|  | // Copyright 2017 The Abseil Authors. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //      https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | // This file tests string processing functions related to numeric values. | 
|  |  | 
|  | #include "absl/strings/numbers.h" | 
|  |  | 
|  | #include <sys/types.h> | 
|  |  | 
|  | #include <cfenv>  // NOLINT(build/c++11) | 
|  | #include <cfloat> | 
|  | #include <cinttypes> | 
|  | #include <climits> | 
|  | #include <cmath> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <cstdio> | 
|  | #include <cstdlib> | 
|  | #include <cstring> | 
|  | #include <ios> | 
|  | #include <limits> | 
|  | #include <numeric> | 
|  | #include <random> | 
|  | #include <set> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "gmock/gmock.h" | 
|  | #include "gtest/gtest.h" | 
|  | #include "absl/log/log.h" | 
|  | #include "absl/numeric/int128.h" | 
|  | #include "absl/random/distributions.h" | 
|  | #include "absl/random/random.h" | 
|  | #include "absl/strings/internal/numbers_test_common.h" | 
|  | #include "absl/strings/internal/ostringstream.h" | 
|  | #include "absl/strings/internal/pow10_helper.h" | 
|  | #include "absl/strings/str_cat.h" | 
|  | #include "absl/strings/string_view.h" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | using absl::SimpleAtoi; | 
|  | using absl::SimpleHexAtoi; | 
|  | using absl::numbers_internal::kSixDigitsToBufferSize; | 
|  | using absl::numbers_internal::safe_strto32_base; | 
|  | using absl::numbers_internal::safe_strto64_base; | 
|  | using absl::numbers_internal::safe_strtou32_base; | 
|  | using absl::numbers_internal::safe_strtou64_base; | 
|  | using absl::numbers_internal::SixDigitsToBuffer; | 
|  | using absl::strings_internal::Itoa; | 
|  | using absl::strings_internal::strtouint32_test_cases; | 
|  | using absl::strings_internal::strtouint64_test_cases; | 
|  | using testing::Eq; | 
|  | using testing::MatchesRegex; | 
|  | using testing::Pointee; | 
|  |  | 
|  | // Number of floats to test with. | 
|  | // 5,000,000 is a reasonable default for a test that only takes a few seconds. | 
|  | // 1,000,000,000+ triggers checking for all possible mantissa values for | 
|  | // double-precision tests. 2,000,000,000+ triggers checking for every possible | 
|  | // single-precision float. | 
|  | const int kFloatNumCases = 5000000; | 
|  |  | 
|  | // This is a slow, brute-force routine to compute the exact base-10 | 
|  | // representation of a double-precision floating-point number.  It | 
|  | // is useful for debugging only. | 
|  | std::string PerfectDtoa(double d) { | 
|  | if (d == 0) return "0"; | 
|  | if (d < 0) return "-" + PerfectDtoa(-d); | 
|  |  | 
|  | // Basic theory: decompose d into mantissa and exp, where | 
|  | // d = mantissa * 2^exp, and exp is as close to zero as possible. | 
|  | int64_t mantissa, exp = 0; | 
|  | while (d >= 1ULL << 63) ++exp, d *= 0.5; | 
|  | while ((mantissa = d) != d) --exp, d *= 2.0; | 
|  |  | 
|  | // Then convert mantissa to ASCII, and either double it (if | 
|  | // exp > 0) or halve it (if exp < 0) repeatedly.  "halve it" | 
|  | // in this case means multiplying it by five and dividing by 10. | 
|  | constexpr int maxlen = 1100;  // worst case is actually 1030 or so. | 
|  | char buf[maxlen + 5]; | 
|  | for (int64_t num = mantissa, pos = maxlen; --pos >= 0;) { | 
|  | buf[pos] = '0' + (num % 10); | 
|  | num /= 10; | 
|  | } | 
|  | char* begin = &buf[0]; | 
|  | char* end = buf + maxlen; | 
|  | for (int i = 0; i != exp; i += (exp > 0) ? 1 : -1) { | 
|  | int carry = 0; | 
|  | for (char* p = end; --p != begin;) { | 
|  | int dig = *p - '0'; | 
|  | dig = dig * (exp > 0 ? 2 : 5) + carry; | 
|  | carry = dig / 10; | 
|  | dig %= 10; | 
|  | *p = '0' + dig; | 
|  | } | 
|  | } | 
|  | if (exp < 0) { | 
|  | // "dividing by 10" above means we have to add the decimal point. | 
|  | memmove(end + 1 + exp, end + exp, 1 - exp); | 
|  | end[exp] = '.'; | 
|  | ++end; | 
|  | } | 
|  | while (*begin == '0' && begin[1] != '.') ++begin; | 
|  | return {begin, end}; | 
|  | } | 
|  |  | 
|  | TEST(ToString, PerfectDtoa) { | 
|  | EXPECT_THAT(PerfectDtoa(1), Eq("1")); | 
|  | EXPECT_THAT(PerfectDtoa(0.1), | 
|  | Eq("0.1000000000000000055511151231257827021181583404541015625")); | 
|  | EXPECT_THAT(PerfectDtoa(1e24), Eq("999999999999999983222784")); | 
|  | EXPECT_THAT(PerfectDtoa(5e-324), MatchesRegex("0.0000.*625")); | 
|  | for (int i = 0; i < 100; ++i) { | 
|  | for (double multiplier : | 
|  | {1e-300, 1e-200, 1e-100, 0.1, 1.0, 10.0, 1e100, 1e300}) { | 
|  | double d = multiplier * i; | 
|  | std::string s = PerfectDtoa(d); | 
|  | EXPECT_DOUBLE_EQ(d, strtod(s.c_str(), nullptr)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename integer> | 
|  | struct MyInteger { | 
|  | integer i; | 
|  | explicit constexpr MyInteger(integer i) : i(i) {} | 
|  | constexpr operator integer() const { return i; } | 
|  |  | 
|  | constexpr MyInteger operator+(MyInteger other) const { return i + other.i; } | 
|  | constexpr MyInteger operator-(MyInteger other) const { return i - other.i; } | 
|  | constexpr MyInteger operator*(MyInteger other) const { return i * other.i; } | 
|  | constexpr MyInteger operator/(MyInteger other) const { return i / other.i; } | 
|  |  | 
|  | constexpr bool operator<(MyInteger other) const { return i < other.i; } | 
|  | constexpr bool operator<=(MyInteger other) const { return i <= other.i; } | 
|  | constexpr bool operator==(MyInteger other) const { return i == other.i; } | 
|  | constexpr bool operator>=(MyInteger other) const { return i >= other.i; } | 
|  | constexpr bool operator>(MyInteger other) const { return i > other.i; } | 
|  | constexpr bool operator!=(MyInteger other) const { return i != other.i; } | 
|  |  | 
|  | integer as_integer() const { return i; } | 
|  | }; | 
|  |  | 
|  | typedef MyInteger<int64_t> MyInt64; | 
|  | typedef MyInteger<uint64_t> MyUInt64; | 
|  |  | 
|  | void CheckInt32(int32_t x) { | 
|  | char buffer[absl::numbers_internal::kFastToBufferSize]; | 
|  | char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer); | 
|  | std::string expected = std::to_string(x); | 
|  | EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x; | 
|  |  | 
|  | char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer); | 
|  | EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x; | 
|  | } | 
|  |  | 
|  | void CheckInt64(int64_t x) { | 
|  | char buffer[absl::numbers_internal::kFastToBufferSize + 3]; | 
|  | buffer[0] = '*'; | 
|  | buffer[23] = '*'; | 
|  | buffer[24] = '*'; | 
|  | char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]); | 
|  | std::string expected = std::to_string(x); | 
|  | EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x; | 
|  | EXPECT_EQ(buffer[0], '*'); | 
|  | EXPECT_EQ(buffer[23], '*'); | 
|  | EXPECT_EQ(buffer[24], '*'); | 
|  |  | 
|  | char* my_actual = | 
|  | absl::numbers_internal::FastIntToBuffer(MyInt64(x), &buffer[1]); | 
|  | EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x; | 
|  | } | 
|  |  | 
|  | void CheckUInt32(uint32_t x) { | 
|  | char buffer[absl::numbers_internal::kFastToBufferSize]; | 
|  | char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer); | 
|  | std::string expected = std::to_string(x); | 
|  | EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x; | 
|  |  | 
|  | char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer); | 
|  | EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x; | 
|  | } | 
|  |  | 
|  | void CheckUInt64(uint64_t x) { | 
|  | char buffer[absl::numbers_internal::kFastToBufferSize + 1]; | 
|  | char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]); | 
|  | std::string expected = std::to_string(x); | 
|  | EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x; | 
|  |  | 
|  | char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]); | 
|  | EXPECT_EQ(expected, std::string(&buffer[1], generic_actual)) | 
|  | << " Input " << x; | 
|  |  | 
|  | char* my_actual = | 
|  | absl::numbers_internal::FastIntToBuffer(MyUInt64(x), &buffer[1]); | 
|  | EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x; | 
|  | } | 
|  |  | 
|  | void CheckHex64(uint64_t v) { | 
|  | char expected[16 + 1]; | 
|  | std::string actual = absl::StrCat(absl::Hex(v, absl::kZeroPad16)); | 
|  | snprintf(expected, sizeof(expected), "%016" PRIx64, static_cast<uint64_t>(v)); | 
|  | EXPECT_EQ(expected, actual) << " Input " << v; | 
|  | actual = absl::StrCat(absl::Hex(v, absl::kSpacePad16)); | 
|  | snprintf(expected, sizeof(expected), "%16" PRIx64, static_cast<uint64_t>(v)); | 
|  | EXPECT_EQ(expected, actual) << " Input " << v; | 
|  | } | 
|  |  | 
|  | TEST(Numbers, TestFastPrints) { | 
|  | for (int i = -100; i <= 100; i++) { | 
|  | CheckInt32(i); | 
|  | CheckInt64(i); | 
|  | } | 
|  | for (int i = 0; i <= 100; i++) { | 
|  | CheckUInt32(i); | 
|  | CheckUInt64(i); | 
|  | } | 
|  | // Test min int to make sure that works | 
|  | CheckInt32(INT_MIN); | 
|  | CheckInt32(INT_MAX); | 
