blob: 59fa70edcf8a5234ae46821f7480ad4ba2a1100f [file] [log] [blame]
//
// Copyright © 2020 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#define LOG_TAG "ArmnnDriver"
#include "RequestThread_1_3.hpp"
#include "ArmnnPreparedModel_1_3.hpp"
#include <armnn/utility/Assert.hpp>
#include <log/log.h>
using namespace android;
namespace armnn_driver
{
template <template <typename HalVersion> class PreparedModel, typename HalVersion, typename CallbackContext>
RequestThread_1_3<PreparedModel, HalVersion, CallbackContext>::RequestThread_1_3()
{
ALOGV("RequestThread_1_3::RequestThread_1_3()");
m_Thread = std::make_unique<std::thread>(&RequestThread_1_3::Process, this);
}
template <template <typename HalVersion> class PreparedModel, typename HalVersion, typename CallbackContext>
RequestThread_1_3<PreparedModel, HalVersion, CallbackContext>::~RequestThread_1_3()
{
ALOGV("RequestThread_1_3::~RequestThread_1_3()");
try
{
// Coverity fix: The following code may throw an exception of type std::length_error.
// This code is meant to to terminate the inner thread gracefully by posting an EXIT message
// to the thread's message queue. However, according to Coverity, this code could throw an exception and fail.
// Since only one static instance of RequestThread is used in the driver (in ArmnnPreparedModel),
// this destructor is called only when the application has been closed, which means that
// the inner thread will be terminated anyway, although abruptly, in the event that the destructor code throws.
// Wrapping the destructor's code with a try-catch block simply fixes the Coverity bug.
// Post an EXIT message to the thread
std::shared_ptr<AsyncExecuteData> nulldata(nullptr);
auto pMsg = std::make_shared<ThreadMsg>(ThreadMsgType::EXIT, nulldata);
PostMsg(pMsg);
// Wait for the thread to terminate, it is deleted automatically
m_Thread->join();
}
catch (const std::exception&) { } // Swallow any exception.
}
template <template <typename HalVersion> class PreparedModel, typename HalVersion, typename CallbackContext>
void RequestThread_1_3<PreparedModel, HalVersion, CallbackContext>::PostMsg(PreparedModel<HalVersion>* model,
std::shared_ptr<std::vector<::android::nn::RunTimePoolInfo>>& memPools,
std::shared_ptr<armnn::InputTensors>& inputTensors,
std::shared_ptr<armnn::OutputTensors>& outputTensors,
CallbackContext callbackContext)
{
ALOGV("RequestThread_1_3::PostMsg(...)");
auto data = std::make_shared<AsyncExecuteData>(model,
memPools,
inputTensors,
outputTensors,
callbackContext);
auto pMsg = std::make_shared<ThreadMsg>(ThreadMsgType::REQUEST, data);
PostMsg(pMsg, model->GetModelPriority());
}
template <template <typename HalVersion> class PreparedModel, typename HalVersion, typename CallbackContext>
void RequestThread_1_3<PreparedModel, HalVersion, CallbackContext>::PostMsg(std::shared_ptr<ThreadMsg>& pMsg,
V1_3::Priority priority)
{
ALOGV("RequestThread_1_3::PostMsg(pMsg)");
// Add a message to the queue and notify the request thread
std::unique_lock<std::mutex> lock(m_Mutex);
switch (priority) {
case V1_3::Priority::HIGH:
m_HighPriorityQueue.push(pMsg);
break;
case V1_3::Priority::LOW:
m_LowPriorityQueue.push(pMsg);
break;
case V1_3::Priority::MEDIUM:
default:
m_MediumPriorityQueue.push(pMsg);
}
m_Cv.notify_one();
}
template <template <typename HalVersion> class PreparedModel, typename HalVersion, typename CallbackContext>
void RequestThread_1_3<PreparedModel, HalVersion, CallbackContext>::Process()
{
ALOGV("RequestThread_1_3::Process()");
int retireRate = RETIRE_RATE;
int highPriorityCount = 0;
int mediumPriorityCount = 0;
while (true)
{
std::shared_ptr<ThreadMsg> pMsg(nullptr);
{
// Wait for a message to be added to the queue
// This is in a separate scope to minimise the lifetime of the lock
std::unique_lock<std::mutex> lock(m_Mutex);
while (m_HighPriorityQueue.empty() && m_MediumPriorityQueue.empty() && m_LowPriorityQueue.empty())
{
m_Cv.wait(lock);
}
// Get the message to process from the front of each queue based on priority from high to low
// Get high priority first if it does not exceed the retire rate
if (!m_HighPriorityQueue.empty() && highPriorityCount < retireRate)
{
pMsg = m_HighPriorityQueue.front();
m_HighPriorityQueue.pop();
highPriorityCount += 1;
}
// If high priority queue is empty or the count exceeds the retire rate, get medium priority message
else if (!m_MediumPriorityQueue.empty() && mediumPriorityCount < retireRate)
{
pMsg = m_MediumPriorityQueue.front();
m_MediumPriorityQueue.pop();
mediumPriorityCount += 1;
// Reset high priority count
highPriorityCount = 0;
}
// If medium priority queue is empty or the count exceeds the retire rate, get low priority message
else if (!m_LowPriorityQueue.empty())
{
pMsg = m_LowPriorityQueue.front();
m_LowPriorityQueue.pop();
// Reset high and medium priority count
highPriorityCount = 0;
mediumPriorityCount = 0;
}
else
{
// Reset high and medium priority count
highPriorityCount = 0;
mediumPriorityCount = 0;
continue;
}
}
switch (pMsg->type)
{
case ThreadMsgType::REQUEST:
{
ALOGV("RequestThread_1_3::Process() - request");
// invoke the asynchronous execution method
PreparedModel<HalVersion>* model = pMsg->data->m_Model;
model->ExecuteGraph(pMsg->data->m_MemPools,
*(pMsg->data->m_InputTensors),
*(pMsg->data->m_OutputTensors),
pMsg->data->m_CallbackContext);
break;
}
case ThreadMsgType::EXIT:
{
ALOGV("RequestThread_1_3::Process() - exit");
// delete all remaining messages (there should not be any)
std::unique_lock<std::mutex> lock(m_Mutex);
while (!m_HighPriorityQueue.empty())
{
m_HighPriorityQueue.pop();
}
while (!m_MediumPriorityQueue.empty())
{
m_MediumPriorityQueue.pop();
}
while (!m_LowPriorityQueue.empty())
{
m_LowPriorityQueue.pop();
}
return;
}
default:
// this should be unreachable
ALOGE("RequestThread_1_3::Process() - invalid message type");
ARMNN_ASSERT_MSG(false, "ArmNN: RequestThread_1_3: invalid message type");
}
}
}
///
/// Class template specializations
///
template class RequestThread_1_3<ArmnnPreparedModel_1_3, hal_1_3::HalPolicy, CallbackContext_1_3>;
} // namespace armnn_driver