|  | // Copyright 2017 The Abseil Authors. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //      https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  | // | 
|  | // ----------------------------------------------------------------------------- | 
|  | // File: time.h | 
|  | // ----------------------------------------------------------------------------- | 
|  | // | 
|  | // This header file defines abstractions for computing with absolute points | 
|  | // in time, durations of time, and formatting and parsing time within a given | 
|  | // time zone. The following abstractions are defined: | 
|  | // | 
|  | //  * `absl::Time` defines an absolute, specific instance in time | 
|  | //  * `absl::Duration` defines a signed, fixed-length span of time | 
|  | //  * `absl::TimeZone` defines geopolitical time zone regions (as collected | 
|  | //     within the IANA Time Zone database (https://www.iana.org/time-zones)). | 
|  | // | 
|  | // Note: Absolute times are distinct from civil times, which refer to the | 
|  | // human-scale time commonly represented by `YYYY-MM-DD hh:mm:ss`. The mapping | 
|  | // between absolute and civil times can be specified by use of time zones | 
|  | // (`absl::TimeZone` within this API). That is: | 
|  | // | 
|  | //   Civil Time = F(Absolute Time, Time Zone) | 
|  | //   Absolute Time = G(Civil Time, Time Zone) | 
|  | // | 
|  | // See civil_time.h for abstractions related to constructing and manipulating | 
|  | // civil time. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   absl::TimeZone nyc; | 
|  | //   // LoadTimeZone() may fail so it's always better to check for success. | 
|  | //   if (!absl::LoadTimeZone("America/New_York", &nyc)) { | 
|  | //      // handle error case | 
|  | //   } | 
|  | // | 
|  | //   // My flight leaves NYC on Jan 2, 2017 at 03:04:05 | 
|  | //   absl::CivilSecond cs(2017, 1, 2, 3, 4, 5); | 
|  | //   absl::Time takeoff = absl::FromCivil(cs, nyc); | 
|  | // | 
|  | //   absl::Duration flight_duration = absl::Hours(21) + absl::Minutes(35); | 
|  | //   absl::Time landing = takeoff + flight_duration; | 
|  | // | 
|  | //   absl::TimeZone syd; | 
|  | //   if (!absl::LoadTimeZone("Australia/Sydney", &syd)) { | 
|  | //      // handle error case | 
|  | //   } | 
|  | //   std::string s = absl::FormatTime( | 
|  | //       "My flight will land in Sydney on %Y-%m-%d at %H:%M:%S", | 
|  | //       landing, syd); | 
|  |  | 
|  | #ifndef ABSL_TIME_TIME_H_ | 
|  | #define ABSL_TIME_TIME_H_ | 
|  |  | 
|  | #if !defined(_MSC_VER) | 
|  | #include <sys/time.h> | 
|  | #else | 
|  | // We don't include `winsock2.h` because it drags in `windows.h` and friends, | 
|  | // and they define conflicting macros like OPAQUE, ERROR, and more. This has the | 
|  | // potential to break Abseil users. | 
|  | // | 
|  | // Instead we only forward declare `timeval` and require Windows users include | 
|  | // `winsock2.h` themselves. This is both inconsistent and troublesome, but so is | 
|  | // including 'windows.h' so we are picking the lesser of two evils here. | 
|  | struct timeval; | 
|  | #endif | 
|  | #include <chrono>  // NOLINT(build/c++11) | 
|  | #include <cmath> | 
|  | #include <cstdint> | 
|  | #include <ctime> | 
|  | #include <limits> | 
|  | #include <ostream> | 
|  | #include <string> | 
|  | #include <type_traits> | 
|  | #include <utility> | 
|  |  | 
|  | #include "absl/base/config.h" | 
|  | #include "absl/base/macros.h" | 
|  | #include "absl/strings/string_view.h" | 
|  | #include "absl/time/civil_time.h" | 
|  | #include "absl/time/internal/cctz/include/cctz/time_zone.h" | 
|  |  | 
|  | namespace absl { | 
|  | ABSL_NAMESPACE_BEGIN | 
|  |  | 
|  | class Duration;  // Defined below | 
|  | class Time;      // Defined below | 
|  | class TimeZone;  // Defined below | 
|  |  | 
|  | namespace time_internal { | 
|  | int64_t IDivDuration(bool satq, Duration num, Duration den, Duration* rem); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixDuration(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration ToUnixDuration(Time t); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr int64_t GetRepHi(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr uint32_t GetRepLo(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeDuration(int64_t hi, | 
|  | uint32_t lo); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeDuration(int64_t hi, | 
|  | int64_t lo); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration MakePosDoubleDuration(double n); | 
|  | constexpr int64_t kTicksPerNanosecond = 4; | 
|  | constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond; | 
|  | template <std::intmax_t N> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v, | 
|  | std::ratio<1, N>); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v, | 
|  | std::ratio<60>); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v, | 
|  | std::ratio<3600>); | 
|  | template <typename T> | 
|  | using EnableIfIntegral = typename std::enable_if< | 
|  | std::is_integral<T>::value || std::is_enum<T>::value, int>::type; | 
|  | template <typename T> | 
|  | using EnableIfFloat = | 
|  | typename std::enable_if<std::is_floating_point<T>::value, int>::type; | 
|  | }  // namespace time_internal | 
|  |  | 
|  | // Duration | 
|  | // | 
|  | // The `absl::Duration` class represents a signed, fixed-length amount of time. | 
|  | // A `Duration` is generated using a unit-specific factory function, or is | 
|  | // the result of subtracting one `absl::Time` from another. Durations behave | 
|  | // like unit-safe integers and they support all the natural integer-like | 
|  | // arithmetic operations. Arithmetic overflows and saturates at +/- infinity. | 
|  | // `Duration` should be passed by value rather than const reference. | 
|  | // | 
|  | // Factory functions `Nanoseconds()`, `Microseconds()`, `Milliseconds()`, | 
|  | // `Seconds()`, `Minutes()`, `Hours()` and `InfiniteDuration()` allow for | 
|  | // creation of constexpr `Duration` values | 
|  | // | 
|  | // Examples: | 
|  | // | 
|  | //   constexpr absl::Duration ten_ns = absl::Nanoseconds(10); | 
|  | //   constexpr absl::Duration min = absl::Minutes(1); | 
|  | //   constexpr absl::Duration hour = absl::Hours(1); | 
|  | //   absl::Duration dur = 60 * min;  // dur == hour | 
|  | //   absl::Duration half_sec = absl::Milliseconds(500); | 
|  | //   absl::Duration quarter_sec = 0.25 * absl::Seconds(1); | 
|  | // | 
|  | // `Duration` values can be easily converted to an integral number of units | 
|  | // using the division operator. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   constexpr absl::Duration dur = absl::Milliseconds(1500); | 
|  | //   int64_t ns = dur / absl::Nanoseconds(1);   // ns == 1500000000 | 
|  | //   int64_t ms = dur / absl::Milliseconds(1);  // ms == 1500 | 
|  | //   int64_t sec = dur / absl::Seconds(1);    // sec == 1 (subseconds truncated) | 
|  | //   int64_t min = dur / absl::Minutes(1);    // min == 0 | 
|  | // | 
|  | // See the `IDivDuration()` and `FDivDuration()` functions below for details on | 
|  | // how to access the fractional parts of the quotient. | 
|  | // | 
|  | // Alternatively, conversions can be performed using helpers such as | 
|  | // `ToInt64Microseconds()` and `ToDoubleSeconds()`. | 
|  | class Duration { | 
|  | public: | 
|  | // Value semantics. | 
|  | constexpr Duration() : rep_hi_(0), rep_lo_(0) {}  // zero-length duration | 
|  |  | 
|  | // Copyable. | 
|  | #if !defined(__clang__) && defined(_MSC_VER) && _MSC_VER < 1930 | 
|  | // Explicitly defining the constexpr copy constructor avoids an MSVC bug. | 
|  | constexpr Duration(const Duration& d) | 
|  | : rep_hi_(d.rep_hi_), rep_lo_(d.rep_lo_) {} | 
|  | #else | 
|  | constexpr Duration(const Duration& d) = default; | 
|  | #endif | 
|  | Duration& operator=(const Duration& d) = default; | 
|  |  | 
|  | // Compound assignment operators. | 
|  | Duration& operator+=(Duration d); | 
|  | Duration& operator-=(Duration d); | 
|  | Duration& operator*=(int64_t r); | 
|  | Duration& operator*=(double r); | 
|  | Duration& operator/=(int64_t r); | 
|  | Duration& operator/=(double r); | 
|  | Duration& operator%=(Duration rhs); | 
|  |  | 
|  | // Overloads that forward to either the int64_t or double overloads above. | 
|  | // Integer operands must be representable as int64_t. Integer division is | 
|  | // truncating, so values less than the resolution will be returned as zero. | 
|  | // Floating-point multiplication and division is rounding (halfway cases | 
