadding(uint32_t input, uint32_t kernel, uint32_t stride, uint32_t& outPadHead, uint32_t& outPadTail,
android::nn::PaddingScheme scheme)
{
int32_t padHead;
int32_t padTail;
calculateExplicitPadding(input, stride, kernel, scheme, &padHead, &padTail);
outPadHead = boost::numeric_cast<uint32_t>(padHead);
outPadTail = boost::numeric_cast<uint32_t>(padTail);
}
Shape GetOperandShape(const Operand& operand)
{
Shape shape;
shape.type = operand.type;
shape.dimensions = operand.dimensions;
shape.scale = operand.scale;
shape.offset = operand.zeroPoint;
return shape;
}
// ArmNN requires the bias scale to be equal to the product of the weight and input scales, which is also
// what AndroidNN requires. However for some of the AndroidNN tests the values don't exactly match so
// we accept some tolerance. We don't want to ArmNN itself to accept these inconsistencies as it is up to the user
// (us, in this case) to ensure they match.
void SanitizeBiasQuantizationScale(armnn::TensorInfo& biasInfo,
const armnn::TensorInfo& weightInfo, const armnn::TensorInfo& inputInfo)
{
const float expectedBiasScale = weightInfo.GetQuantizationScale() * inputInfo.GetQuantizationScale();
if (biasInfo.GetQuantizationScale() != expectedBiasScale)
{
boost::math::fpc::close_at_tolerance<float> comparer(boost::math::fpc::percent_tolerance(1.0f));
if (comparer(biasInfo.GetQuantizationScale(), expectedBiasScale))
{
ALOGW("Bias quantization scale has been modified to match input*weights");
biasInfo.SetQuantizationScale(expectedBiasScale);
}
}
}
// 4D Tensor Permutations
const armnn::PermutationVector IdentityPermutation4D({ 0U, 1U, 2U, 3U });
const armnn::PermutationVector NHWCToArmNN({ 0U, 2U, 3U, 1U });
const armnn::PermutationVector ArmNNToNHWC({ 0U, 3U, 1U, 2U });
const armnn::PermutationVector SwapDim1And2({ 0U, 2U, 1U, 3U });
// 3D Permutation Vectors
const armnn::PermutationVector IdentityPermutation3D({ 0U, 1U, 2U });
const armnn::PermutationVector RotateTensorLeft({ 2U, 0U, 1U });
const armnn::PermutationVector RotateTensorRight({ 1U, 2U, 0U });
template<typename OSlot>
armnn::IConnectableLayer& AddPermuteLayer(armnn::INetwork& network, OSlot& input,
const armnn::PermutationVector& mappings)
{
// Add swizzle layer
armnn::IConnectableLayer* const layer = network.AddPermuteLayer(mappings);
BOOST_ASSERT(layer != nullptr);
// Connect input to swizzle layer
input.Connect(layer->GetInputSlot(0));
// Setup swizzled output
const armnn::TensorInfo outInfo = armnnUtils::Permuted(input.GetTensorInfo(), mappings);
layer->GetOutputSlot(0).SetTensorInfo(outInfo);
return *layer;
}
void SwizzleIn(armnn::INetwork& network, LayerInputHandle& input, armnn::IConnectableLayer& layer, unsigned int index)
{
// Add swizzle layer
armnn::IConnectableLayer& swizzleLayer = AddPermuteLayer(network, input, NHWCToArmNN);
// Connect swizzled input to layer
swizzleLayer.GetOutputSlot(0).Connect(layer.GetInputSlot(index));
}
armnn::IConnectableLayer& DeswizzleOut(armnn::INetwork& network, armnn::IConnectableLayer& layer, unsigned int index)
{
// Add deswizzle layer
armnn::IConnectableLayer& deswizzleLayer = AddPermuteLayer(network, layer.GetOutputSlot(index), ArmNNToNHWC);
return deswizzleLayer;
}
// only suitable for input/output slot index 0, for other slots, use SwizzleIn and DeswizzleOut directly
armnn::IConnectableLayer& SwizzleInDeswizzleOut(armnn::INetwork& network,
LayerInputHandle& input,
armnn::IConnectableLayer& firstLayer,
armnn::IConnectableLayer& lastLayer)
{
SwizzleIn(network, input, firstLayer, 0);
return DeswizzleOut(network, lastLayer, 0);
}
// only suitable for input/output slot index 0, for other slots, use SwizzleIn and DeswizzleOut directly
