| // Copyright 2017 The Abseil Authors. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //      https://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ | 
 | #define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ | 
 |  | 
 | #include <cassert> | 
 | #include <cmath> | 
 | #include <istream> | 
 | #include <limits> | 
 | #include <numeric> | 
 | #include <type_traits> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | #include "absl/random/bernoulli_distribution.h" | 
 | #include "absl/random/internal/iostream_state_saver.h" | 
 | #include "absl/random/uniform_int_distribution.h" | 
 |  | 
 | namespace absl { | 
 | ABSL_NAMESPACE_BEGIN | 
 |  | 
 | // absl::discrete_distribution | 
 | // | 
 | // A discrete distribution produces random integers i, where 0 <= i < n | 
 | // distributed according to the discrete probability function: | 
 | // | 
 | //     P(i|p0,...,pn−1)=pi | 
 | // | 
 | // This class is an implementation of discrete_distribution (see | 
 | // [rand.dist.samp.discrete]). | 
 | // | 
 | // The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2. | 
 | // absl::discrete_distribution takes O(N) time to precompute the probabilities | 
 | // (where N is the number of possible outcomes in the distribution) at | 
 | // construction, and then takes O(1) time for each variate generation.  Many | 
 | // other implementations also take O(N) time to construct an ordered sequence of | 
 | // partial sums, plus O(log N) time per variate to binary search. | 
 | // | 
 | template <typename IntType = int> | 
 | class discrete_distribution { | 
 |  public: | 
 |   using result_type = IntType; | 
 |  | 
 |   class param_type { | 
 |    public: | 
 |     using distribution_type = discrete_distribution; | 
 |  | 
 |     param_type() { init(); } | 
 |  | 
 |     template <typename InputIterator> | 
 |     explicit param_type(InputIterator begin, InputIterator end) | 
 |         : p_(begin, end) { | 
 |       init(); | 
 |     } | 
 |  | 
 |     explicit param_type(std::initializer_list<double> weights) : p_(weights) { | 
 |       init(); | 
 |     } | 
 |  | 
 |     template <class UnaryOperation> | 
 |     explicit param_type(size_t nw, double xmin, double xmax, | 
 |                         UnaryOperation fw) { | 
 |       if (nw > 0) { | 
 |         p_.reserve(nw); | 
 |         double delta = (xmax - xmin) / static_cast<double>(nw); | 
 |         assert(delta > 0); | 
 |         double t = delta * 0.5; | 
 |         for (size_t i = 0; i < nw; ++i) { | 
 |           p_.push_back(fw(xmin + i * delta + t)); | 
 |         } | 
 |       } | 
 |       init(); | 
 |     } | 
 |  | 
 |     const std::vector<double>& probabilities() const { return p_; } | 
 |     size_t n() const { return p_.size() - 1; } | 
 |  | 
 |     friend bool operator==(const param_type& a, const param_type& b) { | 
 |       return a.probabilities() == b.probabilities(); | 
 |     } | 
 |  | 
 |     friend bool operator!=(const param_type& a, const param_type& b) { | 
 |       return !(a == b); | 
 |     } | 
 |  | 
 |    private: | 
 |     friend class discrete_distribution; | 
 |  | 
 |     void init(); | 
 |  | 
 |     std::vector<double> p_;                     // normalized probabilities | 
 |     std::vector<std::pair<double, size_t>> q_;  // (acceptance, alternate) pairs | 
 |  | 
 |     static_assert(std::is_integral<result_type>::value, | 
 |                   "Class-template absl::discrete_distribution<> must be " | 
 |                   "parameterized using an integral type."); | 
 |   }; | 
 |  | 
 |   discrete_distribution() : param_() {} | 
 |  | 
 |   explicit discrete_distribution(const param_type& p) : param_(p) {} | 
 |  | 
 |   template <typename InputIterator> | 
 |   explicit discrete_distribution(InputIterator begin, InputIterator end) | 
 |       : param_(begin, end) {} | 
 |  | 
 |   explicit discrete_distribution(std::initializer_list<double> weights) | 
 |       : param_(weights) {} | 
 |  | 
 |   template <class UnaryOperation> | 
 |   explicit discrete_distribution(size_t nw, double xmin, double xmax, | 
 |                                  UnaryOperation fw) | 
 |       : param_(nw, xmin, xmax, std::move(fw)) {} | 
 |  | 
 |   void reset() {} | 
 |  | 
 |   // generating functions | 
 |   template <typename URBG> | 
 |   result_type operator()(URBG& g) {  // NOLINT(runtime/references) | 
 |     return (*this)(g, param_); | 
