blob: 0c897d11b8b708b2c2fa7492018db71d71f3b2d6 [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "OutputShapeUtils.hpp"
#include <DataLayoutIndexed.hpp>
#include <algorithm>
#include <vector>
namespace
{
using namespace armnn;
TensorShape CalculateMaxShape(const TensorShape& inShape0, const TensorShape& inShape1)
{
// NOTE: The inferred output size will be the maximum size along each dimension
// of inShape0 and inShape1, starting with the trailing dimensions, and working its way forward.
//
// Example: inShape0={4, 1, 2}, inShape1={5, 4, 3, 1} => outputShape={5, 4, 3, 2}
const unsigned int numInput0Dims = inShape0.GetNumDimensions();
const unsigned int numInput1Dims = inShape1.GetNumDimensions();
const unsigned int maxNumDims = std::max(numInput0Dims, numInput1Dims);
TensorShape outputShape = TensorShape(maxNumDims);
for (unsigned int reverseIdx = 1u; reverseIdx <= maxNumDims; ++reverseIdx)
{
const int input0Idx = numInput0Dims - reverseIdx;
const int input1Idx = numInput1Dims - reverseIdx;
const unsigned int input0DimSize = input0Idx >= 0 ? inShape0[input0Idx] : 0u;
const unsigned int input1DimSize = input1Idx >= 0 ? inShape1[input1Idx] : 0u;
const unsigned int outputIdx = maxNumDims - reverseIdx;
outputShape[outputIdx] = std::max(input0DimSize, input1DimSize);
}
return outputShape;
}
template<typename ConvolutionDescriptor>
TensorShape InferConvolution2dOutputShapeImpl(const TensorShape& inputShape,
const TensorShape& kernelShape,
const ConvolutionDescriptor& descriptor,
bool isDepthwiseConvolution)
{
if (inputShape.GetNumDimensions() != 4)
{
throw InvalidArgumentException("Input shape must be 4D");
}
armnnUtils::DataLayoutIndexed dataLayoutIndex(descriptor.m_DataLayout);
const unsigned int cIndex = dataLayoutIndex.GetChannelsIndex();
const unsigned int wIndex = dataLayoutIndex.GetWidthIndex();
const unsigned int hIndex = dataLayoutIndex.GetHeightIndex();
const unsigned int wInput = inputShape[wIndex];
const unsigned int hInput = inputShape[hIndex];
const unsigned int wKernel = isDepthwiseConvolution ? kernelShape[2] : kernelShape[wIndex];
const unsigned int wDilated = wKernel + (descriptor.m_DilationX - 1) * (wKernel - 1);
const unsigned int wRead = (wInput + descriptor.m_PadLeft + descriptor.m_PadRight) - wDilated;
const unsigned int wOutput = 1 + (wRead / descriptor.m_StrideX);
const unsigned int hKernel = isDepthwiseConvolution ? kernelShape[3] : kernelShape[hIndex];
const unsigned int hDilated = hKernel + (descriptor.m_DilationY - 1) * (hKernel - 1);
const unsigned int hRead = (hInput + descriptor.m_PadTop + descriptor.m_PadBottom) - hDilated;
const unsigned int hOutput = 1 + (hRead / descriptor.m_StrideY);
TensorShape outputShape(4);
outputShape[0] = inputShape[0];
outputShape[cIndex] = kernelShape[0];
outputShape[wIndex] = wOutput;
outputShape[hIndex] = hOutput;
if (isDepthwiseConvolution)
{
outputShape[cIndex] *= inputShape[cIndex];
}
return outputShape;
}
} // anonymous namespace
namespace armnn_driver
{
using namespace armnn;
TensorShape InferConvolution2dOutputShape(const TensorShape& inputShape,
const TensorShape& kernelShape,
const Convolution2dDescriptor& descriptor)
{
return InferConvolution2dOutputShapeImpl(inputShape, kernelShape, descriptor, false);
}
TensorShape InferDepthwiseConvolution2dOutputShape(const TensorShape& inputShape,
const TensorShape& kernelShape,
const DepthwiseConvolution2dDescriptor& descriptor)
{
return InferConvolution2dOutputShapeImpl(inputShape, kernelShape, descriptor, true);
}
TensorShape InferMaximumOutputShape(const armnn::TensorShape& input0Shape,
const armnn::TensorShape& input1Shape)
{
return CalculateMaxShape(input0Shape, input1Shape);
}
TensorShape InferMinimumOutputShape(const armnn::TensorShape& input0Shape,
const armnn::TensorShape& input1Shape)
{
return CalculateMaxShape(input0Shape, input1Shape);
}
TensorShape InferPadOutputShape(const TensorShape& inputShape,
const std::vector<std::pair<unsigned int, unsigned int>>& padList)
{
const unsigned int numDims = inputShape.GetNumDimensions();
std::vector<unsigned int> outputDims;
TensorShape outputShape = TensorShape(numDims);
for (unsigned int dim = 0; dim < numDims; ++dim)
{
unsigned int dimSize = inputShape[dim];
const std::pair<unsigned int, unsigned int>& dimPadding = padList[dim];
dimSize += dimPadding.first;
dimSize += dimPadding.second;
outputShape[dim] = dimSize;
}
return outputShape;
}
TensorShape InferPreluOutputShape(const TensorShape& inputShape, const TensorShape& alphaShape)
{
return CalculateMaxShape(inputShape, alphaShape);
}
TensorShape InferResizeOutputShape(const TensorShape& inputShape, const ResizeDescriptor& descriptor)
{
if (inputShape.GetNumDimensions() != 4)
{
throw InvalidArgumentException("Input shape for Resize must be 4D");
}
armnnUtils::DataLayoutIndexed dataLayoutIndexed(descriptor.m_DataLayout);
const unsigned int cIndex = dataLayoutIndexed.GetChannelsIndex();
const unsigned int wIndex = dataLayoutIndexed.GetWidthIndex();
const unsigned int hIndex = dataLayoutIndexed.GetHeightIndex();
TensorShape outputShape(4);
outputShape[0] = inputShape[0];
outputShape[cIndex] = inputShape[cIndex];
outputShape[wIndex] = descriptor.m_TargetWidth;
outputShape[hIndex] = descriptor.m_TargetHeight;
return outputShape;
}
TensorShape InferSubOutputShape(const TensorShape& input0Shape, const TensorShape& input1Shape)
{
return CalculateMaxShape(input0Shape, input1Shape);
}
} // namespace armnn_driver