armnn::IConnectableLayer& SwizzleInDeswizzleOut(armnn::INetwork& network, LayerInputHandle& input,
armnn::IConnectableLayer& layer)
{
return SwizzleInDeswizzleOut(network, input, layer, layer);
}
bool ValidateConcatOutputShape(const std::vector<armnn::TensorShape> & inputShapes,
const armnn::TensorShape & outputShape,
uint32_t concatDim)
{
// Validate the output shape is correct given the input shapes (which have just been validated)
unsigned int numDimensions = inputShapes[0].GetNumDimensions();
if (outputShape.GetNumDimensions() != numDimensions)
{
return Fail("%s: Output shape has wrong number of dimensions", __func__);
}
unsigned int outputSizeAlongConcatenatedDimension = 0;
for (unsigned int i = 0; i < inputShapes.size(); i++)
{
outputSizeAlongConcatenatedDimension += inputShapes[i][concatDim];
}
for (unsigned int i = 0; i < numDimensions; ++i)
{
if (i == concatDim)
{
if (outputShape[i] != outputSizeAlongConcatenatedDimension)
{
return Fail(
"%s: Invalid output shape for dimension %d (%d != %d)",
__func__,
i,
outputShape[i],
outputSizeAlongConcatenatedDimension);
}
}
else
{
if (outputShape[i] != inputShapes[0][i])
{
return Fail("%s: Invalid output shape", __func__);
}
}
}
return true;
}
bool RequiresReshape(armnn::TensorShape & inputShape)
{
return inputShape.GetNumDimensions() < 3;
}
template<typename OSlot>
armnn::IConnectableLayer& AddReshapeLayer(armnn::INetwork& network, OSlot& inputLayer,
armnn::TensorInfo reshapeInfo)
{
armnn::ReshapeDescriptor reshapeDescriptor;
reshapeDescriptor.m_TargetShape = reshapeInfo.GetShape();
armnn::IConnectableLayer* reshapeLayer = network.AddReshapeLayer(reshapeDescriptor);
BOOST_ASSERT(reshapeLayer != nullptr);
// Attach the input layer to the reshape layer
inputLayer.Connect(reshapeLayer->GetInputSlot(0));
reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapeInfo);
return *reshapeLayer;
}
void SwizzleInputs(armnn::INetwork& network,
std::vector<LayerInputHandle>& inputs,
std::vector<armnn::TensorShape>& inputShapes,
const armnn::PermutationVector& mapping)
{
if (!mapping.IsEqual(IdentityPermutation4D))
{
size_t nInputs = inputs.size();
for (size_t i=0; i<nInputs; ++i)
{
// add swizzle layer
armnn::IConnectableLayer& swizzleLayer = AddPermuteLayer(network, inputs[i], mapping);
auto& outputSlot = swizzleLayer.GetOutputSlot(0);
auto& outputInfo = outputSlot.GetTensorInfo();
// replace inputs with the swizzled ones
inputs[i] = LayerInputHandle(true, &outputSlot, outputInfo);
inputShapes[i] = inputs[i].GetTensorInfo().GetShape();
}
}
}
bool CreateConcatPermutationParameters(const unsigned int numberOfDimensions,
int32_t & concatDimension,
std::pair<armnn::PermutationVector, armnn::PermutationVector> & permutationPair)
{
bool needPermute = false;
BOOST_ASSERT(numberOfDimensions >= 3);
// ArmNN uses Compute Library subtensors to perform concatenation
// This only works when concatenating along dimension 0, 1 or 3 for a 4-D tensor,
// or along dimension 0 or 2 for a 3-D tensor.
if (numberOfDimensions == 4 && concatDimension == 2)
{
concatDimension = 1;
permutationPair = std::make_pair(SwapDim1And2, SwapDim1And2);
needPermute = true;
}
else if (numberOfDimensions == 3 && concatDimension == 1)
{
concatDimension = 0;
permutationPair = std::make_pair(RotateTensorLeft, RotateTensorRight);
needPermute = true;
}
return needPermute;
}
} // anonymous namespace
namespace armnn_driver
{
//// Creates an ArmNN activation layer and connects it to the given layer, if the
//// passed in AndroidNN activation function requires so.
//// @return The end layer of the sequence of layers built for the given AndroidNN
//// activation function or nullptr if an error occurred (e.g. unsupported activation).
