blob: d1be3156d9e11b619b47fff70cd3e58fa95b9c5d [file] [log] [blame]
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* For now just use speex, can add more resamplers later. */
#include <speex/speex_resampler.h>
#include <sys/param.h>
#include <syslog.h>
#include "cras_fmt_conv.h"
#include "cras_audio_format.h"
#include "cras_util.h"
#include "linear_resampler.h"
/* The quality level is a value between 0 and 10. This is a tradeoff between
* performance, latency, and quality. */
#define SPEEX_QUALITY_LEVEL 4
/* Max number of converters, src, down/up mix, 2xformat, and linear resample. */
#define MAX_NUM_CONVERTERS 5
/* Channel index for stereo. */
#define STEREO_L 0
#define STEREO_R 1
typedef void (*sample_format_converter_t)(const uint8_t *in,
size_t in_samples,
uint8_t *out);
typedef size_t (*channel_converter_t)(struct cras_fmt_conv *conv,
const int16_t *in,
size_t in_frames,
int16_t *out);
/* Member data for the resampler. */
struct cras_fmt_conv {
SpeexResamplerState *speex_state;
channel_converter_t channel_converter;
float **ch_conv_mtx; /* Coefficient matrix for mixing channels. */
sample_format_converter_t in_format_converter;
sample_format_converter_t out_format_converter;
struct linear_resampler *resampler;
struct cras_audio_format in_fmt;
struct cras_audio_format out_fmt;
uint8_t *tmp_bufs[MAX_NUM_CONVERTERS - 1];
size_t tmp_buf_frames;
size_t pre_linear_resample;
size_t num_converters; /* Incremented once for SRC, channel, format. */
};
/* Add and clip two s16 samples. */
static int16_t s16_add_and_clip(int16_t a, int16_t b)
{
int32_t sum;
sum = a + b;
sum = MAX(sum, -0x8000);
sum = MIN(sum, 0x7fff);
return (int16_t)sum;
}
/*
* Convert between different sample formats.
*/
/* Converts from U8 to S16. */
static void convert_u8_to_s16le(const uint8_t *in, size_t in_samples,
uint8_t *out)
{
size_t i;
uint16_t *_out = (uint16_t *)out;
for (i = 0; i < in_samples; i++, in++, _out++)
*_out = ((int16_t)*in - 0x80) << 8;
}
/* Converts from S24 to S16. */
static void convert_s24le_to_s16le(const uint8_t *in, size_t in_samples,
uint8_t *out)
{
size_t i;
int32_t *_in = (int32_t *)in;
uint16_t *_out = (uint16_t *)out;
for (i = 0; i < in_samples; i++, _in++, _out++)
*_out = (int16_t)((*_in & 0x00ffffff) >> 8);
}
/* Converts from S32 to S16. */
static void convert_s32le_to_s16le(const uint8_t *in, size_t in_samples,
uint8_t *out)
{
size_t i;
int32_t *_in = (int32_t *)in;
uint16_t *_out = (uint16_t *)out;
for (i = 0; i < in_samples; i++, _in++, _out++)
*_out = (int16_t)(*_in >> 16);
}
/* Converts from S24_3LE to S16. */
static void convert_s243le_to_s16le(const uint8_t *in, size_t in_samples,
uint8_t *out)
{
/* find how to calculate in and out size, implement the conversion
* between S24_3LE and S16 */
size_t i;
int8_t *_in = (int8_t *)in;
uint16_t *_out = (uint16_t *)out;
for (i = 0; i < in_samples; i++, _in += 3, _out++)
memcpy(_out, _in + 1, 2);
}
/* Converts from S16 to U8. */
static void convert_s16le_to_u8(const uint8_t *in, size_t in_samples,
uint8_t *out)
{
size_t i;
int16_t *_in = (int16_t *)in;
for (i = 0; i < in_samples; i++, _in++, out++)
*out = (uint8_t)(*_in >> 8) + 128;
}
/* Converts from S16 to S24. */
static void convert_s16le_to_s24le(const uint8_t *in, size_t in_samples,
uint8_t *out)
{
size_t i;
int16_t *_in = (int16_t *)in;
uint32_t *_out = (uint32_t *)out;
for (i = 0; i < in_samples; i++, _in++, _out++)
*_out = ((int32_t)*_in << 8);
}
/* Converts from S16 to S32. */
static void convert_s16le_to_s32le(const uint8_t *in, size_t in_samples,
uint8_t *out)
{
size_t i;
int16_t *_in = (int16_t *)in;
uint32_t *_out = (uint32_t *)out;
for (i = 0; i < in_samples; i++, _in++, _out++)
*_out = ((int32_t)*_in << 16);
}
/* Converts from S16 to S24_3LE. */
static void convert_s16le_to_s243le(const uint8_t *in, size_t in_samples,
uint8_t *out)
{
size_t i;
int16_t *_in = (int16_t *)in;
uint8_t *_out = (uint8_t *)out;
for (i = 0; i < in_samples; i++, _in++, _out += 3) {
*_out = 0;
memcpy(_out + 1, _in, 2);
}
}
/*
* Convert between different channel numbers.