|  | // rounding away from zero), so values less than the resolution may be | 
|  | // returned as either the resolution or zero.  In particular, `d / 2.0` | 
|  | // can produce `d` when it is the resolution and "even". | 
|  | template <typename T, time_internal::EnableIfIntegral<T> = 0> | 
|  | Duration& operator*=(T r) { | 
|  | int64_t x = r; | 
|  | return *this *= x; | 
|  | } | 
|  |  | 
|  | template <typename T, time_internal::EnableIfIntegral<T> = 0> | 
|  | Duration& operator/=(T r) { | 
|  | int64_t x = r; | 
|  | return *this /= x; | 
|  | } | 
|  |  | 
|  | template <typename T, time_internal::EnableIfFloat<T> = 0> | 
|  | Duration& operator*=(T r) { | 
|  | double x = r; | 
|  | return *this *= x; | 
|  | } | 
|  |  | 
|  | template <typename T, time_internal::EnableIfFloat<T> = 0> | 
|  | Duration& operator/=(T r) { | 
|  | double x = r; | 
|  | return *this /= x; | 
|  | } | 
|  |  | 
|  | template <typename H> | 
|  | friend H AbslHashValue(H h, Duration d) { | 
|  | return H::combine(std::move(h), d.rep_hi_.Get(), d.rep_lo_); | 
|  | } | 
|  |  | 
|  | private: | 
|  | friend constexpr int64_t time_internal::GetRepHi(Duration d); | 
|  | friend constexpr uint32_t time_internal::GetRepLo(Duration d); | 
|  | friend constexpr Duration time_internal::MakeDuration(int64_t hi, | 
|  | uint32_t lo); | 
|  | constexpr Duration(int64_t hi, uint32_t lo) : rep_hi_(hi), rep_lo_(lo) {} | 
|  |  | 
|  | // We store `rep_hi_` 4-byte rather than 8-byte aligned to avoid 4 bytes of | 
|  | // tail padding. | 
|  | class HiRep { | 
|  | public: | 
|  | // Default constructor default-initializes `hi_`, which has the same | 
|  | // semantics as default-initializing an `int64_t` (undetermined value). | 
|  | HiRep() = default; | 
|  |  | 
|  | HiRep(const HiRep&) = default; | 
|  | HiRep& operator=(const HiRep&) = default; | 
|  |  | 
|  | explicit constexpr HiRep(const int64_t value) | 
|  | :  // C++17 forbids default-initialization in constexpr contexts. We can | 
|  | // remove this in C++20. | 
|  | #if defined(ABSL_IS_BIG_ENDIAN) && ABSL_IS_BIG_ENDIAN | 
|  | hi_(0), | 
|  | lo_(0) | 
|  | #else | 
|  | lo_(0), | 
|  | hi_(0) | 
|  | #endif | 
|  | { | 
|  | *this = value; | 
|  | } | 
|  |  | 
|  | constexpr int64_t Get() const { | 
|  | const uint64_t unsigned_value = | 
|  | (static_cast<uint64_t>(hi_) << 32) | static_cast<uint64_t>(lo_); | 
|  | // `static_cast<int64_t>(unsigned_value)` is implementation-defined | 
|  | // before c++20. On all supported platforms the behaviour is that mandated | 
|  | // by c++20, i.e. "If the destination type is signed, [...] the result is | 
|  | // the unique value of the destination type equal to the source value | 
|  | // modulo 2^n, where n is the number of bits used to represent the | 
|  | // destination type." | 
|  | static_assert( | 
|  | (static_cast<int64_t>((std::numeric_limits<uint64_t>::max)()) == | 
|  | int64_t{-1}) && | 
|  | (static_cast<int64_t>(static_cast<uint64_t>( | 
|  | (std::numeric_limits<int64_t>::max)()) + | 
|  | 1) == | 
|  | (std::numeric_limits<int64_t>::min)()), | 
|  | "static_cast<int64_t>(uint64_t) does not have c++20 semantics"); | 
|  | return static_cast<int64_t>(unsigned_value); | 
|  | } | 
|  |  | 
|  | constexpr HiRep& operator=(const int64_t value) { | 
|  | // "If the destination type is unsigned, the resulting value is the | 
|  | // smallest unsigned value equal to the source value modulo 2^n | 
|  | // where `n` is the number of bits used to represent the destination | 
|  | // type". | 
|  | const auto unsigned_value = static_cast<uint64_t>(value); | 
|  | hi_ = static_cast<uint32_t>(unsigned_value >> 32); | 
|  | lo_ = static_cast<uint32_t>(unsigned_value); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Notes: | 
|  | //  - Ideally we would use a `char[]` and `std::bitcast`, but the latter | 
|  | //    does not exist (and is not constexpr in `absl`) before c++20. | 
|  | //  - Order is optimized depending on endianness so that the compiler can | 
|  | //    turn `Get()` (resp. `operator=()`) into a single 8-byte load (resp. | 
|  | //    store). | 
|  | #if defined(ABSL_IS_BIG_ENDIAN) && ABSL_IS_BIG_ENDIAN | 
|  | uint32_t hi_; | 
|  | uint32_t lo_; | 
|  | #else | 
|  | uint32_t lo_; | 
|  | uint32_t hi_; | 
|  | #endif | 
|  | }; | 
|  | HiRep rep_hi_; | 
|  | uint32_t rep_lo_; | 
|  | }; | 
|  |  | 
|  | // Relational Operators | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<(Duration lhs, | 
|  | Duration rhs); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator>(Duration lhs, | 
|  | Duration rhs) { | 
|  | return rhs < lhs; | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator>=(Duration lhs, | 
|  | Duration rhs) { | 
|  | return !(lhs < rhs); | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<=(Duration lhs, | 
|  | Duration rhs) { | 
|  | return !(rhs < lhs); | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator==(Duration lhs, | 
|  | Duration rhs); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator!=(Duration lhs, | 
|  | Duration rhs) { | 
|  | return !(lhs == rhs); | 
|  | } | 
|  |  | 
|  | // Additive Operators | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration operator-(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration operator+(Duration lhs, | 
|  | Duration rhs) { | 
|  | return lhs += rhs; | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration operator-(Duration lhs, | 
|  | Duration rhs) { | 
|  | return lhs -= rhs; | 
|  | } | 
|  |  | 
|  | // Multiplicative Operators | 
|  | // Integer operands must be representable as int64_t. | 
|  | template <typename T> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration operator*(Duration lhs, T rhs) { | 
|  | return lhs *= rhs; | 
|  | } | 
|  | template <typename T> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration operator*(T lhs, Duration rhs) { | 
|  | return rhs *= lhs; | 
|  | } | 
|  | template <typename T> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration operator/(Duration lhs, T rhs) { | 
|  | return lhs /= rhs; | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t operator/(Duration lhs, | 
|  | Duration rhs) { | 
|  | return time_internal::IDivDuration(true, lhs, rhs, | 
|  | &lhs);  // trunc towards zero | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration operator%(Duration lhs, | 
|  | Duration rhs) { | 
|  | return lhs %= rhs; | 
|  | } | 
|  |  | 
|  | // IDivDuration() | 
|  | // | 
|  | // Divides a numerator `Duration` by a denominator `Duration`, returning the | 
|  | // quotient and remainder. The remainder always has the same sign as the | 
|  | // numerator. The returned quotient and remainder respect the identity: | 
|  | // | 
|  | //   numerator = denominator * quotient + remainder | 
|  | // | 
|  | // Returned quotients are capped to the range of `int64_t`, with the difference | 
|  | // spilling into the remainder to uphold the above identity. This means that the | 
|  | // remainder returned could differ from the remainder returned by | 
|  | // `Duration::operator%` for huge quotients. | 
|  | // | 
|  | // See also the notes on `InfiniteDuration()` below regarding the behavior of | 
|  | // division involving zero and infinite durations. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   constexpr absl::Duration a = | 
|  | //       absl::Seconds(std::numeric_limits<int64_t>::max());  // big | 
|  | //   constexpr absl::Duration b = absl::Nanoseconds(1);       // small | 
|  | // | 
|  | //   absl::Duration rem = a % b; | 
|  | //   // rem == absl::ZeroDuration() | 
|  | // | 
|  | //   // Here, q would overflow int64_t, so rem accounts for the difference. | 
|  | //   int64_t q = absl::IDivDuration(a, b, &rem); | 
|  | //   // q == std::numeric_limits<int64_t>::max(), rem == a - b * q | 
|  | inline int64_t IDivDuration(Duration num, Duration den, Duration* rem) { | 
|  | return time_internal::IDivDuration(true, num, den, | 
|  | rem);  // trunc towards zero | 
|  | } | 
|  |  | 
|  | // FDivDuration() | 
|  | // | 
|  | // Divides a `Duration` numerator into a fractional number of units of a | 
|  | // `Duration` denominator. | 
|  | // | 
|  | // See also the notes on `InfiniteDuration()` below regarding the behavior of | 
|  | // division involving zero and infinite durations. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   double d = absl::FDivDuration(absl::Milliseconds(1500), absl::Seconds(1)); | 
|  | //   // d == 1.5 | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION double FDivDuration(Duration num, Duration den); | 