//// Note that the end layer matches the input layer if no activation is required
//// (the sequence of layers has length 1).
armnn::IConnectableLayer* ProcessActivation(const armnn::TensorInfo& tensorInfo,
ActivationFn activation,
armnn::IConnectableLayer* prevLayer,
ConversionData& data);
} // namespace armnn_driver
///
/// Utility templates
///
namespace armnn_driver
{
using namespace android::nn;
template<typename HalOperation, typename HalModel>
const Operand* GetInputOperand(const HalOperation& operation, uint32_t inputIndex, const HalModel& model,
bool failOnIndexOutOfBounds = true)
{
if (inputIndex >= operation.inputs.size())
{
if (failOnIndexOutOfBounds)
{
Fail("%s: invalid input index: %i out of %i", __func__, inputIndex, operation.inputs.size());
}
return nullptr;
}
BOOST_ASSERT(operation.inputs[inputIndex] < model.operands.size()); // Model should have been validated beforehand
return &model.operands[operation.inputs[inputIndex]];
}
template<typename HalOperation, typename HalModel>
const Operand* GetOutputOperand(const HalOperation& operation, uint32_t outputIndex, const HalModel& model)
{
if (outputIndex >= operation.outputs.size())
{
Fail("%s: invalid output index: %i out of %i", __func__, outputIndex, operation.outputs.size());
return nullptr;
}
// Model should have been validated beforehand
BOOST_ASSERT(operation.outputs[outputIndex] < model.operands.size());
return &model.operands[operation.outputs[outputIndex]];
}
template<typename HalModel>
ConstTensorPin ConvertOperandToConstTensorPin(const Operand& operand,
const HalModel& model,
const ConversionData& data,
const armnn::PermutationVector& dimensionMappings = g_DontPermute,
const armnn::TensorShape* overrideTensorShape = nullptr,
bool optional = false)
{
if (!IsOperandTypeSupportedForTensors(operand.type))
{
Fail("%s: unsupported operand type for tensor %s", __func__, toString(operand.type).c_str());
return ConstTensorPin();
}
if (operand.lifetime != OperandLifeTime::CONSTANT_COPY && operand.lifetime != OperandLifeTime::CONSTANT_REFERENCE)
{
Fail("%s: invalid operand lifetime: %s", __func__, toString(operand.lifetime).c_str());
return ConstTensorPin();
}
const void* const valueStart = GetOperandValueReadOnlyAddress(operand, model, data);
if (!valueStart)
{
if (optional)
{
// optional tensor with no values is not really an error; return it as invalid, but marked as optional
return ConstTensorPin(true);
}
// mandatory tensor with no values
Fail("%s: failed to get operand address", __func__);
return ConstTensorPin();
}
armnn::TensorInfo tensorInfo = GetTensorInfoForOperand(operand);
if (overrideTensorShape != nullptr)
{
tensorInfo.SetShape(*overrideTensorShape);
}
return ConstTensorPin(tensorInfo, valueStart, operand.location.length, dimensionMappings);
}
template<typename HalOperation, typename HalModel>
ConstTensorPin ConvertOperationInputToConstTensorPin(const HalOperation& operation,
uint32_t inputIndex,
const HalModel& model,
const ConversionData& data,
const armnn::PermutationVector& dimensionMappings = g_DontPermute,
const armnn::TensorShape* overrideTensorShape = nullptr,
bool optional = false)
{
const Operand* operand = GetInputOperand(operation, inputIndex, model);
if (!operand)
{
Fail("%s: failed to get input operand: index=%u", __func__, inputIndex);
return ConstTensorPin();
}
return ConvertOperandToConstTensorPin(*operand,
model,
data,
dimensionMappings,
overrideTensorShape,
optional);
}
template<typename HalModel>
const void* GetOperandValueReadOnlyAddress(const Operand& operand, const HalModel& model, const ConversionData& data)
{
const void* valueStart = nullptr;
switch (operand.lifetime)
{
case OperandLifeTime::CONSTANT_COPY:
{
// Constant found in model.operandValues
valueStart = &model.operandValues[operand.location.offset];
break;
}
case OperandLifeTime::CONSTANT_REFERENCE:
{
// Constant specified via a Memory object
valueStart = GetMemoryFromPool(operand.location, data.m_MemPools);
break;
}
default:
{
// Unsupported/invalid (e.g. can't get value of an input to the model)
Fail("%s: unsupported/invalid operand lifetime: %s",
