blob: 9c3424e64c2a1001ca46480e4162d3d47250bdad [file] [log] [blame]
/*
* Copyright 2012 Daniel Drown
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* clatd.c - tun interface setup and main event loop
*/
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <poll.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/prctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include <linux/filter.h>
#include <linux/if.h>
#include <linux/if_ether.h>
#include <linux/if_packet.h>
#include <linux/if_tun.h>
#include <net/if.h>
#include <sys/capability.h>
#include <sys/uio.h>
#include "clatd.h"
#include "checksum.h"
#include "config.h"
#include "dump.h"
#include "getaddr.h"
#include "logging.h"
#include "translate.h"
struct clat_config Global_Clatd_Config;
/* 40 bytes IPv6 header - 20 bytes IPv4 header + 8 bytes fragment header */
#define MTU_DELTA 28
volatile sig_atomic_t running = 1;
int ipv6_address_changed(const char *interface) {
union anyip *interface_ip;
interface_ip = getinterface_ip(interface, AF_INET6);
if (!interface_ip) {
logmsg(ANDROID_LOG_ERROR, "Unable to find an IPv6 address on interface %s", interface);
return 1;
}
if (!ipv6_prefix_equal(&interface_ip->ip6, &Global_Clatd_Config.ipv6_local_subnet)) {
char oldstr[INET6_ADDRSTRLEN];
char newstr[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &Global_Clatd_Config.ipv6_local_subnet, oldstr, sizeof(oldstr));
inet_ntop(AF_INET6, &interface_ip->ip6, newstr, sizeof(newstr));
logmsg(ANDROID_LOG_INFO, "IPv6 prefix on %s changed: %s -> %s", interface, oldstr, newstr);
free(interface_ip);
return 1;
} else {
free(interface_ip);
return 0;
}
}
/* function: read_packet
* reads a packet from the tunnel fd and translates it
* read_fd - file descriptor to read original packet from
* write_fd - file descriptor to write translated packet to
* to_ipv6 - whether the packet is to be translated to ipv6 or ipv4
*/
void read_packet(int read_fd, int write_fd, int to_ipv6) {
uint8_t buf[PACKETLEN];
ssize_t readlen = read(read_fd, buf, PACKETLEN);
if (readlen < 0) {
if (errno != EAGAIN) {
logmsg(ANDROID_LOG_WARN, "read_packet/read error: %s", strerror(errno));
}
return;
} else if (readlen == 0) {
logmsg(ANDROID_LOG_WARN, "read_packet/tun interface removed");
running = 0;
return;
}
if (!to_ipv6) {
translate_packet(write_fd, 0 /* to_ipv6 */, buf, readlen);
return;
}
struct tun_pi *tun_header = (struct tun_pi *)buf;
if (readlen < (ssize_t)sizeof(*tun_header)) {
logmsg(ANDROID_LOG_WARN, "read_packet/short read: got %ld bytes", readlen);
return;
}
uint16_t proto = ntohs(tun_header->proto);
if (proto != ETH_P_IP) {
logmsg(ANDROID_LOG_WARN, "%s: unknown packet type = 0x%x", __func__, proto);
return;
}
if (tun_header->flags != 0) {
logmsg(ANDROID_LOG_WARN, "%s: unexpected flags = %d", __func__, tun_header->flags);
}
uint8_t *packet = (uint8_t *)(tun_header + 1);
readlen -= sizeof(*tun_header);
translate_packet(write_fd, 1 /* to_ipv6 */, packet, readlen);
}
// IPv6 DAD packet format:
// Ethernet header (if needed) will be added by the kernel:
// u8[6] src_mac; u8[6] dst_mac '33:33:ff:XX:XX:XX'; be16 ethertype '0x86DD'
// IPv6 header:
// be32 0x60000000 - ipv6, tclass 0, flowlabel 0
// be16 payload_length '32'; u8 nxt_hdr ICMPv6 '58'; u8 hop limit '255'
// u128 src_ip6 '::'
// u128 dst_ip6 'ff02::1:ffXX:XXXX'
// ICMPv6 header:
// u8 type '135'; u8 code '0'; u16 icmp6 checksum; u32 reserved '0'
// ICMPv6 neighbour solicitation payload:
// u128 tgt_ip6
// ICMPv6 ND options:
// u8 opt nr '14'; u8 length '1'; u8[6] nonce '6 random bytes'
void send_dad(int fd, const struct in6_addr* tgt) {
struct {
struct ip6_hdr ip6h;
struct nd_neighbor_solicit ns;
uint8_t ns_opt_nr;
uint8_t ns_opt_len;
uint8_t ns_opt_nonce[6];
} dad_pkt = {
.ip6h = {
.ip6_flow = htonl(6 << 28), // v6, 0 tclass, 0 flowlabel
.ip6_plen = htons(sizeof(dad_pkt) - sizeof(struct ip6_hdr)), // payload length, ie. 32
.ip6_nxt = IPPROTO_ICMPV6, // 58
.ip6_hlim = 255,
.ip6_src = {}, // ::
.ip6_dst.s6_addr = {
0xFF, 0x02, 0, 0,