|  | CheckInt64(LONG_MIN); | 
|  | CheckInt64(uint64_t{1000000000}); | 
|  | CheckInt64(uint64_t{9999999999}); | 
|  | CheckInt64(uint64_t{100000000000000}); | 
|  | CheckInt64(uint64_t{999999999999999}); | 
|  | CheckInt64(uint64_t{1000000000000000000}); | 
|  | CheckInt64(uint64_t{1199999999999999999}); | 
|  | CheckInt64(int64_t{-700000000000000000}); | 
|  | CheckInt64(LONG_MAX); | 
|  | CheckUInt32(std::numeric_limits<uint32_t>::max()); | 
|  | CheckUInt64(uint64_t{1000000000}); | 
|  | CheckUInt64(uint64_t{9999999999}); | 
|  | CheckUInt64(uint64_t{100000000000000}); | 
|  | CheckUInt64(uint64_t{999999999999999}); | 
|  | CheckUInt64(uint64_t{1000000000000000000}); | 
|  | CheckUInt64(uint64_t{1199999999999999999}); | 
|  | CheckUInt64(std::numeric_limits<uint64_t>::max()); | 
|  |  | 
|  | for (int i = 0; i < 10000; i++) { | 
|  | CheckHex64(i); | 
|  | } | 
|  | CheckHex64(uint64_t{0x123456789abcdef0}); | 
|  | } | 
|  |  | 
|  | template <typename int_type, typename in_val_type> | 
|  | void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) { | 
|  | std::string s; | 
|  | // (u)int128 can be streamed but not StrCat'd. | 
|  | absl::strings_internal::OStringStream(&s) << in_value; | 
|  | int_type x = static_cast<int_type>(~exp_value); | 
|  | EXPECT_TRUE(SimpleAtoi(s, &x)) | 
|  | << "in_value=" << in_value << " s=" << s << " x=" << x; | 
|  | EXPECT_EQ(exp_value, x); | 
|  | x = static_cast<int_type>(~exp_value); | 
|  | EXPECT_TRUE(SimpleAtoi(s.c_str(), &x)); | 
|  | EXPECT_EQ(exp_value, x); | 
|  | } | 
|  |  | 
|  | template <typename int_type, typename in_val_type> | 
|  | void VerifySimpleAtoiBad(in_val_type in_value) { | 
|  | std::string s; | 
|  | // (u)int128 can be streamed but not StrCat'd. | 
|  | absl::strings_internal::OStringStream(&s) << in_value; | 
|  | int_type x; | 
|  | EXPECT_FALSE(SimpleAtoi(s, &x)); | 
|  | EXPECT_FALSE(SimpleAtoi(s.c_str(), &x)); | 
|  | } | 
|  |  | 
|  | TEST(NumbersTest, Atoi) { | 
|  | // SimpleAtoi(absl::string_view, int32_t) | 
|  | VerifySimpleAtoiGood<int32_t>(0, 0); | 
|  | VerifySimpleAtoiGood<int32_t>(42, 42); | 
|  | VerifySimpleAtoiGood<int32_t>(-42, -42); | 
|  |  | 
|  | VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(), | 
|  | std::numeric_limits<int32_t>::min()); | 
|  | VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(), | 
|  | std::numeric_limits<int32_t>::max()); | 
|  |  | 
|  | // SimpleAtoi(absl::string_view, uint32_t) | 
|  | VerifySimpleAtoiGood<uint32_t>(0, 0); | 
|  | VerifySimpleAtoiGood<uint32_t>(42, 42); | 
|  | VerifySimpleAtoiBad<uint32_t>(-42); | 
|  |  | 
|  | VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min()); | 
|  | VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(), | 
|  | std::numeric_limits<int32_t>::max()); | 
|  | VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(), | 
|  | std::numeric_limits<uint32_t>::max()); | 
|  | VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min()); | 
|  | VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max()); | 
|  | VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max()); | 
|  |  | 
|  | // SimpleAtoi(absl::string_view, int64_t) | 
|  | VerifySimpleAtoiGood<int64_t>(0, 0); | 
|  | VerifySimpleAtoiGood<int64_t>(42, 42); | 
|  | VerifySimpleAtoiGood<int64_t>(-42, -42); | 
|  |  | 
|  | VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(), | 
|  | std::numeric_limits<int32_t>::min()); | 
|  | VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(), | 
|  | std::numeric_limits<int32_t>::max()); | 
|  | VerifySimpleAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(), | 
|  | std::numeric_limits<uint32_t>::max()); | 
|  | VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(), | 
|  | std::numeric_limits<int64_t>::min()); | 
|  | VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(), | 
|  | std::numeric_limits<int64_t>::max()); | 
|  | VerifySimpleAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max()); | 
|  |  | 
|  | // SimpleAtoi(absl::string_view, uint64_t) | 
|  | VerifySimpleAtoiGood<uint64_t>(0, 0); | 
|  | VerifySimpleAtoiGood<uint64_t>(42, 42); | 
|  | VerifySimpleAtoiBad<uint64_t>(-42); | 
|  |  | 
|  | VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min()); | 
|  | VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(), | 
|  | std::numeric_limits<int32_t>::max()); | 
|  | VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(), | 
|  | std::numeric_limits<uint32_t>::max()); | 
|  | VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min()); | 
|  | VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(), | 
|  | std::numeric_limits<int64_t>::max()); | 
|  | VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(), | 
|  | std::numeric_limits<uint64_t>::max()); | 
|  |  | 
|  | // SimpleAtoi(absl::string_view, absl::uint128) | 
|  | VerifySimpleAtoiGood<absl::uint128>(0, 0); | 
|  | VerifySimpleAtoiGood<absl::uint128>(42, 42); | 
|  | VerifySimpleAtoiBad<absl::uint128>(-42); | 
|  |  | 
|  | VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min()); | 
|  | VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(), | 
|  | std::numeric_limits<int32_t>::max()); | 
|  | VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(), | 
|  | std::numeric_limits<uint32_t>::max()); | 
|  | VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min()); | 
|  | VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(), | 
|  | std::numeric_limits<int64_t>::max()); | 
|  | VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(), | 
|  | std::numeric_limits<uint64_t>::max()); | 
|  | VerifySimpleAtoiGood<absl::uint128>( | 
|  | std::numeric_limits<absl::uint128>::max(), | 
|  | std::numeric_limits<absl::uint128>::max()); | 
|  |  | 
|  | // SimpleAtoi(absl::string_view, absl::int128) | 
|  | VerifySimpleAtoiGood<absl::int128>(0, 0); | 
|  | VerifySimpleAtoiGood<absl::int128>(42, 42); | 
|  | VerifySimpleAtoiGood<absl::int128>(-42, -42); | 
|  |  | 
|  | VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::min(), | 
|  | std::numeric_limits<int32_t>::min()); | 
|  | VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::max(), | 
|  | std::numeric_limits<int32_t>::max()); | 
|  | VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint32_t>::max(), | 
|  | std::numeric_limits<uint32_t>::max()); | 
|  | VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::min(), | 
|  | std::numeric_limits<int64_t>::min()); | 
|  | VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::max(), | 
|  | std::numeric_limits<int64_t>::max()); | 
|  | VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint64_t>::max(), | 
|  | std::numeric_limits<uint64_t>::max()); | 
|  | VerifySimpleAtoiGood<absl::int128>( | 
|  | std::numeric_limits<absl::int128>::min(), | 
|  | std::numeric_limits<absl::int128>::min()); | 
|  | VerifySimpleAtoiGood<absl::int128>( | 
|  | std::numeric_limits<absl::int128>::max(), | 
|  | std::numeric_limits<absl::int128>::max()); | 
|  | VerifySimpleAtoiBad<absl::int128>(std::numeric_limits<absl::uint128>::max()); | 
|  |  | 
|  | // Some other types | 
|  | VerifySimpleAtoiGood<int>(-42, -42); | 
|  | VerifySimpleAtoiGood<int32_t>(-42, -42); | 
|  | VerifySimpleAtoiGood<uint32_t>(42, 42); | 
|  | VerifySimpleAtoiGood<unsigned int>(42, 42); | 
|  | VerifySimpleAtoiGood<int64_t>(-42, -42); | 
|  | VerifySimpleAtoiGood<long>(-42, -42);  // NOLINT: runtime-int | 
|  | VerifySimpleAtoiGood<uint64_t>(42, 42); | 
|  | VerifySimpleAtoiGood<size_t>(42, 42); | 
|  | VerifySimpleAtoiGood<std::string::size_type>(42, 42); | 
|  | } | 
|  |  | 
|  | TEST(NumbersTest, Atod) { | 
|  | // DBL_TRUE_MIN and FLT_TRUE_MIN were not mandated in <cfloat> before C++17. | 
|  | #if !defined(DBL_TRUE_MIN) | 
|  | static constexpr double DBL_TRUE_MIN = | 
|  | 4.940656458412465441765687928682213723650598026143247644255856825e-324; | 
|  | #endif | 
|  | #if !defined(FLT_TRUE_MIN) | 
|  | static constexpr float FLT_TRUE_MIN = | 
|  | 1.401298464324817070923729583289916131280261941876515771757068284e-45f; | 
|  | #endif | 
|  |  | 
|  | double d; | 
|  | float f; | 
|  |  | 
|  | // NaN can be spelled in multiple ways. | 
|  | EXPECT_TRUE(absl::SimpleAtod("NaN", &d)); | 
|  | EXPECT_TRUE(std::isnan(d)); | 
|  | EXPECT_TRUE(absl::SimpleAtod("nAN", &d)); | 
|  | EXPECT_TRUE(std::isnan(d)); | 
|  | EXPECT_TRUE(absl::SimpleAtod("-nan", &d)); | 
|  | EXPECT_TRUE(std::isnan(d)); | 
|  |  | 
|  | // Likewise for Infinity. | 
|  | EXPECT_TRUE(absl::SimpleAtod("inf", &d)); | 
|  | EXPECT_TRUE(std::isinf(d) && (d > 0)); | 
|  | EXPECT_TRUE(absl::SimpleAtod("+Infinity", &d)); | 
|  | EXPECT_TRUE(std::isinf(d) && (d > 0)); | 
|  | EXPECT_TRUE(absl::SimpleAtod("-INF", &d)); | 
|  | EXPECT_TRUE(std::isinf(d) && (d < 0)); | 
|  |  | 
|  | // Parse DBL_MAX. Parsing something more than twice as big should also | 
|  | // produce infinity. | 
|  | EXPECT_TRUE(absl::SimpleAtod("1.7976931348623157e+308", &d)); | 
|  | EXPECT_EQ(d, 1.7976931348623157e+308); | 