__func__, toString(operand.lifetime).c_str());
valueStart = nullptr;
}
}
return valueStart;
}
template<typename HalOperation, typename HalModel, typename OutputType>
bool GetInputScalar(const HalOperation& operation,
uint32_t inputIndex,
OperandType type,
OutputType& outValue,
const HalModel& model,
const ConversionData& data)
{
const Operand* operand = GetInputOperand(operation, inputIndex, model);
if (!operand)
{
return Fail("%s: invalid input operand at index %i", __func__, inputIndex);
}
if (operand->type != type)
{
return Fail("%s: unexpected operand type: %s (should be %s)",
__func__, toString(operand->type).c_str(), toString(type).c_str());
}
if (operand->location.length != sizeof(OutputType))
{
return Fail("%s: incorrect operand location length: %i (should be %i)",
__func__, operand->location.length, sizeof(OutputType));
}
const void* valueAddress = GetOperandValueReadOnlyAddress(*operand, model, data);
if (!valueAddress)
{
return Fail("%s: failed to get address for operand", __func__);
}
outValue = *(static_cast<const OutputType*>(valueAddress));
return true;
}
template<typename HalOperation, typename HalModel>
bool GetInputInt32(const HalOperation& operation,
uint32_t inputIndex,
int32_t& outValue,
const HalModel& model,
const ConversionData& data)
{
return GetInputScalar(operation, inputIndex, OperandType::INT32, outValue, model, data);
}
template<typename HalOperation, typename HalModel>
bool GetInputFloat32(const HalOperation& operation,
uint32_t inputIndex,
float& outValue,
const HalModel& model,
const ConversionData& data)
{
return GetInputScalar(operation, inputIndex, OperandType::FLOAT32, outValue, model, data);
}
template<typename HalOperation, typename HalModel>
bool GetInputActivationFunctionImpl(const HalOperation& operation,
uint32_t inputIndex,
OperandType type,
ActivationFn& outActivationFunction,
const HalModel& model,
const ConversionData& data)
{
if (type != OperandType::INT32 && type != OperandType::TENSOR_INT32)
{
return Fail("%s: unexpected operand type: %s (should be %s or %s)",
__func__,
toString(type).c_str(),
toString(OperandType::INT32).c_str(),
toString(OperandType::TENSOR_INT32).c_str());
}
int32_t activationFunctionAsInt;
if (!GetInputScalar(operation, inputIndex, type, activationFunctionAsInt, model, data))
{
return Fail("%s: failed to get activation input value", __func__);
}
outActivationFunction = static_cast<ActivationFn>(activationFunctionAsInt);
return true;
}
template<typename HalOperation, typename HalModel>
bool GetInputActivationFunction(const HalOperation& operation,
uint32_t inputIndex,
ActivationFn& outActivationFunction,
const HalModel& model,
const ConversionData& data)
{
return GetInputActivationFunctionImpl(operation,
inputIndex,
OperandType::INT32,
outActivationFunction,
model,
data);
}
template<typename HalOperation, typename HalModel>
bool GetInputActivationFunctionFromTensor(const HalOperation& operation,
uint32_t inputIndex,
ActivationFn& outActivationFunction,
const HalModel& model,
const ConversionData& data)
{
// This only accepts a 1-D tensor of size 1
return GetInputActivationFunctionImpl(operation,
inputIndex,
OperandType::INT32,
outActivationFunction,
model,
data);
}
template<typename HalOperation, typename HalModel>
bool GetOptionalInputActivation(const HalOperation& operation,
uint32_t inputIndex,
ActivationFn& activationFunction,
const HalModel& model,
const ConversionData& data)
{
if (operation.inputs.size() <= inputIndex)
{
activationFunction = ActivationFn::kActivationNone;
}
else
{
if (!GetInputActivationFunction(operation, inputIndex, activationFunction, model, data))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
}
return true;
}
template<typename HalModel>
bool GetTensorInt32Values(const Operand& operand,
std::vector<int32_t>& outValues,
const HalModel& model,
const ConversionData& data)
{
if (operand.type != OperandType::TENSOR_INT32)
{
return Fail("%s: invalid operand type: %s", __func__, toString(operand.type).c_str());
}
const void* startAddress = GetOperandValueReadOnlyAddress(operand, model, data);