*/
/* Converts S16 mono to S16 stereo. The out buffer must be double the size of
* the input buffer. */
static size_t s16_mono_to_stereo(struct cras_fmt_conv *conv,
const int16_t *in, size_t in_frames,
int16_t *out)
{
size_t i;
for (i = 0; i < in_frames; i++) {
out[2 * i] = in[i];
out[2 * i + 1] = in[i];
}
return in_frames;
}
/* Converts S16 Stereo to S16 mono. The output buffer only need be big enough
* for mono samples. */
static size_t s16_stereo_to_mono(struct cras_fmt_conv *conv,
const int16_t *in, size_t in_frames,
int16_t *out)
{
size_t i;
for (i = 0; i < in_frames; i++)
out[i] = s16_add_and_clip(in[2 * i], in[2 * i + 1]);
return in_frames;
}
/* Converts S16 mono to 5.1 surround. Fit mono to front center of the
* output, or split to front left/right if front center is missing
* from the output channel layout.
*/
static size_t s16_mono_to_51(struct cras_fmt_conv *conv,
const int16_t *in, size_t in_frames,
int16_t *out)
{
size_t i, left, right, center;
memset(out, 0, sizeof(*out) * 6 * in_frames);
left = conv->out_fmt.channel_layout[CRAS_CH_FL];
right = conv->out_fmt.channel_layout[CRAS_CH_FR];
center = conv->out_fmt.channel_layout[CRAS_CH_FC];
if (center != -1)
for (i = 0; i < in_frames; i++)
out[6 * i + center] = in[i];
else if (left != -1 && right != -1)
for (i = 0; i < in_frames; i++) {
out[6 * i + right] = in[i] / 2;
out[6 * 1 + left] = in[i] / 2;
}
else
/* Select the first channel to convert to as the
* default behavior.
*/
for (i = 0; i < in_frames; i++)
out[6 * i] = in[i];
return in_frames;
}
/* Converts S16 stereo to 5.1 surround. Fit the left/right of input
* to the front left/right of output respectively and fill others
* with zero. If any of the front left/right is missed from the output
* channel layout, mix to front center.
*/
static size_t s16_stereo_to_51(struct cras_fmt_conv *conv,
const int16_t *in, size_t in_frames,
int16_t *out)
{
size_t i, left, right, center;
memset(out, 0, sizeof(*out) * 6 * in_frames);
left = conv->out_fmt.channel_layout[CRAS_CH_FL];
right = conv->out_fmt.channel_layout[CRAS_CH_FR];
center = conv->out_fmt.channel_layout[CRAS_CH_FC];
if (left != -1 && right != -1)
for (i = 0; i < in_frames; i++) {
out[6 * i + left] = in[2 * i];
out[6 * i + right] = in[2 * i + 1];
}
else if (center != -1)
for (i = 0; i < in_frames; i++)
out[6 * i + center] = s16_add_and_clip(
in[2 * i], in[2 * i + 1]);
else
/* Select the first two channels to convert to as the
* default behavior.