|  | EXPECT_TRUE(absl::SimpleAtod("5e308", &d)); | 
|  | EXPECT_TRUE(std::isinf(d) && (d > 0)); | 
|  | // Ditto, but for FLT_MAX. | 
|  | EXPECT_TRUE(absl::SimpleAtof("3.4028234663852886e+38", &f)); | 
|  | EXPECT_EQ(f, 3.4028234663852886e+38f); | 
|  | EXPECT_TRUE(absl::SimpleAtof("7e38", &f)); | 
|  | EXPECT_TRUE(std::isinf(f) && (f > 0)); | 
|  |  | 
|  | // Parse the largest N such that parsing 1eN produces a finite value and the | 
|  | // smallest M = N + 1 such that parsing 1eM produces infinity. | 
|  | // | 
|  | // The 309 exponent (and 39) confirms the "definition of | 
|  | // kEiselLemireMaxExclExp10" comment in charconv.cc. | 
|  | EXPECT_TRUE(absl::SimpleAtod("1e308", &d)); | 
|  | EXPECT_EQ(d, 1e308); | 
|  | EXPECT_FALSE(std::isinf(d)); | 
|  | EXPECT_TRUE(absl::SimpleAtod("1e309", &d)); | 
|  | EXPECT_TRUE(std::isinf(d)); | 
|  | // Ditto, but for Atof instead of Atod. | 
|  | EXPECT_TRUE(absl::SimpleAtof("1e38", &f)); | 
|  | EXPECT_EQ(f, 1e38f); | 
|  | EXPECT_FALSE(std::isinf(f)); | 
|  | EXPECT_TRUE(absl::SimpleAtof("1e39", &f)); | 
|  | EXPECT_TRUE(std::isinf(f)); | 
|  |  | 
|  | // Parse the largest N such that parsing 9.999999999999999999eN, with 19 | 
|  | // nines, produces a finite value. | 
|  | // | 
|  | // 9999999999999999999, with 19 nines but no decimal point, is the largest | 
|  | // "repeated nines" integer that fits in a uint64_t. | 
|  | EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e307", &d)); | 
|  | EXPECT_EQ(d, 9.999999999999999999e307); | 
|  | EXPECT_FALSE(std::isinf(d)); | 
|  | EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e308", &d)); | 
|  | EXPECT_TRUE(std::isinf(d)); | 
|  | // Ditto, but for Atof instead of Atod. | 
|  | EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e37", &f)); | 
|  | EXPECT_EQ(f, 9.999999999999999999e37f); | 
|  | EXPECT_FALSE(std::isinf(f)); | 
|  | EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e38", &f)); | 
|  | EXPECT_TRUE(std::isinf(f)); | 
|  |  | 
|  | // Parse DBL_MIN (normal), DBL_TRUE_MIN (subnormal) and (DBL_TRUE_MIN / 10) | 
|  | // (effectively zero). | 
|  | EXPECT_TRUE(absl::SimpleAtod("2.2250738585072014e-308", &d)); | 
|  | EXPECT_EQ(d, 2.2250738585072014e-308); | 
|  | EXPECT_TRUE(absl::SimpleAtod("4.9406564584124654e-324", &d)); | 
|  | EXPECT_EQ(d, 4.9406564584124654e-324); | 
|  | EXPECT_TRUE(absl::SimpleAtod("4.9406564584124654e-325", &d)); | 
|  | EXPECT_EQ(d, 0); | 
|  | // Ditto, but for FLT_MIN, FLT_TRUE_MIN and (FLT_TRUE_MIN / 10). | 
|  | EXPECT_TRUE(absl::SimpleAtof("1.1754943508222875e-38", &f)); | 
|  | EXPECT_EQ(f, 1.1754943508222875e-38f); | 
|  | EXPECT_TRUE(absl::SimpleAtof("1.4012984643248171e-45", &f)); | 
|  | EXPECT_EQ(f, 1.4012984643248171e-45f); | 
|  | EXPECT_TRUE(absl::SimpleAtof("1.4012984643248171e-46", &f)); | 
|  | EXPECT_EQ(f, 0); | 
|  |  | 
|  | // Parse the largest N (the most negative -N) such that parsing 1e-N produces | 
|  | // a normal or subnormal (but still positive) or zero value. | 
|  | EXPECT_TRUE(absl::SimpleAtod("1e-307", &d)); | 
|  | EXPECT_EQ(d, 1e-307); | 
|  | EXPECT_GE(d, DBL_MIN); | 
|  | EXPECT_LT(d, DBL_MIN * 10); | 
|  | EXPECT_TRUE(absl::SimpleAtod("1e-323", &d)); | 
|  | EXPECT_EQ(d, 1e-323); | 
|  | EXPECT_GE(d, DBL_TRUE_MIN); | 
|  | EXPECT_LT(d, DBL_TRUE_MIN * 10); | 
|  | EXPECT_TRUE(absl::SimpleAtod("1e-324", &d)); | 
|  | EXPECT_EQ(d, 0); | 
|  | // Ditto, but for Atof instead of Atod. | 
|  | EXPECT_TRUE(absl::SimpleAtof("1e-37", &f)); | 
|  | EXPECT_EQ(f, 1e-37f); | 
|  | EXPECT_GE(f, FLT_MIN); | 
|  | EXPECT_LT(f, FLT_MIN * 10); | 
|  | EXPECT_TRUE(absl::SimpleAtof("1e-45", &f)); | 
|  | EXPECT_EQ(f, 1e-45f); | 
|  | EXPECT_GE(f, FLT_TRUE_MIN); | 
|  | EXPECT_LT(f, FLT_TRUE_MIN * 10); | 
|  | EXPECT_TRUE(absl::SimpleAtof("1e-46", &f)); | 
|  | EXPECT_EQ(f, 0); | 
|  |  | 
|  | // Parse the largest N (the most negative -N) such that parsing | 
|  | // 9.999999999999999999e-N, with 19 nines, produces a normal or subnormal | 
|  | // (but still positive) or zero value. | 
|  | // | 
|  | // 9999999999999999999, with 19 nines but no decimal point, is the largest | 
|  | // "repeated nines" integer that fits in a uint64_t. | 
|  | // | 
|  | // The -324/-325 exponents (and -46/-47) confirms the "definition of | 
|  | // kEiselLemireMinInclExp10" comment in charconv.cc. | 
|  | EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-308", &d)); | 
|  | EXPECT_EQ(d, 9.999999999999999999e-308); | 
|  | EXPECT_GE(d, DBL_MIN); | 
|  | EXPECT_LT(d, DBL_MIN * 10); | 
|  | EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-324", &d)); | 
|  | EXPECT_EQ(d, 9.999999999999999999e-324); | 
|  | EXPECT_GE(d, DBL_TRUE_MIN); | 
|  | EXPECT_LT(d, DBL_TRUE_MIN * 10); | 
|  | EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-325", &d)); | 
|  | EXPECT_EQ(d, 0); | 
|  | // Ditto, but for Atof instead of Atod. | 
|  | EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-38", &f)); | 
|  | EXPECT_EQ(f, 9.999999999999999999e-38f); | 
|  | EXPECT_GE(f, FLT_MIN); | 
|  | EXPECT_LT(f, FLT_MIN * 10); | 
|  | EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-46", &f)); | 
|  | EXPECT_EQ(f, 9.999999999999999999e-46f); | 
|  | EXPECT_GE(f, FLT_TRUE_MIN); | 
|  | EXPECT_LT(f, FLT_TRUE_MIN * 10); | 
|  | EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-47", &f)); | 
|  | EXPECT_EQ(f, 0); | 
|  |  | 
|  | // Leading and/or trailing whitespace is OK. | 
|  | EXPECT_TRUE(absl::SimpleAtod("  \t\r\n  2.718", &d)); | 
|  | EXPECT_EQ(d, 2.718); | 
|  | EXPECT_TRUE(absl::SimpleAtod("  3.141  ", &d)); | 
|  | EXPECT_EQ(d, 3.141); | 
|  |  | 
|  | // Leading or trailing not-whitespace is not OK. | 
|  | EXPECT_FALSE(absl::SimpleAtod("n 0", &d)); | 
|  | EXPECT_FALSE(absl::SimpleAtod("0n ", &d)); | 
|  |  | 
|  | // Multiple leading 0s are OK. | 
|  | EXPECT_TRUE(absl::SimpleAtod("000123", &d)); | 
|  | EXPECT_EQ(d, 123); | 
|  | EXPECT_TRUE(absl::SimpleAtod("000.456", &d)); | 
|  | EXPECT_EQ(d, 0.456); | 
|  |  | 
|  | // An absent leading 0 (for a fraction < 1) is OK. | 
|  | EXPECT_TRUE(absl::SimpleAtod(".5", &d)); | 
|  | EXPECT_EQ(d, 0.5); | 
|  | EXPECT_TRUE(absl::SimpleAtod("-.707", &d)); | 
|  | EXPECT_EQ(d, -0.707); | 
|  |  | 
|  | // Unary + is OK. | 
|  | EXPECT_TRUE(absl::SimpleAtod("+6.0221408e+23", &d)); | 
|  | EXPECT_EQ(d, 6.0221408e+23); | 
|  |  | 
|  | // Underscores are not OK. | 
|  | EXPECT_FALSE(absl::SimpleAtod("123_456", &d)); | 
|  |  | 
|  | // The decimal separator must be '.' and is never ','. | 
|  | EXPECT_TRUE(absl::SimpleAtod("8.9", &d)); | 
|  | EXPECT_FALSE(absl::SimpleAtod("8,9", &d)); | 
|  |  | 
|  | // These examples are called out in the EiselLemire function's comments. | 
|  | EXPECT_TRUE(absl::SimpleAtod("4503599627370497.5", &d)); | 
|  | EXPECT_EQ(d, 4503599627370497.5); | 
|  | EXPECT_TRUE(absl::SimpleAtod("1e+23", &d)); | 
|  | EXPECT_EQ(d, 1e+23); | 
|  | EXPECT_TRUE(absl::SimpleAtod("9223372036854775807", &d)); | 
|  | EXPECT_EQ(d, 9223372036854775807); | 
|  | // Ditto, but for Atof instead of Atod. | 
|  | EXPECT_TRUE(absl::SimpleAtof("0.0625", &f)); | 
|  | EXPECT_EQ(f, 0.0625f); | 
|  | EXPECT_TRUE(absl::SimpleAtof("20040229.0", &f)); | 
|  | EXPECT_EQ(f, 20040229.0f); | 
|  | EXPECT_TRUE(absl::SimpleAtof("2147483647.0", &f)); | 
|  | EXPECT_EQ(f, 2147483647.0f); | 
|  |  | 
|  | // Some parsing algorithms don't always round correctly (but absl::SimpleAtod | 
|  | // should). This test case comes from | 
|  | // https://github.com/serde-rs/json/issues/707 | 
|  | // | 
|  | // See also atod_manual_test.cc for running many more test cases. | 
|  | EXPECT_TRUE(absl::SimpleAtod("122.416294033786585", &d)); | 
|  | EXPECT_EQ(d, 122.416294033786585); | 
|  | EXPECT_TRUE(absl::SimpleAtof("122.416294033786585", &f)); | 
|  | EXPECT_EQ(f, 122.416294033786585f); | 
|  | } | 
|  |  | 
|  | TEST(NumbersTest, Prefixes) { | 
|  | double d; | 
|  | EXPECT_FALSE(absl::SimpleAtod("++1", &d)); | 
|  | EXPECT_FALSE(absl::SimpleAtod("+-1", &d)); | 
|  | EXPECT_FALSE(absl::SimpleAtod("-+1", &d)); | 
|  | EXPECT_FALSE(absl::SimpleAtod("--1", &d)); | 
|  | EXPECT_TRUE(absl::SimpleAtod("-1", &d)); | 
|  | EXPECT_EQ(d, -1.); | 
|  | EXPECT_TRUE(absl::SimpleAtod("+1", &d)); | 
|  | EXPECT_EQ(d, +1.); | 
|  |  | 
|  | float f; | 
|  | EXPECT_FALSE(absl::SimpleAtof("++1", &f)); | 
|  | EXPECT_FALSE(absl::SimpleAtof("+-1", &f)); | 
|  | EXPECT_FALSE(absl::SimpleAtof("-+1", &f)); | 
|  | EXPECT_FALSE(absl::SimpleAtof("--1", &f)); | 
|  | EXPECT_TRUE(absl::SimpleAtof("-1", &f)); | 
|  | EXPECT_EQ(f, -1.f); | 
|  | EXPECT_TRUE(absl::SimpleAtof("+1", &f)); | 
|  | EXPECT_EQ(f, +1.f); | 
|  | } | 
|  |  | 
|  | TEST(NumbersTest, Atoenum) { | 
|  | enum E01 { | 
|  | E01_zero = 0, | 
|  | E01_one = 1, | 
|  | }; | 
|  |  | 
|  | VerifySimpleAtoiGood<E01>(E01_zero, E01_zero); | 
|  | VerifySimpleAtoiGood<E01>(E01_one, E01_one); | 
|  |  | 
|  | enum E_101 { | 
|  | E_101_minusone = -1, | 
|  | E_101_zero = 0, | 
|  | E_101_one = 1, | 
|  | }; | 
|  |  | 
|  | VerifySimpleAtoiGood<E_101>(E_101_minusone, E_101_minusone); | 