|  |  | 
|  | // ZeroDuration() | 
|  | // | 
|  | // Returns a zero-length duration. This function behaves just like the default | 
|  | // constructor, but the name helps make the semantics clear at call sites. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration ZeroDuration() { | 
|  | return Duration(); | 
|  | } | 
|  |  | 
|  | // AbsDuration() | 
|  | // | 
|  | // Returns the absolute value of a duration. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration AbsDuration(Duration d) { | 
|  | return (d < ZeroDuration()) ? -d : d; | 
|  | } | 
|  |  | 
|  | // Trunc() | 
|  | // | 
|  | // Truncates a duration (toward zero) to a multiple of a non-zero unit. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   absl::Duration d = absl::Nanoseconds(123456789); | 
|  | //   absl::Duration a = absl::Trunc(d, absl::Microseconds(1));  // 123456us | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Trunc(Duration d, Duration unit); | 
|  |  | 
|  | // Floor() | 
|  | // | 
|  | // Floors a duration using the passed duration unit to its largest value not | 
|  | // greater than the duration. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   absl::Duration d = absl::Nanoseconds(123456789); | 
|  | //   absl::Duration b = absl::Floor(d, absl::Microseconds(1));  // 123456us | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Floor(Duration d, Duration unit); | 
|  |  | 
|  | // Ceil() | 
|  | // | 
|  | // Returns the ceiling of a duration using the passed duration unit to its | 
|  | // smallest value not less than the duration. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   absl::Duration d = absl::Nanoseconds(123456789); | 
|  | //   absl::Duration c = absl::Ceil(d, absl::Microseconds(1));   // 123457us | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Ceil(Duration d, Duration unit); | 
|  |  | 
|  | // InfiniteDuration() | 
|  | // | 
|  | // Returns an infinite `Duration`.  To get a `Duration` representing negative | 
|  | // infinity, use `-InfiniteDuration()`. | 
|  | // | 
|  | // Duration arithmetic overflows to +/- infinity and saturates. In general, | 
|  | // arithmetic with `Duration` infinities is similar to IEEE 754 infinities | 
|  | // except where IEEE 754 NaN would be involved, in which case +/- | 
|  | // `InfiniteDuration()` is used in place of a "nan" Duration. | 
|  | // | 
|  | // Examples: | 
|  | // | 
|  | //   constexpr absl::Duration inf = absl::InfiniteDuration(); | 
|  | //   const absl::Duration d = ... any finite duration ... | 
|  | // | 
|  | //   inf == inf + inf | 
|  | //   inf == inf + d | 
|  | //   inf == inf - inf | 
|  | //   -inf == d - inf | 
|  | // | 
|  | //   inf == d * 1e100 | 
|  | //   inf == inf / 2 | 
|  | //   0 == d / inf | 
|  | //   INT64_MAX == inf / d | 
|  | // | 
|  | //   d < inf | 
|  | //   -inf < d | 
|  | // | 
|  | //   // Division by zero returns infinity, or INT64_MIN/MAX where appropriate. | 
|  | //   inf == d / 0 | 
|  | //   INT64_MAX == d / absl::ZeroDuration() | 
|  | // | 
|  | // The examples involving the `/` operator above also apply to `IDivDuration()` | 
|  | // and `FDivDuration()`. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration InfiniteDuration(); | 
|  |  | 
|  | // Nanoseconds() | 
|  | // Microseconds() | 
|  | // Milliseconds() | 
|  | // Seconds() | 
|  | // Minutes() | 
|  | // Hours() | 
|  | // | 
|  | // Factory functions for constructing `Duration` values from an integral number | 
|  | // of the unit indicated by the factory function's name. The number must be | 
|  | // representable as int64_t. | 
|  | // | 
|  | // NOTE: no "Days()" factory function exists because "a day" is ambiguous. | 
|  | // Civil days are not always 24 hours long, and a 24-hour duration often does | 
|  | // not correspond with a civil day. If a 24-hour duration is needed, use | 
|  | // `absl::Hours(24)`. If you actually want a civil day, use absl::CivilDay | 
|  | // from civil_time.h. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   absl::Duration a = absl::Seconds(60); | 
|  | //   absl::Duration b = absl::Minutes(1);  // b == a | 
|  | template <typename T, time_internal::EnableIfIntegral<T> = 0> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Nanoseconds(T n) { | 
|  | return time_internal::FromInt64(n, std::nano{}); | 
|  | } | 
|  | template <typename T, time_internal::EnableIfIntegral<T> = 0> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Microseconds(T n) { | 
|  | return time_internal::FromInt64(n, std::micro{}); | 
|  | } | 
|  | template <typename T, time_internal::EnableIfIntegral<T> = 0> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Milliseconds(T n) { | 
|  | return time_internal::FromInt64(n, std::milli{}); | 
|  | } | 
|  | template <typename T, time_internal::EnableIfIntegral<T> = 0> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Seconds(T n) { | 
|  | return time_internal::FromInt64(n, std::ratio<1>{}); | 
|  | } | 
|  | template <typename T, time_internal::EnableIfIntegral<T> = 0> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Minutes(T n) { | 
|  | return time_internal::FromInt64(n, std::ratio<60>{}); | 
|  | } | 
|  | template <typename T, time_internal::EnableIfIntegral<T> = 0> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Hours(T n) { | 
|  | return time_internal::FromInt64(n, std::ratio<3600>{}); | 
|  | } | 
|  |  | 
|  | // Factory overloads for constructing `Duration` values from a floating-point | 
|  | // number of the unit indicated by the factory function's name. These functions | 
|  | // exist for convenience, but they are not as efficient as the integral | 
|  | // factories, which should be preferred. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   auto a = absl::Seconds(1.5);        // OK | 
|  | //   auto b = absl::Milliseconds(1500);  // BETTER | 
|  | template <typename T, time_internal::EnableIfFloat<T> = 0> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Nanoseconds(T n) { | 
|  | return n * Nanoseconds(1); | 
|  | } | 
|  | template <typename T, time_internal::EnableIfFloat<T> = 0> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Microseconds(T n) { | 
|  | return n * Microseconds(1); | 
|  | } | 
|  | template <typename T, time_internal::EnableIfFloat<T> = 0> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Milliseconds(T n) { | 
|  | return n * Milliseconds(1); | 
|  | } | 
|  | template <typename T, time_internal::EnableIfFloat<T> = 0> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Seconds(T n) { | 
|  | if (n >= 0) {  // Note: `NaN >= 0` is false. | 
|  | if (n >= static_cast<T>((std::numeric_limits<int64_t>::max)())) { | 
|  | return InfiniteDuration(); | 
|  | } | 
|  | return time_internal::MakePosDoubleDuration(n); | 
|  | } else { | 
|  | if (std::isnan(n)) | 
|  | return std::signbit(n) ? -InfiniteDuration() : InfiniteDuration(); | 
|  | if (n <= (std::numeric_limits<int64_t>::min)()) return -InfiniteDuration(); | 
|  | return -time_internal::MakePosDoubleDuration(-n); | 
|  | } | 
|  | } | 
|  | template <typename T, time_internal::EnableIfFloat<T> = 0> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Minutes(T n) { | 
|  | return n * Minutes(1); | 
|  | } | 
|  | template <typename T, time_internal::EnableIfFloat<T> = 0> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Hours(T n) { | 
|  | return n * Hours(1); | 
|  | } | 
|  |  | 
|  | // ToInt64Nanoseconds() | 
|  | // ToInt64Microseconds() | 
|  | // ToInt64Milliseconds() | 
|  | // ToInt64Seconds() | 
|  | // ToInt64Minutes() | 
|  | // ToInt64Hours() | 
|  | // | 
|  | // Helper functions that convert a Duration to an integral count of the | 
|  | // indicated unit. These return the same results as the `IDivDuration()` | 
|  | // function, though they usually do so more efficiently; see the | 
|  | // documentation of `IDivDuration()` for details about overflow, etc. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   absl::Duration d = absl::Milliseconds(1500); | 
|  | //   int64_t isec = absl::ToInt64Seconds(d);  // isec == 1 | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Nanoseconds(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Microseconds(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Milliseconds(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Seconds(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Minutes(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Hours(Duration d); | 
|  |  | 
|  | // ToDoubleNanoseconds() | 