*/
for (i = 0; i < in_frames; i++) {
out[6 * i] = in[2 * i];
out[6 * i + 1] = in[2 * i + 1];
}
return in_frames;
}
/* Converts S16 5.1 to S16 stereo. The out buffer can have room for just
* stereo samples. This convert function is used as the default behavior
* when channel layout is not set from the client side. */
static size_t s16_51_to_stereo(struct cras_fmt_conv *conv,
const int16_t *in, size_t in_frames,
int16_t *out)
{
static const unsigned int left_idx = 0;
static const unsigned int right_idx = 1;
/* static const unsigned int left_surround_idx = 2; */
/* static const unsigned int right_surround_idx = 3; */
static const unsigned int center_idx = 4;
/* static const unsigned int lfe_idx = 5; */
size_t i;
for (i = 0; i < in_frames; i++) {
unsigned int half_center;
half_center = in[6 * i + center_idx] / 2;
out[2 * i + left_idx] = s16_add_and_clip(in[6 * i + left_idx],
half_center);
out[2 * i + right_idx] = s16_add_and_clip(in[6 * i + right_idx],
half_center);
}
return in_frames;
}
/* Converts S16 N channels to S16 M channels. The out buffer must have room for
* M channel. This convert function is used as the default behavior when channel
* layout is not set from the client side. */
static size_t s16_default_all_to_all(struct cras_fmt_conv *conv,
const int16_t *in, size_t in_frames,
int16_t *out)
{
unsigned int num_in_ch = conv->in_fmt.num_channels;
unsigned int num_out_ch = conv->out_fmt.num_channels;
unsigned int in_ch, out_ch, i;
memset(out, 0, num_out_ch * in_frames *
cras_get_format_bytes(&conv->out_fmt));
for (out_ch = 0; out_ch < num_out_ch; out_ch++) {
for (in_ch = 0; in_ch < num_in_ch; in_ch++) {
for (i = 0; i < in_frames; i++) {
out[out_ch + i * num_out_ch] +=
in[in_ch + i * num_in_ch] / num_in_ch;
}
}
}
return in_frames;
}
static int is_channel_layout_equal(const struct cras_audio_format *a,
const struct cras_audio_format *b)
{
int ch;
for (ch = 0; ch < CRAS_CH_MAX; ch++)
if (a->channel_layout[ch] != b->channel_layout[ch])
return 0;
return 1;
}
/* Multiplies buffer vector with coefficient vector. */
static int16_t multiply_buf_with_coef(float *coef,
const int16_t *buf,
size_t size)
{
int32_t sum = 0;
int i;
for (i = 0; i < size; i++)
sum += coef[i] * buf[i];
sum = MAX(sum, -0x8000);
sum = MIN(sum, 0x7fff);
return (int16_t)sum;
}
static void normalize_buf(float *buf, size_t size)
{
int i;
float squre_sum = 0.0;
for (i = 0; i < size; i++)
squre_sum += buf[i] * buf[i];
for (i = 0; i < size; i ++)
buf[i] /= squre_sum;
}
/* Converts channels based on the channel conversion
* coefficient matrix.
*/
static size_t convert_channels(struct cras_fmt_conv *conv,
const int16_t *in,
size_t in_frames,
int16_t *out)
{
unsigned i, fr;
unsigned in_idx = 0;
unsigned out_idx = 0;
for (fr = 0; fr < in_frames; fr++) {
for (i = 0; i < conv->out_fmt.num_channels; i++)
out[out_idx + i] = multiply_buf_with_coef(
conv->ch_conv_mtx[i],
&in[in_idx],
conv->in_fmt.num_channels);
in_idx += conv->in_fmt.num_channels;
out_idx += conv->out_fmt.num_channels;
}
return in_frames;
}
/* Populates the down mix matrix by rules:
* 1. Front/side left(right) channel will mix to left(right) of
* full scale.
* 2. Center and LFE will be split equally to left and right.
* Rear
* 3. Rear left/right will split 1/4 of the power to opposite
* channel.