|  | VerifySimpleAtoiGood<E_101>(E_101_zero, E_101_zero); | 
|  | VerifySimpleAtoiGood<E_101>(E_101_one, E_101_one); | 
|  |  | 
|  | enum E_bigint { | 
|  | E_bigint_zero = 0, | 
|  | E_bigint_one = 1, | 
|  | E_bigint_max31 = static_cast<int32_t>(0x7FFFFFFF), | 
|  | }; | 
|  |  | 
|  | VerifySimpleAtoiGood<E_bigint>(E_bigint_zero, E_bigint_zero); | 
|  | VerifySimpleAtoiGood<E_bigint>(E_bigint_one, E_bigint_one); | 
|  | VerifySimpleAtoiGood<E_bigint>(E_bigint_max31, E_bigint_max31); | 
|  |  | 
|  | enum E_fullint { | 
|  | E_fullint_zero = 0, | 
|  | E_fullint_one = 1, | 
|  | E_fullint_max31 = static_cast<int32_t>(0x7FFFFFFF), | 
|  | E_fullint_min32 = INT32_MIN, | 
|  | }; | 
|  |  | 
|  | VerifySimpleAtoiGood<E_fullint>(E_fullint_zero, E_fullint_zero); | 
|  | VerifySimpleAtoiGood<E_fullint>(E_fullint_one, E_fullint_one); | 
|  | VerifySimpleAtoiGood<E_fullint>(E_fullint_max31, E_fullint_max31); | 
|  | VerifySimpleAtoiGood<E_fullint>(E_fullint_min32, E_fullint_min32); | 
|  |  | 
|  | enum E_biguint { | 
|  | E_biguint_zero = 0, | 
|  | E_biguint_one = 1, | 
|  | E_biguint_max31 = static_cast<uint32_t>(0x7FFFFFFF), | 
|  | E_biguint_max32 = static_cast<uint32_t>(0xFFFFFFFF), | 
|  | }; | 
|  |  | 
|  | VerifySimpleAtoiGood<E_biguint>(E_biguint_zero, E_biguint_zero); | 
|  | VerifySimpleAtoiGood<E_biguint>(E_biguint_one, E_biguint_one); | 
|  | VerifySimpleAtoiGood<E_biguint>(E_biguint_max31, E_biguint_max31); | 
|  | VerifySimpleAtoiGood<E_biguint>(E_biguint_max32, E_biguint_max32); | 
|  | } | 
|  |  | 
|  | template <typename int_type, typename in_val_type> | 
|  | void VerifySimpleHexAtoiGood(in_val_type in_value, int_type exp_value) { | 
|  | std::string s; | 
|  | // uint128 can be streamed but not StrCat'd | 
|  | absl::strings_internal::OStringStream strm(&s); | 
|  | if (in_value >= 0) { | 
|  | strm << std::hex << in_value; | 
|  | } else { | 
|  | // Inefficient for small integers, but works with all integral types. | 
|  | strm << "-" << std::hex << -absl::uint128(in_value); | 
|  | } | 
|  | int_type x = static_cast<int_type>(~exp_value); | 
|  | EXPECT_TRUE(SimpleHexAtoi(s, &x)) | 
|  | << "in_value=" << std::hex << in_value << " s=" << s << " x=" << x; | 
|  | EXPECT_EQ(exp_value, x); | 
|  | x = static_cast<int_type>(~exp_value); | 
|  | EXPECT_TRUE(SimpleHexAtoi( | 
|  | s.c_str(), &x));  // NOLINT: readability-redundant-string-conversions | 
|  | EXPECT_EQ(exp_value, x); | 
|  | } | 
|  |  | 
|  | template <typename int_type, typename in_val_type> | 
|  | void VerifySimpleHexAtoiBad(in_val_type in_value) { | 
|  | std::string s; | 
|  | // uint128 can be streamed but not StrCat'd | 
|  | absl::strings_internal::OStringStream strm(&s); | 
|  | if (in_value >= 0) { | 
|  | strm << std::hex << in_value; | 
|  | } else { | 
|  | // Inefficient for small integers, but works with all integral types. | 
|  | strm << "-" << std::hex << -absl::uint128(in_value); | 
|  | } | 
|  | int_type x; | 
|  | EXPECT_FALSE(SimpleHexAtoi(s, &x)); | 
|  | EXPECT_FALSE(SimpleHexAtoi( | 
|  | s.c_str(), &x));  // NOLINT: readability-redundant-string-conversions | 
|  | } | 
|  |  | 
|  | TEST(NumbersTest, HexAtoi) { | 
|  | // SimpleHexAtoi(absl::string_view, int32_t) | 
|  | VerifySimpleHexAtoiGood<int32_t>(0, 0); | 
|  | VerifySimpleHexAtoiGood<int32_t>(0x42, 0x42); | 
|  | VerifySimpleHexAtoiGood<int32_t>(-0x42, -0x42); | 
|  |  | 
|  | VerifySimpleHexAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(), | 
|  | std::numeric_limits<int32_t>::min()); | 
|  | VerifySimpleHexAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(), | 
|  | std::numeric_limits<int32_t>::max()); | 
|  |  | 
|  | // SimpleHexAtoi(absl::string_view, uint32_t) | 
|  | VerifySimpleHexAtoiGood<uint32_t>(0, 0); | 
|  | VerifySimpleHexAtoiGood<uint32_t>(0x42, 0x42); | 
|  | VerifySimpleHexAtoiBad<uint32_t>(-0x42); | 
|  |  | 
|  | VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min()); | 
|  | VerifySimpleHexAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(), | 
|  | std::numeric_limits<int32_t>::max()); | 
|  | VerifySimpleHexAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(), | 
|  | std::numeric_limits<uint32_t>::max()); | 
|  | VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min()); | 
|  | VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max()); | 
|  | VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max()); | 
|  |  | 
|  | // SimpleHexAtoi(absl::string_view, int64_t) | 
|  | VerifySimpleHexAtoiGood<int64_t>(0, 0); | 
|  | VerifySimpleHexAtoiGood<int64_t>(0x42, 0x42); | 
|  | VerifySimpleHexAtoiGood<int64_t>(-0x42, -0x42); | 
|  |  | 
|  | VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(), | 
|  | std::numeric_limits<int32_t>::min()); | 
|  | VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(), | 
|  | std::numeric_limits<int32_t>::max()); | 
|  | VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(), | 
|  | std::numeric_limits<uint32_t>::max()); | 
|  | VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(), | 
|  | std::numeric_limits<int64_t>::min()); | 
|  | VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(), | 
|  | std::numeric_limits<int64_t>::max()); | 
|  | VerifySimpleHexAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max()); | 
|  |  | 
|  | // SimpleHexAtoi(absl::string_view, uint64_t) | 
|  | VerifySimpleHexAtoiGood<uint64_t>(0, 0); | 
|  | VerifySimpleHexAtoiGood<uint64_t>(0x42, 0x42); | 
|  | VerifySimpleHexAtoiBad<uint64_t>(-0x42); | 
|  |  | 
|  | VerifySimpleHexAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min()); | 
|  | VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(), | 
|  | std::numeric_limits<int32_t>::max()); | 
|  | VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(), | 
|  | std::numeric_limits<uint32_t>::max()); | 
|  | VerifySimpleHexAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min()); | 
|  | VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(), | 
|  | std::numeric_limits<int64_t>::max()); | 
|  | VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(), | 
|  | std::numeric_limits<uint64_t>::max()); | 
|  |  | 
|  | // SimpleHexAtoi(absl::string_view, absl::uint128) | 
|  | VerifySimpleHexAtoiGood<absl::uint128>(0, 0); | 
|  | VerifySimpleHexAtoiGood<absl::uint128>(0x42, 0x42); | 
|  | VerifySimpleHexAtoiBad<absl::uint128>(-0x42); | 
|  |  | 
|  | VerifySimpleHexAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min()); | 
|  | VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(), | 
|  | std::numeric_limits<int32_t>::max()); | 
|  | VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(), | 
|  | std::numeric_limits<uint32_t>::max()); | 
|  | VerifySimpleHexAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min()); | 
|  | VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(), | 
|  | std::numeric_limits<int64_t>::max()); | 
|  | VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(), | 
|  | std::numeric_limits<uint64_t>::max()); | 
|  | VerifySimpleHexAtoiGood<absl::uint128>( | 
|  | std::numeric_limits<absl::uint128>::max(), | 
|  | std::numeric_limits<absl::uint128>::max()); | 
|  |  | 
|  | // Some other types | 
|  | VerifySimpleHexAtoiGood<int>(-0x42, -0x42); | 
|  | VerifySimpleHexAtoiGood<int32_t>(-0x42, -0x42); | 
|  | VerifySimpleHexAtoiGood<uint32_t>(0x42, 0x42); | 
|  | VerifySimpleHexAtoiGood<unsigned int>(0x42, 0x42); | 
|  | VerifySimpleHexAtoiGood<int64_t>(-0x42, -0x42); | 
|  | VerifySimpleHexAtoiGood<long>(-0x42, -0x42);  // NOLINT: runtime-int | 
|  | VerifySimpleHexAtoiGood<uint64_t>(0x42, 0x42); | 
|  | VerifySimpleHexAtoiGood<size_t>(0x42, 0x42); | 
|  | VerifySimpleHexAtoiGood<std::string::size_type>(0x42, 0x42); | 
|  |  | 
|  | // Number prefix | 
|  | int32_t value; | 
|  | EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16)); | 
|  | EXPECT_EQ(0x34234324, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16)); | 
|  | EXPECT_EQ(0x34234324, value); | 
|  |  | 
|  | // ASCII whitespace | 
|  | EXPECT_TRUE(safe_strto32_base(" \t\n 34234324", &value, 16)); | 
|  | EXPECT_EQ(0x34234324, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto32_base("34234324 \t\n ", &value, 16)); | 
|  | EXPECT_EQ(0x34234324, value); | 
|  | } | 
|  |  | 
|  | TEST(stringtest, safe_strto32_base) { | 
|  | int32_t value; | 
|  | EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16)); | 
|  | EXPECT_EQ(0x34234324, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16)); | 
|  | EXPECT_EQ(0x34234324, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto32_base("34234324", &value, 16)); | 
|  | EXPECT_EQ(0x34234324, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto32_base("0", &value, 16)); | 
|  | EXPECT_EQ(0, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto32_base(" \t\n -0x34234324", &value, 16)); | 
|  | EXPECT_EQ(-0x34234324, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 16)); | 
|  | EXPECT_EQ(-0x34234324, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto32_base("7654321", &value, 8)); | 