|  | // ToDoubleMicroseconds() | 
|  | // ToDoubleMilliseconds() | 
|  | // ToDoubleSeconds() | 
|  | // ToDoubleMinutes() | 
|  | // ToDoubleHours() | 
|  | // | 
|  | // Helper functions that convert a Duration to a floating point count of the | 
|  | // indicated unit. These functions are shorthand for the `FDivDuration()` | 
|  | // function above; see its documentation for details about overflow, etc. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   absl::Duration d = absl::Milliseconds(1500); | 
|  | //   double dsec = absl::ToDoubleSeconds(d);  // dsec == 1.5 | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleNanoseconds(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleMicroseconds(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleMilliseconds(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleSeconds(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleMinutes(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleHours(Duration d); | 
|  |  | 
|  | // FromChrono() | 
|  | // | 
|  | // Converts any of the pre-defined std::chrono durations to an absl::Duration. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   std::chrono::milliseconds ms(123); | 
|  | //   absl::Duration d = absl::FromChrono(ms); | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono( | 
|  | const std::chrono::nanoseconds& d); | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono( | 
|  | const std::chrono::microseconds& d); | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono( | 
|  | const std::chrono::milliseconds& d); | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono( | 
|  | const std::chrono::seconds& d); | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono( | 
|  | const std::chrono::minutes& d); | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono( | 
|  | const std::chrono::hours& d); | 
|  |  | 
|  | // ToChronoNanoseconds() | 
|  | // ToChronoMicroseconds() | 
|  | // ToChronoMilliseconds() | 
|  | // ToChronoSeconds() | 
|  | // ToChronoMinutes() | 
|  | // ToChronoHours() | 
|  | // | 
|  | // Converts an absl::Duration to any of the pre-defined std::chrono durations. | 
|  | // If overflow would occur, the returned value will saturate at the min/max | 
|  | // chrono duration value instead. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   absl::Duration d = absl::Microseconds(123); | 
|  | //   auto x = absl::ToChronoMicroseconds(d); | 
|  | //   auto y = absl::ToChronoNanoseconds(d);  // x == y | 
|  | //   auto z = absl::ToChronoSeconds(absl::InfiniteDuration()); | 
|  | //   // z == std::chrono::seconds::max() | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::nanoseconds ToChronoNanoseconds( | 
|  | Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::microseconds ToChronoMicroseconds( | 
|  | Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::milliseconds ToChronoMilliseconds( | 
|  | Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::seconds ToChronoSeconds(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::minutes ToChronoMinutes(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::hours ToChronoHours(Duration d); | 
|  |  | 
|  | // FormatDuration() | 
|  | // | 
|  | // Returns a string representing the duration in the form "72h3m0.5s". | 
|  | // Returns "inf" or "-inf" for +/- `InfiniteDuration()`. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION std::string FormatDuration(Duration d); | 
|  |  | 
|  | // Output stream operator. | 
|  | inline std::ostream& operator<<(std::ostream& os, Duration d) { | 
|  | return os << FormatDuration(d); | 
|  | } | 
|  |  | 
|  | // Support for StrFormat(), StrCat() etc. | 
|  | template <typename Sink> | 
|  | void AbslStringify(Sink& sink, Duration d) { | 
|  | sink.Append(FormatDuration(d)); | 
|  | } | 
|  |  | 
|  | // ParseDuration() | 
|  | // | 
|  | // Parses a duration string consisting of a possibly signed sequence of | 
|  | // decimal numbers, each with an optional fractional part and a unit | 
|  | // suffix.  The valid suffixes are "ns", "us" "ms", "s", "m", and "h". | 
|  | // Simple examples include "300ms", "-1.5h", and "2h45m".  Parses "0" as | 
|  | // `ZeroDuration()`. Parses "inf" and "-inf" as +/- `InfiniteDuration()`. | 
|  | bool ParseDuration(absl::string_view dur_string, Duration* d); | 
|  |  | 
|  | // AbslParseFlag() | 
|  | // | 
|  | // Parses a command-line flag string representation `text` into a Duration | 
|  | // value. Duration flags must be specified in a format that is valid input for | 
|  | // `absl::ParseDuration()`. | 
|  | bool AbslParseFlag(absl::string_view text, Duration* dst, std::string* error); | 
|  |  | 
|  |  | 
|  | // AbslUnparseFlag() | 
|  | // | 
|  | // Unparses a Duration value into a command-line string representation using | 
|  | // the format specified by `absl::ParseDuration()`. | 
|  | std::string AbslUnparseFlag(Duration d); | 
|  |  | 
|  | ABSL_DEPRECATED("Use AbslParseFlag() instead.") | 
|  | bool ParseFlag(const std::string& text, Duration* dst, std::string* error); | 
|  | ABSL_DEPRECATED("Use AbslUnparseFlag() instead.") | 
|  | std::string UnparseFlag(Duration d); | 
|  |  | 
|  | // Time | 
|  | // | 
|  | // An `absl::Time` represents a specific instant in time. Arithmetic operators | 
|  | // are provided for naturally expressing time calculations. Instances are | 
|  | // created using `absl::Now()` and the `absl::From*()` factory functions that | 
|  | // accept the gamut of other time representations. Formatting and parsing | 
|  | // functions are provided for conversion to and from strings.  `absl::Time` | 
|  | // should be passed by value rather than const reference. | 
|  | // | 
|  | // `absl::Time` assumes there are 60 seconds in a minute, which means the | 
|  | // underlying time scales must be "smeared" to eliminate leap seconds. | 
|  | // See https://developers.google.com/time/smear. | 
|  | // | 
|  | // Even though `absl::Time` supports a wide range of timestamps, exercise | 
|  | // caution when using values in the distant past. `absl::Time` uses the | 
|  | // Proleptic Gregorian calendar, which extends the Gregorian calendar backward | 
|  | // to dates before its introduction in 1582. | 
|  | // See https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar | 
|  | // for more information. Use the ICU calendar classes to convert a date in | 
|  | // some other calendar (http://userguide.icu-project.org/datetime/calendar). | 
|  | // | 
|  | // Similarly, standardized time zones are a reasonably recent innovation, with | 
|  | // the Greenwich prime meridian being established in 1884. The TZ database | 
|  | // itself does not profess accurate offsets for timestamps prior to 1970. The | 
|  | // breakdown of future timestamps is subject to the whim of regional | 
|  | // governments. | 
|  | // | 
|  | // The `absl::Time` class represents an instant in time as a count of clock | 
|  | // ticks of some granularity (resolution) from some starting point (epoch). | 
|  | // | 
|  | // `absl::Time` uses a resolution that is high enough to avoid loss in | 
|  | // precision, and a range that is wide enough to avoid overflow, when | 
|  | // converting between tick counts in most Google time scales (i.e., resolution | 
|  | // of at least one nanosecond, and range +/-100 billion years).  Conversions | 
|  | // between the time scales are performed by truncating (towards negative | 
|  | // infinity) to the nearest representable point. | 
|  | // | 
|  | // Examples: | 
|  | // | 
|  | //   absl::Time t1 = ...; | 
|  | //   absl::Time t2 = t1 + absl::Minutes(2); | 
|  | //   absl::Duration d = t2 - t1;  // == absl::Minutes(2) | 
|  | // | 
|  | class Time { | 
|  | public: | 
|  | // Value semantics. | 
|  |  | 
|  | // Returns the Unix epoch.  However, those reading your code may not know | 
|  | // or expect the Unix epoch as the default value, so make your code more | 
|  | // readable by explicitly initializing all instances before use. | 
|  | // | 
|  | // Example: | 
|  | //   absl::Time t = absl::UnixEpoch(); | 
|  | //   absl::Time t = absl::Now(); | 
|  | //   absl::Time t = absl::TimeFromTimeval(tv); | 
|  | //   absl::Time t = absl::InfinitePast(); | 
|  | constexpr Time() = default; | 
|  |  | 
|  | // Copyable. | 
|  | constexpr Time(const Time& t) = default; | 
|  | Time& operator=(const Time& t) = default; | 
|  |  | 
|  | // Assignment operators. | 
|  | Time& operator+=(Duration d) { | 
|  | rep_ += d; | 
|  | return *this; | 
|  | } | 
|  | Time& operator-=(Duration d) { | 