 |   } | 
 |  | 
 |   template <typename URBG> | 
 |   result_type operator()(URBG& g,  // NOLINT(runtime/references) | 
 |                          const param_type& p); | 
 |  | 
 |   const param_type& param() const { return param_; } | 
 |   void param(const param_type& p) { param_ = p; } | 
 |  | 
 |   result_type(min)() const { return 0; } | 
 |   result_type(max)() const { | 
 |     return static_cast<result_type>(param_.n()); | 
 |   }  // inclusive | 
 |  | 
 |   // NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a | 
 |   // const std::vector<double>&. | 
 |   const std::vector<double>& probabilities() const { | 
 |     return param_.probabilities(); | 
 |   } | 
 |  | 
 |   friend bool operator==(const discrete_distribution& a, | 
 |                          const discrete_distribution& b) { | 
 |     return a.param_ == b.param_; | 
 |   } | 
 |   friend bool operator!=(const discrete_distribution& a, | 
 |                          const discrete_distribution& b) { | 
 |     return a.param_ != b.param_; | 
 |   } | 
 |  | 
 |  private: | 
 |   param_type param_; | 
 | }; | 
 |  | 
 | // -------------------------------------------------------------------------- | 
 | // Implementation details only below | 
 | // -------------------------------------------------------------------------- | 
 |  | 
 | namespace random_internal { | 
 |  | 
 | // Using the vector `*probabilities`, whose values are the weights or | 
 | // probabilities of an element being selected, constructs the proportional | 
 | // probabilities used by the discrete distribution.  `*probabilities` will be | 
 | // scaled, if necessary, so that its entries sum to a value sufficiently close | 
 | // to 1.0. | 
 | std::vector<std::pair<double, size_t>> InitDiscreteDistribution( | 
 |     std::vector<double>* probabilities); | 
 |  | 
 | }  // namespace random_internal | 
 |  | 
 | template <typename IntType> | 
 | void discrete_distribution<IntType>::param_type::init() { | 
 |   if (p_.empty()) { | 
 |     p_.push_back(1.0); | 
 |     q_.emplace_back(1.0, 0); | 
 |   } else { | 
 |     assert(n() <= (std::numeric_limits<IntType>::max)()); | 
 |     q_ = random_internal::InitDiscreteDistribution(&p_); | 
 |   } | 
 | } | 
 |  | 
 | template <typename IntType> | 
 | template <typename URBG> | 
 | typename discrete_distribution<IntType>::result_type | 
 | discrete_distribution<IntType>::operator()( | 
 |     URBG& g,  // NOLINT(runtime/references) | 
 |     const param_type& p) { | 
 |   const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g); | 
 |   const auto& q = p.q_[idx]; | 
 |   const bool selected = absl::bernoulli_distribution(q.first)(g); | 
 |   return selected ? idx : static_cast<result_type>(q.second); | 
 | } | 
 |  | 
 | template <typename CharT, typename Traits, typename IntType> | 
 | std::basic_ostream<CharT, Traits>& operator<<( | 
 |     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references) | 
 |     const discrete_distribution<IntType>& x) { | 
 |   auto saver = random_internal::make_ostream_state_saver(os); | 
 |   const auto& probabilities = x.param().probabilities(); | 
 |   os << probabilities.size(); | 
 |  | 
 |   os.precision(random_internal::stream_precision_helper<double>::kPrecision); | 
 |   for (const auto& p : probabilities) { | 
 |     os << os.fill() << p; | 
 |   } | 
 |   return os; | 
 | } | 
 |  | 
 | template <typename CharT, typename Traits, typename IntType> | 
 | std::basic_istream<CharT, Traits>& operator>>( | 
 |     std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references) | 
 |     discrete_distribution<IntType>& x) {    // NOLINT(runtime/references) | 
 |   using param_type = typename discrete_distribution<IntType>::param_type; | 
 |   auto saver = random_internal::make_istream_state_saver(is); | 
 |  | 
 |   size_t n; | 
 |   std::vector<double> p; | 
 |  | 
 |   is >> n; | 
 |   if (is.fail()) return is; | 
 |   if (n > 0) { | 
 |     p.reserve(n); | 
 |     for (IntType i = 0; i < n && !is.fail(); ++i) { | 
 |       auto tmp = random_internal::read_floating_point<double>(is); | 
 |       if (is.fail()) return is; | 
 |       p.push_back(tmp); | 
 |     } | 
 |   } | 
 |   x.param(param_type(p.begin(), p.end())); | 
 |   return is; | 
 | } | 
 |  | 
 | ABSL_NAMESPACE_END | 
 | }  // namespace absl | 
 |  | 
 | #endif  // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ |