blob: 43b65ee39ae78bd959d79df834678c3a9a542219 [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#define LOG_TAG "ArmnnDriver"
#include "Utils.hpp"
#include <Half.hpp>
#include <Permute.hpp>
#include <cassert>
#include <cinttypes>
using namespace android;
using namespace android::hardware;
using namespace android::hidl::memory::V1_0;
namespace armnn_driver
{
const armnn::PermutationVector g_DontPermute{};
namespace
{
template <typename T>
void SwizzleAndroidNn4dTensorToArmNn(const armnn::TensorShape& inTensorShape, const void* input,
void* output, const armnn::PermutationVector& mappings)
{
const auto inputData = static_cast<const T*>(input);
const auto outputData = static_cast<T*>(output);
armnnUtils::Permute(armnnUtils::Permuted(inTensorShape, mappings), mappings, inputData, outputData, sizeof(T));
}
} // anonymous namespace
void SwizzleAndroidNn4dTensorToArmNn(const armnn::TensorInfo& tensor, const void* input, void* output,
const armnn::PermutationVector& mappings)
{
assert(tensor.GetNumDimensions() == 4U);
switch(tensor.GetDataType())
{
case armnn::DataType::Float16:
SwizzleAndroidNn4dTensorToArmNn<armnn::Half>(tensor.GetShape(), input, output, mappings);
break;
case armnn::DataType::Float32:
SwizzleAndroidNn4dTensorToArmNn<float>(tensor.GetShape(), input, output, mappings);
break;
case armnn::DataType::QuantisedAsymm8:
SwizzleAndroidNn4dTensorToArmNn<uint8_t>(tensor.GetShape(), input, output, mappings);
break;
default:
ALOGW("Unknown armnn::DataType for swizzling");
assert(0);
}
}
void* GetMemoryFromPool(DataLocation location, const std::vector<android::nn::RunTimePoolInfo>& memPools)
{
// find the location within the pool
assert(location.poolIndex < memPools.size());
const android::nn::RunTimePoolInfo& memPool = memPools[location.poolIndex];
// Type android::nn::RunTimePoolInfo has changed between Android O and Android P, where
// "buffer" has been made private and must be accessed via the accessor method "getBuffer".
#if defined(ARMNN_ANDROID_P) || defined(ARMNN_ANDROID_Q) // Use the new Android implementation.
uint8_t* memPoolBuffer = memPool.getBuffer();
#else // Fallback to the old Android O implementation.
uint8_t* memPoolBuffer = memPool.buffer;
#endif
uint8_t* memory = memPoolBuffer + location.offset;
return memory;
}
armnn::TensorInfo GetTensorInfoForOperand(const V1_0::Operand& operand)
{
armnn::DataType type;
switch (operand.type)
{
case V1_0::OperandType::TENSOR_FLOAT32:
type = armnn::DataType::Float32;
break;
case V1_0::OperandType::TENSOR_QUANT8_ASYMM:
type = armnn::DataType::QuantisedAsymm8;
break;
case V1_0::OperandType::TENSOR_INT32:
type = armnn::DataType::Signed32;
break;
default:
throw UnsupportedOperand<V1_0::OperandType>(operand.type);
}
armnn::TensorInfo ret(operand.dimensions.size(), operand.dimensions.data(), type);
ret.SetQuantizationScale(operand.scale);
ret.SetQuantizationOffset(operand.zeroPoint);
return ret;
}
#ifdef ARMNN_ANDROID_NN_V1_2 // Using ::android::hardware::neuralnetworks::V1_2
armnn::TensorInfo GetTensorInfoForOperand(const V1_2::Operand& operand)
{
armnn::DataType type;
switch (operand.type)
{
case V1_2::OperandType::TENSOR_FLOAT32:
type = armnn::DataType::Float32;
break;
case V1_2::OperandType::TENSOR_FLOAT16:
type = armnn::DataType::Float16;
break;
case V1_2::OperandType::TENSOR_QUANT8_ASYMM:
type = armnn::DataType::QuantisedAsymm8;
break;
case V1_2::OperandType::TENSOR_QUANT16_SYMM:
type = armnn::DataType::QuantisedSymm16;
break;
case V1_2::OperandType::TENSOR_INT32:
type = armnn::DataType::Signed32;
break;
default:
throw UnsupportedOperand<V1_2::OperandType>(operand.type);
}
armnn::TensorInfo ret(operand.dimensions.size(), operand.dimensions.data(), type);
ret.SetQuantizationScale(operand.scale);
ret.SetQuantizationOffset(operand.zeroPoint);
return ret;
}
#endif
std::string GetOperandSummary(const V1_0::Operand& operand)
{
return android::hardware::details::arrayToString(operand.dimensions, operand.dimensions.size()) + " " +
toString(operand.type);
}
#ifdef ARMNN_ANDROID_NN_V1_2 // Using ::android::hardware::neuralnetworks::V1_2
std::string GetOperandSummary(const V1_2::Operand& operand)
{
return android::hardware::details::arrayToString(operand.dimensions, operand.dimensions.size()) + " " +
toString(operand.type);
}
#endif
using DumpElementFunction = void (*)(const armnn::ConstTensor& tensor,
unsigned int elementIndex,
std::ofstream& fileStream);
namespace
{
template <typename ElementType, typename PrintableType = ElementType>
void DumpTensorElement(const armnn::ConstTensor& tensor, unsigned int elementIndex, std::ofstream& fileStream)
{
const ElementType* elements = reinterpret_cast<const ElementType*>(tensor.GetMemoryArea());
fileStream << static_cast<PrintableType>(elements[elementIndex]) << ",";
}
constexpr const char* MemoryLayoutString(const armnn::ConstTensor& tensor)
{
const char* str = "";
switch (tensor.GetNumDimensions())
{
case 4: { str = "(BHWC) "; break; }
case 3: { str = "(HWC) "; break; }
case 2: { str = "(HW) "; break; }
default: { str = ""; break; }
}
return str;
}
} // namespace
void DumpTensor(const std::string& dumpDir,
const std::string& requestName,
const std::string& tensorName,
const armnn::ConstTensor& tensor)
{
// The dump directory must exist in advance.