|  | rep_ -= d; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Time::Breakdown | 
|  | // | 
|  | // The calendar and wall-clock (aka "civil time") components of an | 
|  | // `absl::Time` in a certain `absl::TimeZone`. This struct is not | 
|  | // intended to represent an instant in time. So, rather than passing | 
|  | // a `Time::Breakdown` to a function, pass an `absl::Time` and an | 
|  | // `absl::TimeZone`. | 
|  | // | 
|  | // Deprecated. Use `absl::TimeZone::CivilInfo`. | 
|  | struct ABSL_DEPRECATED("Use `absl::TimeZone::CivilInfo`.") Breakdown { | 
|  | int64_t year;        // year (e.g., 2013) | 
|  | int month;           // month of year [1:12] | 
|  | int day;             // day of month [1:31] | 
|  | int hour;            // hour of day [0:23] | 
|  | int minute;          // minute of hour [0:59] | 
|  | int second;          // second of minute [0:59] | 
|  | Duration subsecond;  // [Seconds(0):Seconds(1)) if finite | 
|  | int weekday;         // 1==Mon, ..., 7=Sun | 
|  | int yearday;         // day of year [1:366] | 
|  |  | 
|  | // Note: The following fields exist for backward compatibility | 
|  | // with older APIs.  Accessing these fields directly is a sign of | 
|  | // imprudent logic in the calling code.  Modern time-related code | 
|  | // should only access this data indirectly by way of FormatTime(). | 
|  | // These fields are undefined for InfiniteFuture() and InfinitePast(). | 
|  | int offset;             // seconds east of UTC | 
|  | bool is_dst;            // is offset non-standard? | 
|  | const char* zone_abbr;  // time-zone abbreviation (e.g., "PST") | 
|  | }; | 
|  |  | 
|  | // Time::In() | 
|  | // | 
|  | // Returns the breakdown of this instant in the given TimeZone. | 
|  | // | 
|  | // Deprecated. Use `absl::TimeZone::At(Time)`. | 
|  | ABSL_INTERNAL_DISABLE_DEPRECATED_DECLARATION_WARNING | 
|  | ABSL_DEPRECATED("Use `absl::TimeZone::At(Time)`.") | 
|  | Breakdown In(TimeZone tz) const; | 
|  | ABSL_INTERNAL_RESTORE_DEPRECATED_DECLARATION_WARNING | 
|  |  | 
|  | template <typename H> | 
|  | friend H AbslHashValue(H h, Time t) { | 
|  | return H::combine(std::move(h), t.rep_); | 
|  | } | 
|  |  | 
|  | private: | 
|  | friend constexpr Time time_internal::FromUnixDuration(Duration d); | 
|  | friend constexpr Duration time_internal::ToUnixDuration(Time t); | 
|  | friend constexpr bool operator<(Time lhs, Time rhs); | 
|  | friend constexpr bool operator==(Time lhs, Time rhs); | 
|  | friend Duration operator-(Time lhs, Time rhs); | 
|  | friend constexpr Time UniversalEpoch(); | 
|  | friend constexpr Time InfiniteFuture(); | 
|  | friend constexpr Time InfinitePast(); | 
|  | constexpr explicit Time(Duration rep) : rep_(rep) {} | 
|  | Duration rep_; | 
|  | }; | 
|  |  | 
|  | // Relational Operators | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<(Time lhs, Time rhs) { | 
|  | return lhs.rep_ < rhs.rep_; | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator>(Time lhs, Time rhs) { | 
|  | return rhs < lhs; | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator>=(Time lhs, Time rhs) { | 
|  | return !(lhs < rhs); | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<=(Time lhs, Time rhs) { | 
|  | return !(rhs < lhs); | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator==(Time lhs, Time rhs) { | 
|  | return lhs.rep_ == rhs.rep_; | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator!=(Time lhs, Time rhs) { | 
|  | return !(lhs == rhs); | 
|  | } | 
|  |  | 
|  | // Additive Operators | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Time operator+(Time lhs, Duration rhs) { | 
|  | return lhs += rhs; | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Time operator+(Duration lhs, Time rhs) { | 
|  | return rhs += lhs; | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Time operator-(Time lhs, Duration rhs) { | 
|  | return lhs -= rhs; | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration operator-(Time lhs, Time rhs) { | 
|  | return lhs.rep_ - rhs.rep_; | 
|  | } | 
|  |  | 
|  | // UnixEpoch() | 
|  | // | 
|  | // Returns the `absl::Time` representing "1970-01-01 00:00:00.0 +0000". | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time UnixEpoch() { return Time(); } | 
|  |  | 
|  | // UniversalEpoch() | 
|  | // | 
|  | // Returns the `absl::Time` representing "0001-01-01 00:00:00.0 +0000", the | 
|  | // epoch of the ICU Universal Time Scale. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time UniversalEpoch() { | 
|  | // 719162 is the number of days from 0001-01-01 to 1970-01-01, | 
|  | // assuming the Gregorian calendar. | 
|  | return Time( | 
|  | time_internal::MakeDuration(-24 * 719162 * int64_t{3600}, uint32_t{0})); | 
|  | } | 
|  |  | 
|  | // InfiniteFuture() | 
|  | // | 
|  | // Returns an `absl::Time` that is infinitely far in the future. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time InfiniteFuture() { | 
|  | return Time(time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(), | 
|  | ~uint32_t{0})); | 
|  | } | 
|  |  | 
|  | // InfinitePast() | 
|  | // | 
|  | // Returns an `absl::Time` that is infinitely far in the past. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time InfinitePast() { | 
|  | return Time(time_internal::MakeDuration((std::numeric_limits<int64_t>::min)(), | 
|  | ~uint32_t{0})); | 
|  | } | 
|  |  | 
|  | // FromUnixNanos() | 
|  | // FromUnixMicros() | 
|  | // FromUnixMillis() | 
|  | // FromUnixSeconds() | 
|  | // FromTimeT() | 
|  | // FromUDate() | 
|  | // FromUniversal() | 
|  | // | 
|  | // Creates an `absl::Time` from a variety of other representations.  See | 
|  | // https://unicode-org.github.io/icu/userguide/datetime/universaltimescale.html | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixNanos(int64_t ns); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixMicros(int64_t us); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixMillis(int64_t ms); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixSeconds(int64_t s); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromTimeT(time_t t); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Time FromUDate(double udate); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Time FromUniversal(int64_t universal); | 
|  |  | 
|  | // ToUnixNanos() | 
|  | // ToUnixMicros() | 
|  | // ToUnixMillis() | 
|  | // ToUnixSeconds() | 
|  | // ToTimeT() | 
|  | // ToUDate() | 
|  | // ToUniversal() | 
|  | // | 
|  | // Converts an `absl::Time` to a variety of other representations.  See | 
|  | // https://unicode-org.github.io/icu/userguide/datetime/universaltimescale.html | 
|  | // | 
|  | // Note that these operations round down toward negative infinity where | 
|  | // necessary to adjust to the resolution of the result type.  Beware of | 
|  | // possible time_t over/underflow in ToTime{T,val,spec}() on 32-bit platforms. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUnixNanos(Time t); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUnixMicros(Time t); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUnixMillis(Time t); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUnixSeconds(Time t); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION time_t ToTimeT(Time t); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION double ToUDate(Time t); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUniversal(Time t); | 
|  |  | 
|  | // DurationFromTimespec() | 
|  | // DurationFromTimeval() | 
|  | // ToTimespec() | 
|  | // ToTimeval() | 
|  | // TimeFromTimespec() | 
|  | // TimeFromTimeval() | 
|  | // ToTimespec() | 
|  | // ToTimeval() | 
|  | // | 
|  | // Some APIs use a timespec or a timeval as a Duration (e.g., nanosleep(2) | 
|  | // and select(2)), while others use them as a Time (e.g. clock_gettime(2) | 
|  | // and gettimeofday(2)), so conversion functions are provided for both cases. | 
|  | // The "to timespec/val" direction is easily handled via overloading, but | 
|  | // for "from timespec/val" the desired type is part of the function name. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration DurationFromTimespec(timespec ts); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration DurationFromTimeval(timeval tv); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION timespec ToTimespec(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION timeval ToTimeval(Duration d); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Time TimeFromTimespec(timespec ts); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION Time TimeFromTimeval(timeval tv); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION timespec ToTimespec(Time t); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION timeval ToTimeval(Time t); | 