|  | EXPECT_EQ(07654321, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto32_base("-01234", &value, 8)); | 
|  | EXPECT_EQ(-01234, value); | 
|  |  | 
|  | EXPECT_FALSE(safe_strto32_base("1834", &value, 8)); | 
|  |  | 
|  | // Autodetect base. | 
|  | EXPECT_TRUE(safe_strto32_base("0", &value, 0)); | 
|  | EXPECT_EQ(0, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto32_base("077", &value, 0)); | 
|  | EXPECT_EQ(077, value);  // Octal interpretation | 
|  |  | 
|  | // Leading zero indicates octal, but then followed by invalid digit. | 
|  | EXPECT_FALSE(safe_strto32_base("088", &value, 0)); | 
|  |  | 
|  | // Leading 0x indicated hex, but then followed by invalid digit. | 
|  | EXPECT_FALSE(safe_strto32_base("0xG", &value, 0)); | 
|  |  | 
|  | // Base-10 version. | 
|  | EXPECT_TRUE(safe_strto32_base("34234324", &value, 10)); | 
|  | EXPECT_EQ(34234324, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto32_base("0", &value, 10)); | 
|  | EXPECT_EQ(0, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 10)); | 
|  | EXPECT_EQ(-34234324, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto32_base("34234324 \n\t ", &value, 10)); | 
|  | EXPECT_EQ(34234324, value); | 
|  |  | 
|  | // Invalid ints. | 
|  | EXPECT_FALSE(safe_strto32_base("", &value, 10)); | 
|  | EXPECT_FALSE(safe_strto32_base("  ", &value, 10)); | 
|  | EXPECT_FALSE(safe_strto32_base("abc", &value, 10)); | 
|  | EXPECT_FALSE(safe_strto32_base("34234324a", &value, 10)); | 
|  | EXPECT_FALSE(safe_strto32_base("34234.3", &value, 10)); | 
|  |  | 
|  | // Out of bounds. | 
|  | EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10)); | 
|  | EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10)); | 
|  |  | 
|  | // String version. | 
|  | EXPECT_TRUE(safe_strto32_base(std::string("0x1234"), &value, 16)); | 
|  | EXPECT_EQ(0x1234, value); | 
|  |  | 
|  | // Base-10 string version. | 
|  | EXPECT_TRUE(safe_strto32_base("1234", &value, 10)); | 
|  | EXPECT_EQ(1234, value); | 
|  | } | 
|  |  | 
|  | TEST(stringtest, safe_strto32_range) { | 
|  | // These tests verify underflow/overflow behaviour. | 
|  | int32_t value; | 
|  | EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10)); | 
|  | EXPECT_EQ(std::numeric_limits<int32_t>::max(), value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto32_base("-2147483648", &value, 10)); | 
|  | EXPECT_EQ(std::numeric_limits<int32_t>::min(), value); | 
|  |  | 
|  | EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10)); | 
|  | EXPECT_EQ(std::numeric_limits<int32_t>::min(), value); | 
|  | } | 
|  |  | 
|  | TEST(stringtest, safe_strto64_range) { | 
|  | // These tests verify underflow/overflow behaviour. | 
|  | int64_t value; | 
|  | EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10)); | 
|  | EXPECT_EQ(std::numeric_limits<int64_t>::max(), value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto64_base("-9223372036854775808", &value, 10)); | 
|  | EXPECT_EQ(std::numeric_limits<int64_t>::min(), value); | 
|  |  | 
|  | EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10)); | 
|  | EXPECT_EQ(std::numeric_limits<int64_t>::min(), value); | 
|  | } | 
|  |  | 
|  | TEST(stringtest, safe_strto32_leading_substring) { | 
|  | // These tests verify this comment in numbers.h: | 
|  | // On error, returns false, and sets *value to: [...] | 
|  | //   conversion of leading substring if available ("123@@@" -> 123) | 
|  | //   0 if no leading substring available | 
|  | int32_t value; | 
|  | EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 10)); | 
|  | EXPECT_EQ(4069, value); | 
|  |  | 
|  | EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 8)); | 
|  | EXPECT_EQ(0406, value); | 
|  |  | 
|  | EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 10)); | 
|  | EXPECT_EQ(4069, value); | 
|  |  | 
|  | EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 16)); | 
|  | EXPECT_EQ(0x4069ba, value); | 
|  |  | 
|  | EXPECT_FALSE(safe_strto32_base("@@@", &value, 10)); | 
|  | EXPECT_EQ(0, value);  // there was no leading substring | 
|  | } | 
|  |  | 
|  | TEST(stringtest, safe_strto64_leading_substring) { | 
|  | // These tests verify this comment in numbers.h: | 
|  | // On error, returns false, and sets *value to: [...] | 
|  | //   conversion of leading substring if available ("123@@@" -> 123) | 
|  | //   0 if no leading substring available | 
|  | int64_t value; | 
|  | EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 10)); | 
|  | EXPECT_EQ(4069, value); | 
|  |  | 
|  | EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 8)); | 
|  | EXPECT_EQ(0406, value); | 
|  |  | 
|  | EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 10)); | 
|  | EXPECT_EQ(4069, value); | 
|  |  | 
|  | EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 16)); | 
|  | EXPECT_EQ(0x4069ba, value); | 
|  |  | 
|  | EXPECT_FALSE(safe_strto64_base("@@@", &value, 10)); | 
|  | EXPECT_EQ(0, value);  // there was no leading substring | 
|  | } | 
|  |  | 
|  | TEST(stringtest, safe_strto64_base) { | 
|  | int64_t value; | 
|  | EXPECT_TRUE(safe_strto64_base("0x3423432448783446", &value, 16)); | 
|  | EXPECT_EQ(int64_t{0x3423432448783446}, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto64_base("3423432448783446", &value, 16)); | 
|  | EXPECT_EQ(int64_t{0x3423432448783446}, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto64_base("0", &value, 16)); | 
|  | EXPECT_EQ(0, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto64_base(" \t\n -0x3423432448783446", &value, 16)); | 
|  | EXPECT_EQ(int64_t{-0x3423432448783446}, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto64_base(" \t\n -3423432448783446", &value, 16)); | 
|  | EXPECT_EQ(int64_t{-0x3423432448783446}, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto64_base("123456701234567012", &value, 8)); | 
|  | EXPECT_EQ(int64_t{0123456701234567012}, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto64_base("-017777777777777", &value, 8)); | 
|  | EXPECT_EQ(int64_t{-017777777777777}, value); | 
|  |  | 
|  | EXPECT_FALSE(safe_strto64_base("19777777777777", &value, 8)); | 
|  |  | 
|  | // Autodetect base. | 
|  | EXPECT_TRUE(safe_strto64_base("0", &value, 0)); | 
|  | EXPECT_EQ(0, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto64_base("077", &value, 0)); | 
|  | EXPECT_EQ(077, value);  // Octal interpretation | 
|  |  | 
|  | // Leading zero indicates octal, but then followed by invalid digit. | 
|  | EXPECT_FALSE(safe_strto64_base("088", &value, 0)); | 
|  |  | 
|  | // Leading 0x indicated hex, but then followed by invalid digit. | 
|  | EXPECT_FALSE(safe_strto64_base("0xG", &value, 0)); | 
|  |  | 
|  | // Base-10 version. | 
|  | EXPECT_TRUE(safe_strto64_base("34234324487834466", &value, 10)); | 
|  | EXPECT_EQ(int64_t{34234324487834466}, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto64_base("0", &value, 10)); | 
|  | EXPECT_EQ(0, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto64_base(" \t\n -34234324487834466", &value, 10)); | 
|  | EXPECT_EQ(int64_t{-34234324487834466}, value); | 
|  |  | 
|  | EXPECT_TRUE(safe_strto64_base("34234324487834466 \n\t ", &value, 10)); | 
|  | EXPECT_EQ(int64_t{34234324487834466}, value); | 
|  |  | 
|  | // Invalid ints. | 
|  | EXPECT_FALSE(safe_strto64_base("", &value, 10)); | 
|  | EXPECT_FALSE(safe_strto64_base("  ", &value, 10)); | 
|  | EXPECT_FALSE(safe_strto64_base("abc", &value, 10)); | 
|  | EXPECT_FALSE(safe_strto64_base("34234324487834466a", &value, 10)); | 
|  | EXPECT_FALSE(safe_strto64_base("34234487834466.3", &value, 10)); | 
|  |  | 
|  | // Out of bounds. | 
|  | EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10)); | 
|  | EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10)); | 
|  |  | 
|  | // String version. | 
|  | EXPECT_TRUE(safe_strto64_base(std::string("0x1234"), &value, 16)); | 
|  | EXPECT_EQ(0x1234, value); | 
|  |  | 
|  | // Base-10 string version. | 
|  | EXPECT_TRUE(safe_strto64_base("1234", &value, 10)); | 
|  | EXPECT_EQ(1234, value); | 
|  | } | 
|  |  | 
|  | const size_t kNumRandomTests = 10000; | 
|  |  | 
|  | template <typename IntType> | 
|  | void test_random_integer_parse_base(bool (*parse_func)(absl::string_view, | 
|  | IntType* value, | 
|  | int base)) { | 
|  | using RandomEngine = std::minstd_rand0; | 
|  | std::random_device rd; | 
|  | RandomEngine rng(rd()); | 
|  | std::uniform_int_distribution<IntType> random_int( | 
|  | std::numeric_limits<IntType>::min()); | 
|  | std::uniform_int_distribution<int> random_base(2, 35); | 
|  | for (size_t i = 0; i < kNumRandomTests; i++) { | 
|  | IntType value = random_int(rng); | 
|  | int base = random_base(rng); | 
|  | std::string str_value; | 
|  | EXPECT_TRUE(Itoa<IntType>(value, base, &str_value)); | 
|  | IntType parsed_value; | 
|  |  | 
|  | // Test successful parse | 
|  | EXPECT_TRUE(parse_func(str_value, &parsed_value, base)); | 
|  | EXPECT_EQ(parsed_value, value); | 
|  |  | 
|  | // Test overflow | 
|  | EXPECT_FALSE( | 