0, 0, 0, 0,
0, 0, 0, 1,
0xFF, tgt->s6_addr[13], tgt->s6_addr[14], tgt->s6_addr[15],
}, // ff02::1:ffXX:XXXX - multicast group address derived from bottom 24-bits of tgt
},
.ns = {
.nd_ns_type = ND_NEIGHBOR_SOLICIT, // 135
.nd_ns_code = 0,
.nd_ns_cksum = 0, // will be calculated later
.nd_ns_reserved = 0,
.nd_ns_target = *tgt,
},
.ns_opt_nr = 14, // icmp6 option 'nonce' from RFC3971
.ns_opt_len = 1, // in units of 8 bytes, including option nr and len
.ns_opt_nonce = {}, // opt_len *8 - sizeof u8(opt_nr) - sizeof u8(opt_len) = 6 ranodmized bytes
};
arc4random_buf(&dad_pkt.ns_opt_nonce, sizeof(dad_pkt.ns_opt_nonce));
// 40 byte IPv6 header + 8 byte ICMPv6 header + 16 byte ipv6 target address + 8 byte nonce option
_Static_assert(sizeof(dad_pkt) == 40 + 8 + 16 + 8, "sizeof dad packet != 72");
// IPv6 header checksum is standard negated 16-bit one's complement sum over the icmpv6 pseudo
// header (which includes payload length, nextheader, and src/dst ip) and the icmpv6 payload.
//
// Src/dst ip immediately prefix the icmpv6 header itself, so can be handled along
// with the payload. We thus only need to manually account for payload len & next header.
//
// The magic '8' is simply the offset of the ip6_src field in the ipv6 header,
// ie. we're skipping over the ipv6 version, tclass, flowlabel, payload length, next header
// and hop limit fields, because they're not quite where we want them to be.
//
// ip6_plen is already in network order, while ip6_nxt is a single byte and thus needs htons().
uint32_t csum = dad_pkt.ip6h.ip6_plen + htons(dad_pkt.ip6h.ip6_nxt);
csum = ip_checksum_add(csum, &dad_pkt.ip6h.ip6_src, sizeof(dad_pkt) - 8);
dad_pkt.ns.nd_ns_cksum = ip_checksum_finish(csum);
const struct sockaddr_in6 dst = {
.sin6_family = AF_INET6,
.sin6_addr = dad_pkt.ip6h.ip6_dst,
.sin6_scope_id = if_nametoindex(Global_Clatd_Config.native_ipv6_interface),
};
sendto(fd, &dad_pkt, sizeof(dad_pkt), 0 /*flags*/, (const struct sockaddr *)&dst, sizeof(dst));
}
/* function: event_loop
* reads packets from the tun network interface and passes them down the stack
* tunnel - tun device data
*/
void event_loop(struct tun_data *tunnel) {
// Apparently some network gear will refuse to perform NS for IPs that aren't DAD'ed,
// this would then result in an ipv6-only network with working native ipv6, working
// IPv4 via DNS64, but non-functioning IPv4 via CLAT (ie. IPv4 literals + IPv4 only apps).
// The kernel itself doesn't do DAD for anycast ips (but does handle IPV6 MLD and handle ND).
// So we'll spoof dad here, and yeah, we really should check for a response and in
// case of failure pick a different IP. Seeing as 48-bits of the IP are utterly random
// (with the other 16 chosen to guarantee checksum neutrality) this seems like a remote
// concern...
// TODO: actually perform true DAD
send_dad(tunnel->write_fd6, &Global_Clatd_Config.ipv6_local_subnet);
time_t last_interface_poll;
struct pollfd wait_fd[] = {
{ tunnel->read_fd6, POLLIN, 0 },
{ tunnel->fd4, POLLIN, 0 },
};
// start the poll timer
last_interface_poll = time(NULL);
while (running) {
if (poll(wait_fd, ARRAY_SIZE(wait_fd), NO_TRAFFIC_INTERFACE_POLL_FREQUENCY * 1000) == -1) {
if (errno != EINTR) {
logmsg(ANDROID_LOG_WARN, "event_loop/poll returned an error: %s", strerror(errno));
}
} else {
// Call read_packet if the socket has data to be read, but also if an
// error is waiting. If we don't call read() after getting POLLERR, a
// subsequent poll() will return immediately with POLLERR again,
// causing this code to spin in a loop. Calling read() will clear the
// socket error flag instead.
if (wait_fd[0].revents) read_packet(tunnel->read_fd6, tunnel->fd4, 0 /* to_ipv6 */);
if (wait_fd[1].revents) read_packet(tunnel->fd4, tunnel->write_fd6, 1 /* to_ipv6 */);
}
time_t now = time(NULL);
if (now >= (last_interface_poll + INTERFACE_POLL_FREQUENCY)) {
last_interface_poll = now;
if (ipv6_address_changed(Global_Clatd_Config.native_ipv6_interface)) {
break;
}
}
}
}