|  |  | 
|  | // FromChrono() | 
|  | // | 
|  | // Converts a std::chrono::system_clock::time_point to an absl::Time. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   auto tp = std::chrono::system_clock::from_time_t(123); | 
|  | //   absl::Time t = absl::FromChrono(tp); | 
|  | //   // t == absl::FromTimeT(123) | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION Time | 
|  | FromChrono(const std::chrono::system_clock::time_point& tp); | 
|  |  | 
|  | // ToChronoTime() | 
|  | // | 
|  | // Converts an absl::Time to a std::chrono::system_clock::time_point. If | 
|  | // overflow would occur, the returned value will saturate at the min/max time | 
|  | // point value instead. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   absl::Time t = absl::FromTimeT(123); | 
|  | //   auto tp = absl::ToChronoTime(t); | 
|  | //   // tp == std::chrono::system_clock::from_time_t(123); | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::system_clock::time_point | 
|  | ToChronoTime(Time); | 
|  |  | 
|  | // AbslParseFlag() | 
|  | // | 
|  | // Parses the command-line flag string representation `text` into a Time value. | 
|  | // Time flags must be specified in a format that matches absl::RFC3339_full. | 
|  | // | 
|  | // For example: | 
|  | // | 
|  | //   --start_time=2016-01-02T03:04:05.678+08:00 | 
|  | // | 
|  | // Note: A UTC offset (or 'Z' indicating a zero-offset from UTC) is required. | 
|  | // | 
|  | // Additionally, if you'd like to specify a time as a count of | 
|  | // seconds/milliseconds/etc from the Unix epoch, use an absl::Duration flag | 
|  | // and add that duration to absl::UnixEpoch() to get an absl::Time. | 
|  | bool AbslParseFlag(absl::string_view text, Time* t, std::string* error); | 
|  |  | 
|  | // AbslUnparseFlag() | 
|  | // | 
|  | // Unparses a Time value into a command-line string representation using | 
|  | // the format specified by `absl::ParseTime()`. | 
|  | std::string AbslUnparseFlag(Time t); | 
|  |  | 
|  | ABSL_DEPRECATED("Use AbslParseFlag() instead.") | 
|  | bool ParseFlag(const std::string& text, Time* t, std::string* error); | 
|  | ABSL_DEPRECATED("Use AbslUnparseFlag() instead.") | 
|  | std::string UnparseFlag(Time t); | 
|  |  | 
|  | // TimeZone | 
|  | // | 
|  | // The `absl::TimeZone` is an opaque, small, value-type class representing a | 
|  | // geo-political region within which particular rules are used for converting | 
|  | // between absolute and civil times (see https://git.io/v59Ly). `absl::TimeZone` | 
|  | // values are named using the TZ identifiers from the IANA Time Zone Database, | 
|  | // such as "America/Los_Angeles" or "Australia/Sydney". `absl::TimeZone` values | 
|  | // are created from factory functions such as `absl::LoadTimeZone()`. Note: | 
|  | // strings like "PST" and "EDT" are not valid TZ identifiers. Prefer to pass by | 
|  | // value rather than const reference. | 
|  | // | 
|  | // For more on the fundamental concepts of time zones, absolute times, and civil | 
|  | // times, see https://github.com/google/cctz#fundamental-concepts | 
|  | // | 
|  | // Examples: | 
|  | // | 
|  | //   absl::TimeZone utc = absl::UTCTimeZone(); | 
|  | //   absl::TimeZone pst = absl::FixedTimeZone(-8 * 60 * 60); | 
|  | //   absl::TimeZone loc = absl::LocalTimeZone(); | 
|  | //   absl::TimeZone lax; | 
|  | //   if (!absl::LoadTimeZone("America/Los_Angeles", &lax)) { | 
|  | //     // handle error case | 
|  | //   } | 
|  | // | 
|  | // See also: | 
|  | // - https://github.com/google/cctz | 
|  | // - https://www.iana.org/time-zones | 
|  | // - https://en.wikipedia.org/wiki/Zoneinfo | 
|  | class TimeZone { | 
|  | public: | 
|  | explicit TimeZone(time_internal::cctz::time_zone tz) : cz_(tz) {} | 
|  | TimeZone() = default;  // UTC, but prefer UTCTimeZone() to be explicit. | 
|  |  | 
|  | // Copyable. | 
|  | TimeZone(const TimeZone&) = default; | 
|  | TimeZone& operator=(const TimeZone&) = default; | 
|  |  | 
|  | explicit operator time_internal::cctz::time_zone() const { return cz_; } | 
|  |  | 
|  | std::string name() const { return cz_.name(); } | 
|  |  | 
|  | // TimeZone::CivilInfo | 
|  | // | 
|  | // Information about the civil time corresponding to an absolute time. | 
|  | // This struct is not intended to represent an instant in time. So, rather | 
|  | // than passing a `TimeZone::CivilInfo` to a function, pass an `absl::Time` | 
|  | // and an `absl::TimeZone`. | 
|  | struct CivilInfo { | 
|  | CivilSecond cs; | 
|  | Duration subsecond; | 
|  |  | 
|  | // Note: The following fields exist for backward compatibility | 
|  | // with older APIs.  Accessing these fields directly is a sign of | 
|  | // imprudent logic in the calling code.  Modern time-related code | 
|  | // should only access this data indirectly by way of FormatTime(). | 
|  | // These fields are undefined for InfiniteFuture() and InfinitePast(). | 
|  | int offset;             // seconds east of UTC | 
|  | bool is_dst;            // is offset non-standard? | 
|  | const char* zone_abbr;  // time-zone abbreviation (e.g., "PST") | 
|  | }; | 
|  |  | 
|  | // TimeZone::At(Time) | 
|  | // | 
|  | // Returns the civil time for this TimeZone at a certain `absl::Time`. | 
|  | // If the input time is infinite, the output civil second will be set to | 
|  | // CivilSecond::max() or min(), and the subsecond will be infinite. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   const auto epoch = lax.At(absl::UnixEpoch()); | 
|  | //   // epoch.cs == 1969-12-31 16:00:00 | 
|  | //   // epoch.subsecond == absl::ZeroDuration() | 
|  | //   // epoch.offset == -28800 | 
|  | //   // epoch.is_dst == false | 
|  | //   // epoch.abbr == "PST" | 
|  | CivilInfo At(Time t) const; | 
|  |  | 
|  | // TimeZone::TimeInfo | 
|  | // | 
|  | // Information about the absolute times corresponding to a civil time. | 
|  | // (Subseconds must be handled separately.) | 
|  | // | 
|  | // It is possible for a caller to pass a civil-time value that does | 
|  | // not represent an actual or unique instant in time (due to a shift | 
|  | // in UTC offset in the TimeZone, which results in a discontinuity in | 
|  | // the civil-time components). For example, a daylight-saving-time | 
|  | // transition skips or repeats civil times---in the United States, | 
|  | // March 13, 2011 02:15 never occurred, while November 6, 2011 01:15 | 
|  | // occurred twice---so requests for such times are not well-defined. | 
|  | // To account for these possibilities, `absl::TimeZone::TimeInfo` is | 
|  | // richer than just a single `absl::Time`. | 
|  | struct TimeInfo { | 
|  | enum CivilKind { | 
|  | UNIQUE,    // the civil time was singular (pre == trans == post) | 
|  | SKIPPED,   // the civil time did not exist (pre >= trans > post) | 
|  | REPEATED,  // the civil time was ambiguous (pre < trans <= post) | 
|  | } kind; | 
|  | Time pre;    // time calculated using the pre-transition offset | 
|  | Time trans;  // when the civil-time discontinuity occurred | 
|  | Time post;   // time calculated using the post-transition offset | 
|  | }; | 
|  |  | 
|  | // TimeZone::At(CivilSecond) | 
|  | // | 
|  | // Returns an `absl::TimeInfo` containing the absolute time(s) for this | 
|  | // TimeZone at an `absl::CivilSecond`. When the civil time is skipped or | 
|  | // repeated, returns times calculated using the pre-transition and post- | 
|  | // transition UTC offsets, plus the transition time itself. | 
|  | // | 
|  | // Examples: | 
|  | // | 
|  | //   // A unique civil time | 
|  | //   const auto jan01 = lax.At(absl::CivilSecond(2011, 1, 1, 0, 0, 0)); | 
|  | //   // jan01.kind == TimeZone::TimeInfo::UNIQUE | 
|  | //   // jan01.pre    is 2011-01-01 00:00:00 -0800 | 
|  | //   // jan01.trans  is 2011-01-01 00:00:00 -0800 | 
|  | //   // jan01.post   is 2011-01-01 00:00:00 -0800 | 
|  | // | 
|  | //   // A Spring DST transition, when there is a gap in civil time | 
|  | //   const auto mar13 = lax.At(absl::CivilSecond(2011, 3, 13, 2, 15, 0)); | 
|  | //   // mar13.kind == TimeZone::TimeInfo::SKIPPED | 
|  | //   // mar13.pre   is 2011-03-13 03:15:00 -0700 | 
|  | //   // mar13.trans is 2011-03-13 03:00:00 -0700 | 
|  | //   // mar13.post  is 2011-03-13 01:15:00 -0800 | 
|  | // | 
|  | //   // A Fall DST transition, when civil times are repeated | 
|  | //   const auto nov06 = lax.At(absl::CivilSecond(2011, 11, 6, 1, 15, 0)); | 
|  | //   // nov06.kind == TimeZone::TimeInfo::REPEATED | 
|  | //   // nov06.pre   is 2011-11-06 01:15:00 -0700 | 
|  | //   // nov06.trans is 2011-11-06 01:00:00 -0800 | 
|  | //   // nov06.post  is 2011-11-06 01:15:00 -0800 | 
|  | TimeInfo At(CivilSecond ct) const; | 
|  |  | 
|  | // TimeZone::NextTransition() | 
|  | // TimeZone::PrevTransition() | 
|  | // | 
|  | // Finds the time of the next/previous offset change in this time zone. | 
|  | // | 
|  | // By definition, `NextTransition(t, &trans)` returns false when `t` is | 
|  | // `InfiniteFuture()`, and `PrevTransition(t, &trans)` returns false | 
|  | // when `t` is `InfinitePast()`. If the zone has no transitions, the | 
|  | // result will also be false no matter what the argument. | 
|  | // | 
|  | // Otherwise, when `t` is `InfinitePast()`, `NextTransition(t, &trans)` | 
|  | // returns true and sets `trans` to the first recorded transition. Chains | 
|  | // of calls to `NextTransition()/PrevTransition()` will eventually return | 
|  | // false, but it is unspecified exactly when `NextTransition(t, &trans)` | 
|  | // jumps to false, or what time is set by `PrevTransition(t, &trans)` for | 
|  | // a very distant `t`. | 
|  | // | 
|  | // Note: Enumeration of time-zone transitions is for informational purposes | 
|  | // only. Modern time-related code should not care about when offset changes | 
|  | // occur. | 
|  | // | 
|  | // Example: | 
|  | //   absl::TimeZone nyc; | 
|  | //   if (!absl::LoadTimeZone("America/New_York", &nyc)) { ... } | 
|  | //   const auto now = absl::Now(); | 
|  | //   auto t = absl::InfinitePast(); | 
|  | //   absl::TimeZone::CivilTransition trans; | 
|  | //   while (t <= now && nyc.NextTransition(t, &trans)) { | 
|  | //     // transition: trans.from -> trans.to | 
|  | //     t = nyc.At(trans.to).trans; | 
|  | //   } | 
|  | struct CivilTransition { | 
|  | CivilSecond from;  // the civil time we jump from | 
|  | CivilSecond to;    // the civil time we jump to | 
|  | }; | 
|  | bool NextTransition(Time t, CivilTransition* trans) const; | 
|  | bool PrevTransition(Time t, CivilTransition* trans) const; | 
|  |  | 
|  | template <typename H> | 
|  | friend H AbslHashValue(H h, TimeZone tz) { | 
|  | return H::combine(std::move(h), tz.cz_); | 
|  | } | 
|  |  | 
|  | private: | 
|  | friend bool operator==(TimeZone a, TimeZone b) { return a.cz_ == b.cz_; } | 
|  | friend bool operator!=(TimeZone a, TimeZone b) { return a.cz_ != b.cz_; } | 
|  | friend std::ostream& operator<<(std::ostream& os, TimeZone tz) { | 
|  | return os << tz.name(); | 
|  | } | 
|  |  | 
|  | time_internal::cctz::time_zone cz_; | 
|  | }; | 
|  |  | 
|  | // LoadTimeZone() | 
|  | // | 
|  | // Loads the named zone. May perform I/O on the initial load of the named | 
|  | // zone. If the name is invalid, or some other kind of error occurs, returns | 
|  | // `false` and `*tz` is set to the UTC time zone. | 
|  | inline bool LoadTimeZone(absl::string_view name, TimeZone* tz) { | 
|  | if (name == "localtime") { | 
|  | *tz = TimeZone(time_internal::cctz::local_time_zone()); | 
|  | return true; | 
|  | } | 
|  | time_internal::cctz::time_zone cz; | 
|  | const bool b = time_internal::cctz::load_time_zone(std::string(name), &cz); | 
|  | *tz = TimeZone(cz); | 
|  | return b; | 
|  | } | 
|  |  | 
|  | // FixedTimeZone() | 
|  | // | 
|  | // Returns a TimeZone that is a fixed offset (seconds east) from UTC. | 
|  | // Note: If the absolute value of the offset is greater than 24 hours | 
|  | // you'll get UTC (i.e., no offset) instead. | 
|  | inline TimeZone FixedTimeZone(int seconds) { | 
|  | return TimeZone( | 
|  | time_internal::cctz::fixed_time_zone(std::chrono::seconds(seconds))); | 
|  | } | 
|  |  | 
|  | // UTCTimeZone() | 
|  | // | 
|  | // Convenience method returning the UTC time zone. | 
|  | inline TimeZone UTCTimeZone() { | 
|  | return TimeZone(time_internal::cctz::utc_time_zone()); | 
|  | } | 
|  |  | 
|  | // LocalTimeZone() | 
|  | // | 
|  | // Convenience method returning the local time zone, or UTC if there is | 
|  | // no configured local zone.  Warning: Be wary of using LocalTimeZone(), | 
|  | // and particularly so in a server process, as the zone configured for the | 
|  | // local machine should be irrelevant.  Prefer an explicit zone name. | 
|  | inline TimeZone LocalTimeZone() { | 
|  | return TimeZone(time_internal::cctz::local_time_zone()); | 
|  | } | 
|  |  | 
|  | // ToCivilSecond() | 
|  | // ToCivilMinute() | 
|  | // ToCivilHour() | 
|  | // ToCivilDay() | 
|  | // ToCivilMonth() | 
|  | // ToCivilYear() | 
|  | // | 
|  | // Helpers for TimeZone::At(Time) to return particularly aligned civil times. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   absl::Time t = ...; | 
|  | //   absl::TimeZone tz = ...; | 
|  | //   const auto cd = absl::ToCivilDay(t, tz); | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilSecond ToCivilSecond(Time t, | 
|  | TimeZone tz) { | 
|  | return tz.At(t).cs;  // already a CivilSecond | 
|  | } | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilMinute ToCivilMinute(Time t, | 
|  | TimeZone tz) { | 
|  | return CivilMinute(tz.At(t).cs); | 
|  | } | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilHour ToCivilHour(Time t, TimeZone tz) { | 
|  | return CivilHour(tz.At(t).cs); | 
|  | } | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilDay ToCivilDay(Time t, TimeZone tz) { | 
|  | return CivilDay(tz.At(t).cs); | 
|  | } | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilMonth ToCivilMonth(Time t, | 
|  | TimeZone tz) { | 
|  | return CivilMonth(tz.At(t).cs); | 
|  | } | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilYear ToCivilYear(Time t, TimeZone tz) { | 
|  | return CivilYear(tz.At(t).cs); | 
|  | } | 
|  |  | 
|  | // FromCivil() | 
|  | // | 
|  | // Helper for TimeZone::At(CivilSecond) that provides "order-preserving | 
|  | // semantics." If the civil time maps to a unique time, that time is | 
|  | // returned. If the civil time is repeated in the given time zone, the | 
|  | // time using the pre-transition offset is returned. Otherwise, the | 
|  | // civil time is skipped in the given time zone, and the transition time | 
|  | // is returned. This means that for any two civil times, ct1 and ct2, | 
|  | // (ct1 < ct2) => (FromCivil(ct1) <= FromCivil(ct2)), the equal case | 
|  | // being when two non-existent civil times map to the same transition time. | 
|  | // | 
|  | // Note: Accepts civil times of any alignment. | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION inline Time FromCivil(CivilSecond ct, | 
|  | TimeZone tz) { | 
|  | const auto ti = tz.At(ct); | 
|  | if (ti.kind == TimeZone::TimeInfo::SKIPPED) return ti.trans; | 
|  | return ti.pre; | 
|  | } | 
|  |  | 
|  | // TimeConversion | 
|  | // | 
|  | // An `absl::TimeConversion` represents the conversion of year, month, day, | 
|  | // hour, minute, and second values (i.e., a civil time), in a particular | 
|  | // `absl::TimeZone`, to a time instant (an absolute time), as returned by | 
|  | // `absl::ConvertDateTime()`. Legacy version of `absl::TimeZone::TimeInfo`. | 
|  | // | 
|  | // Deprecated. Use `absl::TimeZone::TimeInfo`. | 
|  | struct ABSL_DEPRECATED("Use `absl::TimeZone::TimeInfo`.") TimeConversion { | 
|  | Time pre;    // time calculated using the pre-transition offset | 
|  | Time trans;  // when the civil-time discontinuity occurred | 
|  | Time post;   // time calculated using the post-transition offset | 
|  |  | 
|  | enum Kind { | 
|  | UNIQUE,    // the civil time was singular (pre == trans == post) | 
|  | SKIPPED,   // the civil time did not exist | 
|  | REPEATED,  // the civil time was ambiguous | 
|  | }; | 
|  | Kind kind; | 
|  |  | 
|  | bool normalized;  // input values were outside their valid ranges | 
|  | }; | 
|  |  | 
|  | // ConvertDateTime() | 
|  | // | 
|  | // Legacy version of `absl::TimeZone::At(absl::CivilSecond)` that takes | 
|  | // the civil time as six, separate values (YMDHMS). | 
|  | // | 
|  | // The input month, day, hour, minute, and second values can be outside | 
|  | // of their valid ranges, in which case they will be "normalized" during | 
|  | // the conversion. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   // "October 32" normalizes to "November 1". | 
|  | //   absl::TimeConversion tc = | 
|  | //       absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, lax); | 