const std::string fileName = boost::str(boost::format("%1%/%2%_%3%.dump") % dumpDir % requestName % tensorName);
std::ofstream fileStream;
fileStream.open(fileName, std::ofstream::out | std::ofstream::trunc);
if (!fileStream.good())
{
ALOGW("Could not open file %s for writing", fileName.c_str());
return;
}
DumpElementFunction dumpElementFunction = nullptr;
switch (tensor.GetDataType())
{
case armnn::DataType::Float32:
{
dumpElementFunction = &DumpTensorElement<float>;
break;
}
case armnn::DataType::QuantisedAsymm8:
{
dumpElementFunction = &DumpTensorElement<uint8_t, uint32_t>;
break;
}
case armnn::DataType::Signed32:
{
dumpElementFunction = &DumpTensorElement<int32_t>;
break;
}
default:
{
dumpElementFunction = nullptr;
}
}
if (dumpElementFunction != nullptr)
{
const unsigned int numDimensions = tensor.GetNumDimensions();
const unsigned int batch = (numDimensions == 4) ? tensor.GetShape()[numDimensions - 4] : 1;
const unsigned int height = (numDimensions >= 3)
? tensor.GetShape()[numDimensions - 3]
: (numDimensions >= 2) ? tensor.GetShape()[numDimensions - 2] : 1;
const unsigned int width = (numDimensions >= 3)
? tensor.GetShape()[numDimensions - 2]
: (numDimensions >= 1) ? tensor.GetShape()[numDimensions - 1] : 0;
const unsigned int channels = (numDimensions >= 3) ? tensor.GetShape()[numDimensions - 1] : 1;
fileStream << "# Number of elements " << tensor.GetNumElements() << std::endl;
fileStream << "# Dimensions " << MemoryLayoutString(tensor);
fileStream << "[" << tensor.GetShape()[0];
for (unsigned int d = 1; d < numDimensions; d++)
{
fileStream << "," << tensor.GetShape()[d];
}
fileStream << "]" << std::endl;
for (unsigned int e = 0, b = 0; b < batch; ++b)
{
if (numDimensions >= 4)
{
fileStream << "# Batch " << b << std::endl;
}
for (unsigned int c = 0; c < channels; c++)
{
if (numDimensions >= 3)
{
fileStream << "# Channel " << c << std::endl;
}
for (unsigned int h = 0; h < height; h++)
{
for (unsigned int w = 0; w < width; w++, e += channels)
{
(*dumpElementFunction)(tensor, e, fileStream);
}
fileStream << std::endl;
}
e -= channels - 1;
if (c < channels)
{
e -= ((height * width) - 1) * channels;
}
}
fileStream << std::endl;
}
fileStream << std::endl;
}
else
{
fileStream << "Cannot dump tensor elements: Unsupported data type "
<< static_cast<unsigned int>(tensor.GetDataType()) << std::endl;
}
if (!fileStream.good())
{
ALOGW("An error occurred when writing to file %s", fileName.c_str());
}
}
void DumpJsonProfilingIfRequired(bool gpuProfilingEnabled,
const std::string& dumpDir,
armnn::NetworkId networkId,
const armnn::IProfiler* profiler)
{
// Check if profiling is required.
if (!gpuProfilingEnabled)
{
return;
}
// The dump directory must exist in advance.
if (dumpDir.empty())
{
return;
}
BOOST_ASSERT(profiler);
// Set the name of the output profiling file.
const std::string fileName = boost::str(boost::format("%1%/%2%_%3%.json")
% dumpDir
% std::to_string(networkId)
% "profiling");
// Open the ouput file for writing.
std::ofstream fileStream;
fileStream.open(fileName, std::ofstream::out | std::ofstream::trunc);
if (!fileStream.good())
{
ALOGW("Could not open file %s for writing", fileName.c_str());
return;
}
// Write the profiling info to a JSON file.
profiler->Print(fileStream);
}
bool IsDynamicTensor(const armnn::TensorInfo& outputInfo)
{
// Dynamic tensors have at least one 0-sized dimension
return outputInfo.GetNumElements() == 0u;
}
} // namespace armnn_driver