*/
static void surround51_to_stereo_downmix_mtx(float **mtx,
int8_t layout[CRAS_CH_MAX])
{
if (layout[CRAS_CH_FC] != -1) {
mtx[STEREO_L][layout[CRAS_CH_FC]] = 0.707;
mtx[STEREO_R][layout[CRAS_CH_FC]] = 0.707;
}
if (layout[CRAS_CH_FL] != -1 && layout[CRAS_CH_FR] != -1) {
mtx[STEREO_L][layout[CRAS_CH_FL]] = 1.0;
mtx[STEREO_R][layout[CRAS_CH_FR]] = 1.0;
}
if (layout[CRAS_CH_SL] != -1 && layout[CRAS_CH_SR] != -1) {
mtx[STEREO_L][layout[CRAS_CH_SL]] = 1.0;
mtx[STEREO_R][layout[CRAS_CH_SR]] = 1.0;
}
if (layout[CRAS_CH_RL] != -1 && layout[CRAS_CH_RR] != -1) {
/* Split 1/4 power to the other side */
mtx[STEREO_L][layout[CRAS_CH_RL]] = 0.866;
mtx[STEREO_R][layout[CRAS_CH_RL]] = 0.5;
mtx[STEREO_R][layout[CRAS_CH_RR]] = 0.866;
mtx[STEREO_L][layout[CRAS_CH_RR]] = 0.5;
}
if (layout[CRAS_CH_LFE] != -1) {
mtx[STEREO_L][layout[CRAS_CH_LFE]] = 0.707;
mtx[STEREO_R][layout[CRAS_CH_LFE]] = 0.707;
}
normalize_buf(mtx[STEREO_L], 6);
normalize_buf(mtx[STEREO_R], 6);
}
/*
* Exported interface
*/
struct cras_fmt_conv *cras_fmt_conv_create(const struct cras_audio_format *in,
const struct cras_audio_format *out,
size_t max_frames,
size_t pre_linear_resample)
{
struct cras_fmt_conv *conv;
int rc;
unsigned i;
conv = calloc(1, sizeof(*conv));
if (conv == NULL)
return NULL;
conv->in_fmt = *in;
conv->out_fmt = *out;
conv->tmp_buf_frames = max_frames;
conv->pre_linear_resample = pre_linear_resample;
/* Set up sample format conversion. */
/* TODO(dgreid) - modify channel and sample rate conversion so
* converting to s16 isnt necessary. */
if (in->format != SND_PCM_FORMAT_S16_LE) {
conv->num_converters++;
syslog(LOG_DEBUG, "Convert from format %d to %d.",
in->format, out->format);
switch(in->format) {
case SND_PCM_FORMAT_U8:
conv->in_format_converter = convert_u8_to_s16le;
break;
case SND_PCM_FORMAT_S24_LE:
conv->in_format_converter = convert_s24le_to_s16le;
break;
case SND_PCM_FORMAT_S32_LE:
conv->in_format_converter = convert_s32le_to_s16le;
break;
case SND_PCM_FORMAT_S24_3LE:
conv->in_format_converter = convert_s243le_to_s16le;
break;
default:
syslog(LOG_WARNING, "Invalid format %d", in->format);
cras_fmt_conv_destroy(conv);
return NULL;
}
}
if (out->format != SND_PCM_FORMAT_S16_LE) {
conv->num_converters++;
syslog(LOG_DEBUG, "Convert from format %d to %d.",
in->format, out->format);
switch (out->format) {
case SND_PCM_FORMAT_U8:
conv->out_format_converter = convert_s16le_to_u8;
break;
case SND_PCM_FORMAT_S24_LE:
conv->out_format_converter = convert_s16le_to_s24le;
break;
case SND_PCM_FORMAT_S32_LE:
conv->out_format_converter = convert_s16le_to_s32le;
break;
case SND_PCM_FORMAT_S24_3LE:
conv->out_format_converter = convert_s16le_to_s243le;
break;
default:
syslog(LOG_WARNING, "Invalid format %d", out->format);
cras_fmt_conv_destroy(conv);
return NULL;
}
}
/* Set up channel number conversion. */
if (in->num_channels != out->num_channels) {
conv->num_converters++;
syslog(LOG_DEBUG, "Convert from %zu to %zu channels.",
in->num_channels, out->num_channels);
/* Populate the conversion matrix base on in/out channel count
* and layout. */
if (in->num_channels == 1 && out->num_channels == 2) {