|  | parse_func(absl::StrCat(std::numeric_limits<IntType>::max(), value), | 
|  | &parsed_value, base)); | 
|  |  | 
|  | // Test underflow | 
|  | if (std::numeric_limits<IntType>::min() < 0) { | 
|  | EXPECT_FALSE( | 
|  | parse_func(absl::StrCat(std::numeric_limits<IntType>::min(), value), | 
|  | &parsed_value, base)); | 
|  | } else { | 
|  | EXPECT_FALSE(parse_func(absl::StrCat("-", value), &parsed_value, base)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(stringtest, safe_strto32_random) { | 
|  | test_random_integer_parse_base<int32_t>(&safe_strto32_base); | 
|  | } | 
|  | TEST(stringtest, safe_strto64_random) { | 
|  | test_random_integer_parse_base<int64_t>(&safe_strto64_base); | 
|  | } | 
|  | TEST(stringtest, safe_strtou32_random) { | 
|  | test_random_integer_parse_base<uint32_t>(&safe_strtou32_base); | 
|  | } | 
|  | TEST(stringtest, safe_strtou64_random) { | 
|  | test_random_integer_parse_base<uint64_t>(&safe_strtou64_base); | 
|  | } | 
|  | TEST(stringtest, safe_strtou128_random) { | 
|  | // random number generators don't work for uint128, and | 
|  | // uint128 can be streamed but not StrCat'd, so this code must be custom | 
|  | // implemented for uint128, but is generally the same as what's above. | 
|  | // test_random_integer_parse_base<absl::uint128>( | 
|  | //     &absl::numbers_internal::safe_strtou128_base); | 
|  | using RandomEngine = std::minstd_rand0; | 
|  | using IntType = absl::uint128; | 
|  | constexpr auto parse_func = &absl::numbers_internal::safe_strtou128_base; | 
|  |  | 
|  | std::random_device rd; | 
|  | RandomEngine rng(rd()); | 
|  | std::uniform_int_distribution<uint64_t> random_uint64( | 
|  | std::numeric_limits<uint64_t>::min()); | 
|  | std::uniform_int_distribution<int> random_base(2, 35); | 
|  |  | 
|  | for (size_t i = 0; i < kNumRandomTests; i++) { | 
|  | IntType value = random_uint64(rng); | 
|  | value = (value << 64) + random_uint64(rng); | 
|  | int base = random_base(rng); | 
|  | std::string str_value; | 
|  | EXPECT_TRUE(Itoa<IntType>(value, base, &str_value)); | 
|  | IntType parsed_value; | 
|  |  | 
|  | // Test successful parse | 
|  | EXPECT_TRUE(parse_func(str_value, &parsed_value, base)); | 
|  | EXPECT_EQ(parsed_value, value); | 
|  |  | 
|  | // Test overflow | 
|  | std::string s; | 
|  | absl::strings_internal::OStringStream(&s) | 
|  | << std::numeric_limits<IntType>::max() << value; | 
|  | EXPECT_FALSE(parse_func(s, &parsed_value, base)); | 
|  |  | 
|  | // Test underflow | 
|  | s.clear(); | 
|  | absl::strings_internal::OStringStream(&s) << "-" << value; | 
|  | EXPECT_FALSE(parse_func(s, &parsed_value, base)); | 
|  | } | 
|  | } | 
|  | TEST(stringtest, safe_strto128_random) { | 
|  | // random number generators don't work for int128, and | 
|  | // int128 can be streamed but not StrCat'd, so this code must be custom | 
|  | // implemented for int128, but is generally the same as what's above. | 
|  | // test_random_integer_parse_base<absl::int128>( | 
|  | //     &absl::numbers_internal::safe_strto128_base); | 
|  | using RandomEngine = std::minstd_rand0; | 
|  | using IntType = absl::int128; | 
|  | constexpr auto parse_func = &absl::numbers_internal::safe_strto128_base; | 
|  |  | 
|  | std::random_device rd; | 
|  | RandomEngine rng(rd()); | 
|  | std::uniform_int_distribution<int64_t> random_int64( | 
|  | std::numeric_limits<int64_t>::min()); | 
|  | std::uniform_int_distribution<uint64_t> random_uint64( | 
|  | std::numeric_limits<uint64_t>::min()); | 
|  | std::uniform_int_distribution<int> random_base(2, 35); | 
|  |  | 
|  | for (size_t i = 0; i < kNumRandomTests; ++i) { | 
|  | int64_t high = random_int64(rng); | 
|  | uint64_t low = random_uint64(rng); | 
|  | IntType value = absl::MakeInt128(high, low); | 
|  |  | 
|  | int base = random_base(rng); | 
|  | std::string str_value; | 
|  | EXPECT_TRUE(Itoa<IntType>(value, base, &str_value)); | 
|  | IntType parsed_value; | 
|  |  | 
|  | // Test successful parse | 
|  | EXPECT_TRUE(parse_func(str_value, &parsed_value, base)); | 
|  | EXPECT_EQ(parsed_value, value); | 
|  |  | 
|  | // Test overflow | 
|  | std::string s; | 
|  | absl::strings_internal::OStringStream(&s) | 
|  | << std::numeric_limits<IntType>::max() << value; | 
|  | EXPECT_FALSE(parse_func(s, &parsed_value, base)); | 
|  |  | 
|  | // Test underflow | 
|  | s.clear(); | 
|  | absl::strings_internal::OStringStream(&s) | 
|  | << std::numeric_limits<IntType>::min() << value; | 
|  | EXPECT_FALSE(parse_func(s, &parsed_value, base)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(stringtest, safe_strtou32_base) { | 
|  | for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) { | 
|  | const auto& e = strtouint32_test_cases()[i]; | 
|  | uint32_t value; | 
|  | EXPECT_EQ(e.expect_ok, safe_strtou32_base(e.str, &value, e.base)) | 
|  | << "str=\"" << e.str << "\" base=" << e.base; | 
|  | if (e.expect_ok) { | 
|  | EXPECT_EQ(e.expected, value) << "i=" << i << " str=\"" << e.str | 
|  | << "\" base=" << e.base; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(stringtest, safe_strtou32_base_length_delimited) { | 
|  | for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) { | 
|  | const auto& e = strtouint32_test_cases()[i]; | 
|  | std::string tmp(e.str); | 
|  | tmp.append("12");  // Adds garbage at the end. | 
|  |  | 
|  | uint32_t value; | 
|  | EXPECT_EQ(e.expect_ok, | 
|  | safe_strtou32_base(absl::string_view(tmp.data(), strlen(e.str)), | 
|  | &value, e.base)) | 
|  | << "str=\"" << e.str << "\" base=" << e.base; | 
|  | if (e.expect_ok) { | 
|  | EXPECT_EQ(e.expected, value) << "i=" << i << " str=" << e.str | 
|  | << " base=" << e.base; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(stringtest, safe_strtou64_base) { | 
|  | for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) { | 
|  | const auto& e = strtouint64_test_cases()[i]; | 
|  | uint64_t value; | 
|  | EXPECT_EQ(e.expect_ok, safe_strtou64_base(e.str, &value, e.base)) | 
|  | << "str=\"" << e.str << "\" base=" << e.base; | 
|  | if (e.expect_ok) { | 
|  | EXPECT_EQ(e.expected, value) << "str=" << e.str << " base=" << e.base; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(stringtest, safe_strtou64_base_length_delimited) { | 
|  | for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) { | 
|  | const auto& e = strtouint64_test_cases()[i]; | 
|  | std::string tmp(e.str); | 
|  | tmp.append("12");  // Adds garbage at the end. | 
|  |  | 
|  | uint64_t value; | 
|  | EXPECT_EQ(e.expect_ok, | 
|  | safe_strtou64_base(absl::string_view(tmp.data(), strlen(e.str)), | 
|  | &value, e.base)) | 
|  | << "str=\"" << e.str << "\" base=" << e.base; | 
|  | if (e.expect_ok) { | 
|  | EXPECT_EQ(e.expected, value) << "str=\"" << e.str << "\" base=" << e.base; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // feenableexcept() and fedisableexcept() are extensions supported by some libc | 
|  | // implementations. | 
|  | #if defined(__GLIBC__) || defined(__BIONIC__) | 
|  | #define ABSL_HAVE_FEENABLEEXCEPT 1 | 
|  | #define ABSL_HAVE_FEDISABLEEXCEPT 1 | 
|  | #endif | 
|  |  | 
|  | class SimpleDtoaTest : public testing::Test { | 
|  | protected: | 
|  | void SetUp() override { | 
|  | // Store the current floating point env & clear away any pending exceptions. | 
|  | feholdexcept(&fp_env_); | 
|  | #ifdef ABSL_HAVE_FEENABLEEXCEPT | 
|  | // Turn on floating point exceptions. | 
|  | feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void TearDown() override { | 
|  | // Restore the floating point environment to the original state. | 
|  | // In theory fedisableexcept is unnecessary; fesetenv will also do it. | 
|  | // In practice, our toolchains have subtle bugs. | 
|  | #ifdef ABSL_HAVE_FEDISABLEEXCEPT | 
|  | fedisableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); | 
|  | #endif | 
|  | fesetenv(&fp_env_); | 
|  | } | 
|  |  | 
|  | std::string ToNineDigits(double value) { | 
|  | char buffer[16];  // more than enough for %.9g | 
|  | snprintf(buffer, sizeof(buffer), "%.9g", value); | 
|  | return buffer; | 
|  | } | 
|  |  | 
|  | fenv_t fp_env_; | 
|  | }; | 
|  |  | 
|  | // Run the given runnable functor for "cases" test cases, chosen over the | 
|  | // available range of float.  pi and e and 1/e are seeded, and then all | 
|  | // available integer powers of 2 and 10 are multiplied against them.  In | 
|  | // addition to trying all those values, we try the next higher and next lower | 
|  | // float, and then we add additional test cases evenly distributed between them. | 
|  | // Each test case is passed to runnable as both a positive and negative value. | 
|  | template <typename R> | 
|  | void ExhaustiveFloat(uint32_t cases, R&& runnable) { | 
|  | runnable(0.0f); | 
|  | runnable(-0.0f); | 
|  | if (cases >= 2e9) {  // more than 2 billion?  Might as well run them all. | 
|  | for (float f = 0; f < std::numeric_limits<float>::max(); ) { | 
|  | f = nextafterf(f, std::numeric_limits<float>::max()); | 
|  | runnable(-f); | 
|  | runnable(f); | 
|  | } | 
|  | return; | 
|  | } | 
|  | std::set<float> floats = {3.4028234e38f}; | 
|  | for (float f : {1.0, 3.14159265, 2.718281828, 1 / 2.718281828}) { | 
|  | for (float testf = f; testf != 0; testf *= 0.1f) floats.insert(testf); | 
|  | for (float testf = f; testf != 0; testf *= 0.5f) floats.insert(testf); | 
|  | for (float testf = f; testf < 3e38f / 2; testf *= 2.0f) | 
|  | floats.insert(testf); | 
|  | for (float testf = f; testf < 3e38f / 10; testf *= 10) floats.insert(testf); | 
|  | } | 
|  |  | 
|  | float last = *floats.begin(); | 
|  |  | 
|  | runnable(last); | 
|  | runnable(-last); | 
|  | int iters_per_float = cases / floats.size(); | 
|  | if (iters_per_float == 0) iters_per_float = 1; | 
|  | for (float f : floats) { | 
|  | if (f == last) continue; | 
|  | float testf = std::nextafter(last, std::numeric_limits<float>::max()); | 
|  | runnable(testf); | 
|  | runnable(-testf); | 
|  | last = testf; | 
|  | if (f == last) continue; | 
|  | double step = (double{f} - last) / iters_per_float; | 
|  | for (double d = last + step; d < f; d += step) { | 
|  | testf = d; | 
|  | if (testf != last) { | 
|  | runnable(testf); | 
|  | runnable(-testf); | 
|  | last = testf; | 
|  | } | 
|  | } | 
|  | testf = std::nextafter(f, 0.0f); | 
|  | if (testf > last) { | 
|  | runnable(testf); | 
|  | runnable(-testf); | 
|  | last = testf; | 
|  | } | 
|  | if (f != last) { | 
|  | runnable(f); | 
|  | runnable(-f); | 
|  | last = f; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(SimpleDtoaTest, ExhaustiveDoubleToSixDigits) { | 
|  | uint64_t test_count = 0; | 
|  | std::vector<double> mismatches; | 
|  | auto checker = [&](double d) { | 
|  | if (d != d) return;  // rule out NaNs | 
|  | ++test_count; | 
|  | char sixdigitsbuf[kSixDigitsToBufferSize] = {0}; | 
|  | SixDigitsToBuffer(d, sixdigitsbuf); | 
|  | char snprintfbuf[kSixDigitsToBufferSize] = {0}; | 
|  | snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d); | 
|  | if (strcmp(sixdigitsbuf, snprintfbuf) != 0) { | 
|  | mismatches.push_back(d); | 
|  | if (mismatches.size() < 10) { | 
|  | LOG(ERROR) << "Six-digit failure with double.  d=" << d | 
|  | << " sixdigits=" << sixdigitsbuf | 
|  | << " printf(%g)=" << snprintfbuf; | 
|  | } | 
|  | } | 
|  | }; | 
|  | // Some quick sanity checks... | 
|  | checker(5e-324); | 
|  | checker(1e-308); | 
|  | checker(1.0); | 
|  | checker(1.000005); | 
|  | checker(1.7976931348623157e308); | 
|  | checker(0.00390625); | 
|  | #ifndef _MSC_VER | 
|  | // on MSVC, snprintf() rounds it to 0.00195313. SixDigitsToBuffer() rounds it | 
|  | // to 0.00195312 (round half to even). | 
|  | checker(0.001953125); | 
|  | #endif | 
|  | checker(0.005859375); | 
|  | // Some cases where the rounding is very very close | 
|  | checker(1.089095e-15); | 
|  | checker(3.274195e-55); | 
|  | checker(6.534355e-146); | 
|  | checker(2.920845e+234); | 
|  |  | 
|  | if (mismatches.empty()) { | 
|  | test_count = 0; | 
|  | ExhaustiveFloat(kFloatNumCases, checker); | 
|  |  | 
|  | test_count = 0; | 
|  | std::vector<int> digit_testcases{ | 
|  | 100000, 100001, 100002, 100005, 100010, 100020, 100050, 100100,  // misc | 
|  | 195312, 195313,  // 1.953125 is a case where we round down, just barely. | 
|  | 200000, 500000, 800000,  // misc mid-range cases | 
|  | 585937, 585938,  // 5.859375 is a case where we round up, just barely. | 
|  | 900000, 990000, 999000, 999900, 999990, 999996, 999997, 999998, 999999}; | 
|  | if (kFloatNumCases >= 1e9) { | 
|  | // If at least 1 billion test cases were requested, user wants an | 
|  | // exhaustive test. So let's test all mantissas, too. | 
|  | constexpr int min_mantissa = 100000, max_mantissa = 999999; | 
|  | digit_testcases.resize(max_mantissa - min_mantissa + 1); | 
|  | std::iota(digit_testcases.begin(), digit_testcases.end(), min_mantissa); | 
|  | } | 
|  |  | 
|  | for (int exponent = -324; exponent <= 308; ++exponent) { | 
|  | double powten = absl::strings_internal::Pow10(exponent); | 
|  | if (powten == 0) powten = 5e-324; | 
|  | if (kFloatNumCases >= 1e9) { | 
|  | // The exhaustive test takes a very long time, so log progress. | 
|  | char buf[kSixDigitsToBufferSize]; | 
|  | LOG(INFO) << "Exp " << exponent << " powten=" << powten << "(" << powten | 
|  | << ") (" | 
|  | << absl::string_view(buf, SixDigitsToBuffer(powten, buf)) | 
|  | << ")"; | 
|  | } | 
|  | for (int digits : digit_testcases) { | 
|  | if (exponent == 308 && digits >= 179769) break;  // don't overflow! | 
|  | double digiform = (digits + 0.5) * 0.00001; | 
|  | double testval = digiform * powten; | 
|  | double pretestval = nextafter(testval, 0); | 
|  | double posttestval = nextafter(testval, 1.7976931348623157e308); | 
|  | checker(testval); | 
|  | checker(pretestval); | 
|  | checker(posttestval); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | EXPECT_EQ(mismatches.size(), 0); | 
|  | for (size_t i = 0; i < mismatches.size(); ++i) { | 
|  | if (i > 100) i = mismatches.size() - 1; | 
|  | double d = mismatches[i]; | 
|  | char sixdigitsbuf[kSixDigitsToBufferSize] = {0}; | 
|  | SixDigitsToBuffer(d, sixdigitsbuf); | 
|  | char snprintfbuf[kSixDigitsToBufferSize] = {0}; | 
|  | snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d); | 
|  | double before = nextafter(d, 0.0); | 
|  | double after = nextafter(d, 1.7976931348623157e308); | 
|  | char b1[32], b2[kSixDigitsToBufferSize]; | 
|  | LOG(ERROR) << "Mismatch #" << i << "  d=" << d << " (" << ToNineDigits(d) | 
|  | << ") sixdigits='" << sixdigitsbuf << "' snprintf='" | 
|  | << snprintfbuf << "' Before.=" << PerfectDtoa(before) << " " | 
|  | << (SixDigitsToBuffer(before, b2), b2) << " vs snprintf=" | 
|  | << (snprintf(b1, sizeof(b1), "%g", before), b1) | 
|  | << " Perfect=" << PerfectDtoa(d) << " " | 
|  | << (SixDigitsToBuffer(d, b2), b2) | 
|  | << " vs snprintf=" << (snprintf(b1, sizeof(b1), "%g", d), b1) | 
|  | << " After.=." << PerfectDtoa(after) << " " | 
|  | << (SixDigitsToBuffer(after, b2), b2) << " vs snprintf=" | 
|  | << (snprintf(b1, sizeof(b1), "%g", after), b1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(StrToInt32, Partial) { | 
|  | struct Int32TestLine { | 
|  | std::string input; | 
|  | bool status; | 
|  | int32_t value; | 
|  | }; | 
|  | const int32_t int32_min = std::numeric_limits<int32_t>::min(); | 
|  | const int32_t int32_max = std::numeric_limits<int32_t>::max(); | 
|  | Int32TestLine int32_test_line[] = { | 
|  | {"", false, 0}, | 
|  | {" ", false, 0}, | 
|  | {"-", false, 0}, | 
|  | {"123@@@", false, 123}, | 
|  | {absl::StrCat(int32_min, int32_max), false, int32_min}, | 
|  | {absl::StrCat(int32_max, int32_max), false, int32_max}, | 
|  | }; | 
|  |  | 
|  | for (const Int32TestLine& test_line : int32_test_line) { | 
|  | int32_t value = -2; | 
|  | bool status = safe_strto32_base(test_line.input, &value, 10); | 
|  | EXPECT_EQ(test_line.status, status) << test_line.input; | 
|  | EXPECT_EQ(test_line.value, value) << test_line.input; | 
|  | value = -2; | 
|  | status = safe_strto32_base(test_line.input, &value, 10); | 
|  | EXPECT_EQ(test_line.status, status) << test_line.input; | 
|  | EXPECT_EQ(test_line.value, value) << test_line.input; | 
|  | value = -2; | 
|  | status = safe_strto32_base(absl::string_view(test_line.input), &value, 10); | 
|  | EXPECT_EQ(test_line.status, status) << test_line.input; | 
|  | EXPECT_EQ(test_line.value, value) << test_line.input; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(StrToUint32, Partial) { | 
|  | struct Uint32TestLine { | 
|  | std::string input; | 
|  | bool status; | 
|  | uint32_t value; | 
|  | }; | 
|  | const uint32_t uint32_max = std::numeric_limits<uint32_t>::max(); | 
|  | Uint32TestLine uint32_test_line[] = { | 
|  | {"", false, 0}, | 
|  | {" ", false, 0}, | 
|  | {"-", false, 0}, | 
|  | {"123@@@", false, 123}, | 
|  | {absl::StrCat(uint32_max, uint32_max), false, uint32_max}, | 
|  | }; | 
|  |  | 
|  | for (const Uint32TestLine& test_line : uint32_test_line) { | 
|  | uint32_t value = 2; | 
|  | bool status = safe_strtou32_base(test_line.input, &value, 10); | 
|  | EXPECT_EQ(test_line.status, status) << test_line.input; | 
|  | EXPECT_EQ(test_line.value, value) << test_line.input; | 
|  | value = 2; | 
|  | status = safe_strtou32_base(test_line.input, &value, 10); | 
|  | EXPECT_EQ(test_line.status, status) << test_line.input; | 
|  | EXPECT_EQ(test_line.value, value) << test_line.input; | 
|  | value = 2; | 
|  | status = safe_strtou32_base(absl::string_view(test_line.input), &value, 10); | 
|  | EXPECT_EQ(test_line.status, status) << test_line.input; | 
|  | EXPECT_EQ(test_line.value, value) << test_line.input; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(StrToInt64, Partial) { | 
|  | struct Int64TestLine { | 
|  | std::string input; | 
|  | bool status; | 
|  | int64_t value; | 
|  | }; | 
|  | const int64_t int64_min = std::numeric_limits<int64_t>::min(); | 
|  | const int64_t int64_max = std::numeric_limits<int64_t>::max(); | 
|  | Int64TestLine int64_test_line[] = { | 