if (!startAddress)
{
return Fail("%s: failed to get operand address", __func__, operand.type);
}
// Check number of bytes is sensible
const uint32_t numBytes = operand.location.length;
if (numBytes % sizeof(int32_t) != 0)
{
return Fail("%s: invalid number of bytes: %i, expected to be a multiple of %i",
__func__, numBytes, sizeof(int32_t));
}
outValues.resize(numBytes / sizeof(int32_t));
memcpy(outValues.data(), startAddress, numBytes);
return true;
}
template<typename HalOperation, typename HalModel>
bool GetInputPaddingScheme(const HalOperation& operation,
uint32_t inputIndex,
PaddingScheme& outPaddingScheme,
const HalModel& model,
const ConversionData& data)
{
int32_t paddingSchemeAsInt;
if (!GetInputInt32(operation, inputIndex, paddingSchemeAsInt, model, data))
{
return Fail("%s: failed to get padding scheme input value", __func__);
}
outPaddingScheme = static_cast<android::nn::PaddingScheme>(paddingSchemeAsInt);
return true;
}
template<typename HalOperation, typename HalModel>
LayerInputHandle ConvertToLayerInputHandle(const HalOperation& operation,
uint32_t inputIndex,
const HalModel& model,
ConversionData& data)
{
const Operand* operand = GetInputOperand(operation, inputIndex, model);
if (!operand)
{
Fail("%s: failed to get input operand %i", __func__, inputIndex);
return LayerInputHandle();
}
if (!IsOperandTypeSupportedForTensors(operand->type))
{
Fail("%s: unsupported operand type for tensor %s", __func__, toString(operand->type).c_str());
return LayerInputHandle();
}
armnn::TensorInfo operandTensorInfo = GetTensorInfoForOperand(*operand);
switch (operand->lifetime)
{
case OperandLifeTime::TEMPORARY_VARIABLE: // intentional fallthrough
case OperandLifeTime::MODEL_INPUT:
case OperandLifeTime::MODEL_OUTPUT:
{
// The tensor is either an operand internal to the model, or a model input.
// It can be associated with an ArmNN output slot for an existing layer.
// m_OutputSlotForOperand[...] can be nullptr if the previous layer could not be converted
const uint32_t operandIndex = operation.inputs[inputIndex];
return LayerInputHandle(true, data.m_OutputSlotForOperand[operandIndex], operandTensorInfo);
break;
}
case OperandLifeTime::CONSTANT_COPY:
case OperandLifeTime::CONSTANT_REFERENCE:
{
// The tensor has an already known constant value, and can be converted into an ArmNN Constant layer.
ConstTensorPin tensorPin = ConvertOperandToConstTensorPin(*operand, model, data);
if (tensorPin.IsValid())
{
if (!IsLayerSupported(__func__,
armnn::IsConstantSupported,
data.m_Compute,
tensorPin.GetConstTensor().GetInfo()))
{
return LayerInputHandle();
}
armnn::IConnectableLayer* constantLayer = data.m_Network->AddConstantLayer(tensorPin.GetConstTensor());
armnn::IOutputSlot& outputSlot = constantLayer->GetOutputSlot(0);
outputSlot.SetTensorInfo(tensorPin.GetConstTensor().GetInfo());
return LayerInputHandle(true, &outputSlot, operandTensorInfo);
}
else
{
Fail("%s: invalid operand tensor", __func__);
return LayerInputHandle();
}
break;
}
default:
{
// Unsupported lifetime for an input tensor
Fail("%s: unsupported lifetime for input tensor: %s",
__func__, toString(operand->lifetime).c_str());
return LayerInputHandle();
}
}
}
template<typename HalOperation, typename HalModel>
bool ConvertToActivation(const HalOperation& operation,
const char* operationName,
const armnn::ActivationDescriptor& activationDesc,
const HalModel& model,
ConversionData& data)
{
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Input 0 is invalid", operationName);
}
const Operand* outputOperand = GetOutputOperand(operation, 0, model);
if (!outputOperand)
{
return false;
}
const armnn::TensorInfo outInfo = GetTensorInfoForOperand(*outputOperand);
if (!IsLayerSupported(__func__,
armnn::IsActivationSupported,
data.m_Compute,
input.GetTensorInfo(),
outInfo,
activationDesc))
{
return false;
}
armnn::IConnectableLayer* layer = data.m_Network->AddActivationLayer(activationDesc);
BOOST_ASSERT(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data);
}
template<typename HalOperation, typename HalModel>
bool SetupAndTrackLayerOutputSlot(const HalOperation& operation,
uint32_t operationOutputIndex,
armnn::IConnectableLayer& layer,
uint32_t layerOutputIndex,
const HalModel& model,
ConversionData& data)
{
const Operand* outputOperand = GetOutputOperand(operation, operationOutputIndex, model);
if ((outputOperand == nullptr) || (operationOutputIndex >= layer.GetNumOutputSlots()))
{
return false;
}
armnn::IOutputSlot& outputSlot = layer.GetOutputSlot(layerOutputIndex);
const uint32_t operandIndex = operation.outputs[operationOutputIndex];
data.m_OutputSlotForOperand[operandIndex] = &outputSlot;
outputSlot.SetTensorInfo(GetTensorInfoForOperand(*outputOperand));
return true;
}
template<typename HalOperation, typename HalModel>
bool SetupAndTrackLayerOutputSlot(const HalOperation& operation,
uint32_t outputIndex,
armnn::IConnectableLayer& layer,
const HalModel& model,
ConversionData& data)
{
return SetupAndTrackLayerOutputSlot(operation, outputIndex, layer, outputIndex, model, data);
}
template<typename HalOperation, typename HalModel>
bool ConvertPooling2d(const HalOperation& operation,
const char* operationName,
armnn::PoolingAlgorithm poolType,
const HalModel& model,
ConversionData& data)
{
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Could not read input 0", operationName);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
armnn::Pooling2dDescriptor desc;
desc.m_PoolType = poolType;
desc.m_OutputShapeRounding = armnn::OutputShapeRounding::Floor;
desc.m_DataLayout = armnn::DataLayout::NHWC;
ActivationFn activation;
if (operation.inputs.size() == 7)
{
// one input, 6 parameters (padding, stridex, stridey, width, height, activation type)
android::nn::PaddingScheme scheme;
if (!GetInputPaddingScheme(operation, 1, scheme, model, data)
|| !GetInputScalar(operation, 2, OperandType::INT32, desc.m_StrideX, model, data)
|| !GetInputScalar(operation, 3, OperandType::INT32, desc.m_StrideY, model, data)
|| !GetInputScalar(operation, 4, OperandType::INT32, desc.m_PoolWidth, model, data)
|| !GetInputScalar(operation, 5, OperandType::INT32, desc.m_PoolHeight, model, data)
|| !GetInputActivationFunction(operation, 6, activation, model, data))
{
return Fail("%s: Operation has invalid inputs", operationName);
}
const unsigned int inputWidth = inputInfo.GetShape()[2];
const unsigned int inputHeight = inputInfo.GetShape()[1];
CalcPadding(inputWidth, desc.m_PoolWidth, desc.m_StrideX, desc.m_PadLeft, desc.m_PadRight, scheme);
CalcPadding(inputHeight, desc.m_PoolHeight, desc.m_StrideY, desc.m_PadTop, desc.m_PadBottom, scheme);
}
else
{
// one input, 9 parameters (padding l r t b, stridex, stridey, width, height, activation type)
if (!GetInputScalar(operation, 1, OperandType::INT32, desc.m_PadLeft, model, data)
|| !GetInputScalar(operation, 2, OperandType::INT32, desc.m_PadRight, model, data)
|| !GetInputScalar(operation, 3, OperandType::INT32, desc.m_PadTop, model, data)
|| !GetInputScalar(operation, 4, OperandType::INT32, desc.m_PadBottom, model, data)
|| !GetInputScalar(operation, 5, OperandType::INT32, desc.m_StrideX, model, data)
|| !GetInputScalar(operation, 6, OperandType::INT32, desc.m_StrideY, model, data)
|| !GetInputScalar(operation, 7, OperandType::INT32, desc.m_PoolWidth, model, data)
|| !GetInputScalar(operation, 8, OperandType::INT32, desc.m_PoolHeight, model, data)
|| !GetInputActivationFunction(operation, 9, activation, model, data))
{
return Fail("%s: Operation has invalid inputs", operationName);
}
}
if (!IsLayerSupported(__func__,
armnn::IsPooling2dSupported,
data.m_Compute,
inputInfo,
outputInfo,
desc))
{
return false;
}
armnn::IConnectableLayer* pooling2dLayer = data.m_Network->AddPooling2dLayer(desc);
if (!pooling2dLayer)
{
return Fail("%s: AddPooling2dLayer failed", __func__);
}
armnn::IConnectableLayer* endLayer = ProcessActivation(outputInfo, activation, pooling2dLayer, data);
if (!endLayer)
{
return Fail("%s: ProcessActivation failed", __func__);
}
input.Connect(pooling2dLayer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *endLayer, model, data);
}
} // namespace armnn_driver