conv->channel_converter = s16_mono_to_stereo;
} else if (in->num_channels == 1 && out->num_channels == 6) {
conv->channel_converter = s16_mono_to_51;
} else if (in->num_channels == 2 && out->num_channels == 1) {
conv->channel_converter = s16_stereo_to_mono;
} else if (in->num_channels == 2 && out->num_channels == 6) {
conv->channel_converter = s16_stereo_to_51;
} else if (in->num_channels == 6 && out->num_channels == 2) {
int in_channel_layout_set = 0;
/* Checks if channel_layout is set in the incoming format */
for (i = 0; i < CRAS_CH_MAX; i++)
if (in->channel_layout[i] != -1)
in_channel_layout_set = 1;
/* Use the conversion matrix based converter when a
* channel layout is set, or default to use existing
* converter to downmix to stereo */
if (in_channel_layout_set) {
conv->ch_conv_mtx = cras_channel_conv_matrix_alloc(
in->num_channels,
out->num_channels);
if (conv->ch_conv_mtx == NULL) {
cras_fmt_conv_destroy(conv);
return NULL;
}
conv->channel_converter = convert_channels;
surround51_to_stereo_downmix_mtx(
conv->ch_conv_mtx,
conv->in_fmt.channel_layout);
} else {
conv->channel_converter = s16_51_to_stereo;
}
} else {
syslog(LOG_WARNING,
"Using default channel map for %zu to %zu",
in->num_channels, out->num_channels);
conv->channel_converter = s16_default_all_to_all;
}
} else if (in->num_channels > 2 &&
!is_channel_layout_equal(in, out)){
conv->num_converters++;
conv->ch_conv_mtx = cras_channel_conv_matrix_create(in, out);
if (conv->ch_conv_mtx == NULL) {
syslog(LOG_ERR, "Failed to create channel conversion matrix");
cras_fmt_conv_destroy(conv);
return NULL;
}
conv->channel_converter = convert_channels;
}
/* Set up sample rate conversion. */
if (in->frame_rate != out->frame_rate) {
conv->num_converters++;
syslog(LOG_DEBUG, "Convert from %zu to %zu Hz.",
in->frame_rate, out->frame_rate);
conv->speex_state = speex_resampler_init(out->num_channels,
in->frame_rate,
out->frame_rate,
SPEEX_QUALITY_LEVEL,
&rc);
if (conv->speex_state == NULL) {
syslog(LOG_ERR, "Fail to create speex:%zu %zu %zu %d",
out->num_channels,
in->frame_rate,
out->frame_rate,
rc);
cras_fmt_conv_destroy(conv);
return NULL;
}
}
/* Set up linear resampler. */
conv->num_converters++;
conv->resampler = linear_resampler_create(
out->num_channels,
cras_get_format_bytes(out),
out->frame_rate,
out->frame_rate);
if (conv->resampler == NULL) {
syslog(LOG_ERR, "Fail to create linear resampler");
cras_fmt_conv_destroy(conv);
return NULL;
}
/* Need num_converters-1 temp buffers, the final converter renders
* directly into the output. */
for (i = 0; i < conv->num_converters - 1; i++) {
conv->tmp_bufs[i] = malloc(
max_frames *
4 * /* width in bytes largest format. */
MAX(in->num_channels, out->num_channels));
if (conv->tmp_bufs[i] == NULL) {
cras_fmt_conv_destroy(conv);
return NULL;
}
}
assert(conv->num_converters <= MAX_NUM_CONVERTERS);
return conv;
}
void cras_fmt_conv_destroy(struct cras_fmt_conv *conv)
{
unsigned i;
if (conv->ch_conv_mtx)
cras_channel_conv_matrix_destroy(conv->ch_conv_mtx,
conv->out_fmt.num_channels);
if (conv->speex_state)
speex_resampler_destroy(conv->speex_state);
if (conv->resampler)