|  | {"", false, 0}, | 
|  | {" ", false, 0}, | 
|  | {"-", false, 0}, | 
|  | {"123@@@", false, 123}, | 
|  | {absl::StrCat(int64_min, int64_max), false, int64_min}, | 
|  | {absl::StrCat(int64_max, int64_max), false, int64_max}, | 
|  | }; | 
|  |  | 
|  | for (const Int64TestLine& test_line : int64_test_line) { | 
|  | int64_t value = -2; | 
|  | bool status = safe_strto64_base(test_line.input, &value, 10); | 
|  | EXPECT_EQ(test_line.status, status) << test_line.input; | 
|  | EXPECT_EQ(test_line.value, value) << test_line.input; | 
|  | value = -2; | 
|  | status = safe_strto64_base(test_line.input, &value, 10); | 
|  | EXPECT_EQ(test_line.status, status) << test_line.input; | 
|  | EXPECT_EQ(test_line.value, value) << test_line.input; | 
|  | value = -2; | 
|  | status = safe_strto64_base(absl::string_view(test_line.input), &value, 10); | 
|  | EXPECT_EQ(test_line.status, status) << test_line.input; | 
|  | EXPECT_EQ(test_line.value, value) << test_line.input; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(StrToUint64, Partial) { | 
|  | struct Uint64TestLine { | 
|  | std::string input; | 
|  | bool status; | 
|  | uint64_t value; | 
|  | }; | 
|  | const uint64_t uint64_max = std::numeric_limits<uint64_t>::max(); | 
|  | Uint64TestLine uint64_test_line[] = { | 
|  | {"", false, 0}, | 
|  | {" ", false, 0}, | 
|  | {"-", false, 0}, | 
|  | {"123@@@", false, 123}, | 
|  | {absl::StrCat(uint64_max, uint64_max), false, uint64_max}, | 
|  | }; | 
|  |  | 
|  | for (const Uint64TestLine& test_line : uint64_test_line) { | 
|  | uint64_t value = 2; | 
|  | bool status = safe_strtou64_base(test_line.input, &value, 10); | 
|  | EXPECT_EQ(test_line.status, status) << test_line.input; | 
|  | EXPECT_EQ(test_line.value, value) << test_line.input; | 
|  | value = 2; | 
|  | status = safe_strtou64_base(test_line.input, &value, 10); | 
|  | EXPECT_EQ(test_line.status, status) << test_line.input; | 
|  | EXPECT_EQ(test_line.value, value) << test_line.input; | 
|  | value = 2; | 
|  | status = safe_strtou64_base(absl::string_view(test_line.input), &value, 10); | 
|  | EXPECT_EQ(test_line.status, status) << test_line.input; | 
|  | EXPECT_EQ(test_line.value, value) << test_line.input; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(StrToInt32Base, PrefixOnly) { | 
|  | struct Int32TestLine { | 
|  | std::string input; | 
|  | bool status; | 
|  | int32_t value; | 
|  | }; | 
|  | Int32TestLine int32_test_line[] = { | 
|  | { "", false, 0 }, | 
|  | { "-", false, 0 }, | 
|  | { "-0", true, 0 }, | 
|  | { "0", true, 0 }, | 
|  | { "0x", false, 0 }, | 
|  | { "-0x", false, 0 }, | 
|  | }; | 
|  | const int base_array[] = { 0, 2, 8, 10, 16 }; | 
|  |  | 
|  | for (const Int32TestLine& line : int32_test_line) { | 
|  | for (const int base : base_array) { | 
|  | int32_t value = 2; | 
|  | bool status = safe_strto32_base(line.input.c_str(), &value, base); | 
|  | EXPECT_EQ(line.status, status) << line.input << " " << base; | 
|  | EXPECT_EQ(line.value, value) << line.input << " " << base; | 
|  | value = 2; | 
|  | status = safe_strto32_base(line.input, &value, base); | 
|  | EXPECT_EQ(line.status, status) << line.input << " " << base; | 
|  | EXPECT_EQ(line.value, value) << line.input << " " << base; | 
|  | value = 2; | 
|  | status = safe_strto32_base(absl::string_view(line.input), &value, base); | 
|  | EXPECT_EQ(line.status, status) << line.input << " " << base; | 
|  | EXPECT_EQ(line.value, value) << line.input << " " << base; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(StrToUint32Base, PrefixOnly) { | 
|  | struct Uint32TestLine { | 
|  | std::string input; | 
|  | bool status; | 
|  | uint32_t value; | 
|  | }; | 
|  | Uint32TestLine uint32_test_line[] = { | 
|  | { "", false, 0 }, | 
|  | { "0", true, 0 }, | 
|  | { "0x", false, 0 }, | 
|  | }; | 
|  | const int base_array[] = { 0, 2, 8, 10, 16 }; | 
|  |  | 
|  | for (const Uint32TestLine& line : uint32_test_line) { | 
|  | for (const int base : base_array) { | 
|  | uint32_t value = 2; | 
|  | bool status = safe_strtou32_base(line.input.c_str(), &value, base); | 
|  | EXPECT_EQ(line.status, status) << line.input << " " << base; | 
|  | EXPECT_EQ(line.value, value) << line.input << " " << base; | 
|  | value = 2; | 
|  | status = safe_strtou32_base(line.input, &value, base); | 
|  | EXPECT_EQ(line.status, status) << line.input << " " << base; | 
|  | EXPECT_EQ(line.value, value) << line.input << " " << base; | 
|  | value = 2; | 
|  | status = safe_strtou32_base(absl::string_view(line.input), &value, base); | 
|  | EXPECT_EQ(line.status, status) << line.input << " " << base; | 
|  | EXPECT_EQ(line.value, value) << line.input << " " << base; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(StrToInt64Base, PrefixOnly) { | 
|  | struct Int64TestLine { | 
|  | std::string input; | 
|  | bool status; | 
|  | int64_t value; | 
|  | }; | 
|  | Int64TestLine int64_test_line[] = { | 
|  | { "", false, 0 }, | 
|  | { "-", false, 0 }, | 
|  | { "-0", true, 0 }, | 
|  | { "0", true, 0 }, | 
|  | { "0x", false, 0 }, | 
|  | { "-0x", false, 0 }, | 
|  | }; | 
|  | const int base_array[] = { 0, 2, 8, 10, 16 }; | 
|  |  | 
|  | for (const Int64TestLine& line : int64_test_line) { | 
|  | for (const int base : base_array) { | 
|  | int64_t value = 2; | 
|  | bool status = safe_strto64_base(line.input.c_str(), &value, base); | 
|  | EXPECT_EQ(line.status, status) << line.input << " " << base; | 
|  | EXPECT_EQ(line.value, value) << line.input << " " << base; | 
|  | value = 2; | 
|  | status = safe_strto64_base(line.input, &value, base); | 
|  | EXPECT_EQ(line.status, status) << line.input << " " << base; | 
|  | EXPECT_EQ(line.value, value) << line.input << " " << base; | 
|  | value = 2; | 
|  | status = safe_strto64_base(absl::string_view(line.input), &value, base); | 
|  | EXPECT_EQ(line.status, status) << line.input << " " << base; | 
|  | EXPECT_EQ(line.value, value) << line.input << " " << base; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(StrToUint64Base, PrefixOnly) { | 
|  | struct Uint64TestLine { | 
|  | std::string input; | 
|  | bool status; | 
|  | uint64_t value; | 
|  | }; | 
|  | Uint64TestLine uint64_test_line[] = { | 
|  | { "", false, 0 }, | 
|  | { "0", true, 0 }, | 
|  | { "0x", false, 0 }, | 
|  | }; | 
|  | const int base_array[] = { 0, 2, 8, 10, 16 }; | 
|  |  | 
|  | for (const Uint64TestLine& line : uint64_test_line) { | 
|  | for (const int base : base_array) { | 
|  | uint64_t value = 2; | 
|  | bool status = safe_strtou64_base(line.input.c_str(), &value, base); | 
|  | EXPECT_EQ(line.status, status) << line.input << " " << base; | 
|  | EXPECT_EQ(line.value, value) << line.input << " " << base; | 
|  | value = 2; | 
|  | status = safe_strtou64_base(line.input, &value, base); | 
|  | EXPECT_EQ(line.status, status) << line.input << " " << base; | 
|  | EXPECT_EQ(line.value, value) << line.input << " " << base; | 
|  | value = 2; | 
|  | status = safe_strtou64_base(absl::string_view(line.input), &value, base); | 
|  | EXPECT_EQ(line.status, status) << line.input << " " << base; | 
|  | EXPECT_EQ(line.value, value) << line.input << " " << base; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void TestFastHexToBufferZeroPad16(uint64_t v) { | 
|  | char buf[16]; | 
|  | auto digits = absl::numbers_internal::FastHexToBufferZeroPad16(v, buf); | 
|  | absl::string_view res(buf, 16); | 
|  | char buf2[17]; | 
|  | snprintf(buf2, sizeof(buf2), "%016" PRIx64, v); | 
|  | EXPECT_EQ(res, buf2) << v; | 
|  | size_t expected_digits = snprintf(buf2, sizeof(buf2), "%" PRIx64, v); | 
|  | EXPECT_EQ(digits, expected_digits) << v; | 
|  | } | 
|  |  | 
|  | TEST(FastHexToBufferZeroPad16, Smoke) { | 
|  | TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::min()); | 
|  | TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::max()); | 
|  | TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::min()); | 
|  | TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::max()); | 
|  | absl::BitGen rng; | 
|  | for (int i = 0; i < 100000; ++i) { | 
|  | TestFastHexToBufferZeroPad16( | 
|  | absl::LogUniform(rng, std::numeric_limits<uint64_t>::min(), | 
|  | std::numeric_limits<uint64_t>::max())); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Int> | 
|  | void ExpectWritesNull() { | 
|  | { | 
|  | char buf[absl::numbers_internal::kFastToBufferSize]; | 
|  | Int x = std::numeric_limits<Int>::min(); | 
|  | EXPECT_THAT(absl::numbers_internal::FastIntToBuffer(x, buf), Pointee('\0')); | 
|  | } | 
|  | { | 
|  | char buf[absl::numbers_internal::kFastToBufferSize]; | 
|  | Int x = std::numeric_limits<Int>::max(); | 
|  | EXPECT_THAT(absl::numbers_internal::FastIntToBuffer(x, buf), Pointee('\0')); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(FastIntToBuffer, WritesNull) { | 
|  | ExpectWritesNull<int32_t>(); | 
|  | ExpectWritesNull<uint32_t>(); | 
|  | ExpectWritesNull<int64_t>(); | 
|  | ExpectWritesNull<uint32_t>(); | 
|  | } | 
|  |  | 
|  | }  // namespace |