linear_resampler_destroy(conv->resampler);
for (i = 0; i < MAX_NUM_CONVERTERS - 1; i++)
free(conv->tmp_bufs[i]);
free(conv);
}
const struct cras_audio_format *cras_fmt_conv_in_format(
const struct cras_fmt_conv *conv)
{
return &conv->in_fmt;
}
const struct cras_audio_format *cras_fmt_conv_out_format(
const struct cras_fmt_conv *conv)
{
return &conv->out_fmt;
}
size_t cras_fmt_conv_in_frames_to_out(struct cras_fmt_conv *conv,
size_t in_frames)
{
if (!conv)
return in_frames;
if (conv->pre_linear_resample)
in_frames = linear_resampler_in_frames_to_out(
conv->resampler,
in_frames);
in_frames = cras_frames_at_rate(conv->in_fmt.frame_rate,
in_frames,
conv->out_fmt.frame_rate);
if (!conv->pre_linear_resample)
in_frames = linear_resampler_in_frames_to_out(
conv->resampler,
in_frames);
return in_frames;
}
size_t cras_fmt_conv_out_frames_to_in(struct cras_fmt_conv *conv,
size_t out_frames)
{
if (!conv)
return out_frames;
if (!conv->pre_linear_resample)
out_frames = linear_resampler_out_frames_to_in(
conv->resampler,
out_frames);
out_frames = cras_frames_at_rate(conv->out_fmt.frame_rate,
out_frames,
conv->in_fmt.frame_rate);
if (conv->pre_linear_resample)
out_frames = linear_resampler_out_frames_to_in(
conv->resampler,
out_frames);
return out_frames;
}
void cras_fmt_conv_set_linear_resample_rates(struct cras_fmt_conv *conv,
float from,
float to)
{
linear_resampler_set_rates(conv->resampler, from, to);
}
size_t cras_fmt_conv_convert_frames(struct cras_fmt_conv *conv,
const uint8_t *in_buf,
uint8_t *out_buf,
unsigned int *in_frames,
size_t out_frames)
{
uint32_t fr_in, fr_out;
uint8_t *buffers[MAX_NUM_CONVERTERS + 1]; /* converters + out buffer. */
size_t buf_idx = 0;
static int logged_frames_dont_fit;
unsigned int used_converters = conv->num_converters;
unsigned int post_linear_resample = 0;
unsigned int pre_linear_resample = 0;
unsigned int linear_resample_fr = 0;
assert(conv);
if (linear_resampler_needed(conv->resampler)) {
post_linear_resample = !conv->pre_linear_resample;
pre_linear_resample = conv->pre_linear_resample;
}
/* If no SRC, then in_frames should = out_frames. */
if (conv->speex_state == NULL) {
fr_in = MIN(*in_frames, out_frames);
if (out_frames < *in_frames && !logged_frames_dont_fit) {
syslog(LOG_INFO,
"fmt_conv: %u to %zu no SRC.",
*in_frames,
out_frames);
logged_frames_dont_fit = 1;
}
} else {
fr_in = *in_frames;
}
fr_out = fr_in;
/* Set up a chain of buffers. The output buffer of the first conversion
* is used as input to the second and so forth, ending in the output
* buffer. */
if (!linear_resampler_needed(conv->resampler))
used_converters--;
buffers[4] = (uint8_t *)conv->tmp_bufs[3];
buffers[3] = (uint8_t *)conv->tmp_bufs[2];
buffers[2] = (uint8_t *)conv->tmp_bufs[1];
buffers[1] = (uint8_t *)conv->tmp_bufs[0];
buffers[0] = (uint8_t *)in_buf;
buffers[used_converters] = out_buf;
if (pre_linear_resample) {
linear_resample_fr = fr_in;
unsigned resample_limit = out_frames;
/* If there is a 2nd fmt conversion we should convert the
* resample limit and round it to the lower bound in order
* not to convert too many frames in the pre linear resampler.
*/
if (conv->speex_state != NULL)
resample_limit = resample_limit * conv->in_fmt.frame_rate /
conv->out_fmt.frame_rate;
resample_limit = MIN(resample_limit, conv->tmp_buf_frames);
fr_in = linear_resampler_resample(
conv->resampler,
buffers[buf_idx],
&linear_resample_fr,
buffers[buf_idx + 1],
resample_limit);
buf_idx++;
}
/* If the input format isn't S16_LE convert to it. */
if (conv->in_fmt.format != SND_PCM_FORMAT_S16_LE) {
conv->in_format_converter(buffers[buf_idx],
fr_in * conv->in_fmt.num_channels,
(uint8_t *)buffers[buf_idx + 1]);
buf_idx++;
}
/* Then channel conversion. */
if (conv->channel_converter != NULL) {
conv->channel_converter(conv,
(int16_t *)buffers[buf_idx],
fr_in,
(int16_t *)buffers[buf_idx + 1]);
buf_idx++;
}
/* Then SRC. */
if (conv->speex_state != NULL) {
unsigned int out_limit = out_frames;
if (post_linear_resample)
out_limit = linear_resampler_out_frames_to_in(
conv->resampler, out_limit);
fr_out = cras_frames_at_rate(conv->in_fmt.frame_rate,
fr_in,
conv->out_fmt.frame_rate);
if (fr_out > out_frames + 1 && !logged_frames_dont_fit) {
syslog(LOG_INFO,
"fmt_conv: put %u frames in %zu sized buffer",
fr_out,
out_frames);
logged_frames_dont_fit = 1;
}
/* limit frames to the output size. */
fr_out = MIN(fr_out, out_limit);
speex_resampler_process_interleaved_int(
conv->speex_state,
(int16_t *)buffers[buf_idx],
&fr_in,
(int16_t *)buffers[buf_idx + 1],
&fr_out);
buf_idx++;
}
if (post_linear_resample) {
linear_resample_fr = fr_out;
unsigned resample_limit = MIN(conv->tmp_buf_frames, out_frames);
fr_out = linear_resampler_resample(
conv->resampler,
buffers[buf_idx],
&linear_resample_fr,
buffers[buf_idx + 1],
resample_limit);
buf_idx++;
}
/* If the output format isn't S16_LE convert to it. */
if (conv->out_fmt.format != SND_PCM_FORMAT_S16_LE) {
conv->out_format_converter(buffers[buf_idx],
fr_out * conv->out_fmt.num_channels,
(uint8_t *)buffers[buf_idx + 1]);
buf_idx++;
}
if (pre_linear_resample)
*in_frames = linear_resample_fr;
else
*in_frames = fr_in;
return fr_out;
}
int cras_fmt_conversion_needed(const struct cras_fmt_conv *conv)
{
return linear_resampler_needed(conv->resampler) ||
(conv->num_converters > 1);
}
/* If the server cannot provide the requested format, configures an audio format
* converter that handles transforming the input format to the format used by
* the server. */
int config_format_converter(struct cras_fmt_conv **conv,
enum CRAS_STREAM_DIRECTION dir,
const struct cras_audio_format *from,
const struct cras_audio_format *to,
unsigned int frames)
{
struct cras_audio_format target;
/* For input, preserve the channel count and layout of
* from format */
if (dir == CRAS_STREAM_INPUT) {
target = *from;
target.format = to->format;
target.frame_rate = to->frame_rate;
} else {
target = *to;
}
syslog(LOG_DEBUG,
"format convert: from:%d %zu %zu target: %d %zu %zu "
"frames = %u",
from->format, from->frame_rate, from->num_channels,
target.format, target.frame_rate, target.num_channels,
frames);
*conv = cras_fmt_conv_create(from, &target, frames,
(dir == CRAS_STREAM_INPUT));
if (!*conv) {
syslog(LOG_ERR, "Failed to create format converter");
return -ENOMEM;
}
return 0;
}