|  | //   // tc.kind == TimeConversion::UNIQUE && tc.normalized == true | 
|  | //   // absl::ToCivilDay(tc.pre, tz).month() == 11 | 
|  | //   // absl::ToCivilDay(tc.pre, tz).day() == 1 | 
|  | // | 
|  | // Deprecated. Use `absl::TimeZone::At(CivilSecond)`. | 
|  | ABSL_INTERNAL_DISABLE_DEPRECATED_DECLARATION_WARNING | 
|  | ABSL_DEPRECATED("Use `absl::TimeZone::At(CivilSecond)`.") | 
|  | TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour, | 
|  | int min, int sec, TimeZone tz); | 
|  | ABSL_INTERNAL_RESTORE_DEPRECATED_DECLARATION_WARNING | 
|  |  | 
|  | // FromDateTime() | 
|  | // | 
|  | // A convenience wrapper for `absl::ConvertDateTime()` that simply returns | 
|  | // the "pre" `absl::Time`.  That is, the unique result, or the instant that | 
|  | // is correct using the pre-transition offset (as if the transition never | 
|  | // happened). | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   absl::Time t = absl::FromDateTime(2017, 9, 26, 9, 30, 0, lax); | 
|  | //   // t = 2017-09-26 09:30:00 -0700 | 
|  | // | 
|  | // Deprecated. Use `absl::FromCivil(CivilSecond, TimeZone)`. Note that the | 
|  | // behavior of `FromCivil()` differs from `FromDateTime()` for skipped civil | 
|  | // times. If you care about that see `absl::TimeZone::At(absl::CivilSecond)`. | 
|  | ABSL_DEPRECATED("Use `absl::FromCivil(CivilSecond, TimeZone)`.") | 
|  | inline Time FromDateTime(int64_t year, int mon, int day, int hour, int min, | 
|  | int sec, TimeZone tz) { | 
|  | ABSL_INTERNAL_DISABLE_DEPRECATED_DECLARATION_WARNING | 
|  | return ConvertDateTime(year, mon, day, hour, min, sec, tz).pre; | 
|  | ABSL_INTERNAL_RESTORE_DEPRECATED_DECLARATION_WARNING | 
|  | } | 
|  |  | 
|  | // FromTM() | 
|  | // | 
|  | // Converts the `tm_year`, `tm_mon`, `tm_mday`, `tm_hour`, `tm_min`, and | 
|  | // `tm_sec` fields to an `absl::Time` using the given time zone. See ctime(3) | 
|  | // for a description of the expected values of the tm fields. If the civil time | 
|  | // is unique (see `absl::TimeZone::At(absl::CivilSecond)` above), the matching | 
|  | // time instant is returned.  Otherwise, the `tm_isdst` field is consulted to | 
|  | // choose between the possible results.  For a repeated civil time, `tm_isdst != | 
|  | // 0` returns the matching DST instant, while `tm_isdst == 0` returns the | 
|  | // matching non-DST instant.  For a skipped civil time there is no matching | 
|  | // instant, so `tm_isdst != 0` returns the DST instant, and `tm_isdst == 0` | 
|  | // returns the non-DST instant, that would have matched if the transition never | 
|  | // happened. | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION Time FromTM(const struct tm& tm, TimeZone tz); | 
|  |  | 
|  | // ToTM() | 
|  | // | 
|  | // Converts the given `absl::Time` to a struct tm using the given time zone. | 
|  | // See ctime(3) for a description of the values of the tm fields. | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION struct tm ToTM(Time t, TimeZone tz); | 
|  |  | 
|  | // RFC3339_full | 
|  | // RFC3339_sec | 
|  | // | 
|  | // FormatTime()/ParseTime() format specifiers for RFC3339 date/time strings, | 
|  | // with trailing zeros trimmed or with fractional seconds omitted altogether. | 
|  | // | 
|  | // Note that RFC3339_sec[] matches an ISO 8601 extended format for date and | 
|  | // time with UTC offset.  Also note the use of "%Y": RFC3339 mandates that | 
|  | // years have exactly four digits, but we allow them to take their natural | 
|  | // width. | 
|  | ABSL_DLL extern const char RFC3339_full[];  // %Y-%m-%d%ET%H:%M:%E*S%Ez | 
|  | ABSL_DLL extern const char RFC3339_sec[];   // %Y-%m-%d%ET%H:%M:%S%Ez | 
|  |  | 
|  | // RFC1123_full | 
|  | // RFC1123_no_wday | 
|  | // | 
|  | // FormatTime()/ParseTime() format specifiers for RFC1123 date/time strings. | 
|  | ABSL_DLL extern const char RFC1123_full[];     // %a, %d %b %E4Y %H:%M:%S %z | 
|  | ABSL_DLL extern const char RFC1123_no_wday[];  // %d %b %E4Y %H:%M:%S %z | 
|  |  | 
|  | // FormatTime() | 
|  | // | 
|  | // Formats the given `absl::Time` in the `absl::TimeZone` according to the | 
|  | // provided format string. Uses strftime()-like formatting options, with | 
|  | // the following extensions: | 
|  | // | 
|  | //   - %Ez  - RFC3339-compatible numeric UTC offset (+hh:mm or -hh:mm) | 
|  | //   - %E*z - Full-resolution numeric UTC offset (+hh:mm:ss or -hh:mm:ss) | 
|  | //   - %E#S - Seconds with # digits of fractional precision | 
|  | //   - %E*S - Seconds with full fractional precision (a literal '*') | 
|  | //   - %E#f - Fractional seconds with # digits of precision | 
|  | //   - %E*f - Fractional seconds with full precision (a literal '*') | 
|  | //   - %E4Y - Four-character years (-999 ... -001, 0000, 0001 ... 9999) | 
|  | //   - %ET  - The RFC3339 "date-time" separator "T" | 
|  | // | 
|  | // Note that %E0S behaves like %S, and %E0f produces no characters.  In | 
|  | // contrast %E*f always produces at least one digit, which may be '0'. | 
|  | // | 
|  | // Note that %Y produces as many characters as it takes to fully render the | 
|  | // year.  A year outside of [-999:9999] when formatted with %E4Y will produce | 
|  | // more than four characters, just like %Y. | 
|  | // | 
|  | // We recommend that format strings include the UTC offset (%z, %Ez, or %E*z) | 
|  | // so that the result uniquely identifies a time instant. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   absl::CivilSecond cs(2013, 1, 2, 3, 4, 5); | 
|  | //   absl::Time t = absl::FromCivil(cs, lax); | 
|  | //   std::string f = absl::FormatTime("%H:%M:%S", t, lax);  // "03:04:05" | 
|  | //   f = absl::FormatTime("%H:%M:%E3S", t, lax);  // "03:04:05.000" | 
|  | // | 
|  | // Note: If the given `absl::Time` is `absl::InfiniteFuture()`, the returned | 
|  | // string will be exactly "infinite-future". If the given `absl::Time` is | 
|  | // `absl::InfinitePast()`, the returned string will be exactly "infinite-past". | 
|  | // In both cases the given format string and `absl::TimeZone` are ignored. | 
|  | // | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION std::string FormatTime(absl::string_view format, | 
|  | Time t, TimeZone tz); | 
|  |  | 
|  | // Convenience functions that format the given time using the RFC3339_full | 
|  | // format.  The first overload uses the provided TimeZone, while the second | 
|  | // uses LocalTimeZone(). | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION std::string FormatTime(Time t, TimeZone tz); | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION std::string FormatTime(Time t); | 
|  |  | 
|  | // Output stream operator. | 
|  | inline std::ostream& operator<<(std::ostream& os, Time t) { | 
|  | return os << FormatTime(t); | 
|  | } | 
|  |  | 
|  | // Support for StrFormat(), StrCat() etc. | 
|  | template <typename Sink> | 
|  | void AbslStringify(Sink& sink, Time t) { | 
|  | sink.Append(FormatTime(t)); | 
|  | } | 
|  |  | 
|  | // ParseTime() | 
|  | // | 
|  | // Parses an input string according to the provided format string and | 
|  | // returns the corresponding `absl::Time`. Uses strftime()-like formatting | 
|  | // options, with the same extensions as FormatTime(), but with the | 
|  | // exceptions that %E#S is interpreted as %E*S, and %E#f as %E*f.  %Ez | 
|  | // and %E*z also accept the same inputs, which (along with %z) includes | 
|  | // 'z' and 'Z' as synonyms for +00:00.  %ET accepts either 'T' or 't'. | 
|  | // | 
|  | // %Y consumes as many numeric characters as it can, so the matching data | 
|  | // should always be terminated with a non-numeric.  %E4Y always consumes | 
|  | // exactly four characters, including any sign. | 
|  | // | 
|  | // Unspecified fields are taken from the default date and time of ... | 
|  | // | 
|  | //   "1970-01-01 00:00:00.0 +0000" | 
|  | // | 
|  | // For example, parsing a string of "15:45" (%H:%M) will return an absl::Time | 
|  | // that represents "1970-01-01 15:45:00.0 +0000". | 
|  | // | 
|  | // Note that since ParseTime() returns time instants, it makes the most sense | 
|  | // to parse fully-specified date/time strings that include a UTC offset (%z, | 
|  | // %Ez, or %E*z). | 
|  | // | 
|  | // Note also that `absl::ParseTime()` only heeds the fields year, month, day, | 
|  | // hour, minute, (fractional) second, and UTC offset.  Other fields, like | 
|  | // weekday (%a or %A), while parsed for syntactic validity, are ignored | 
|  | // in the conversion. | 
|  | // | 
|  | // Date and time fields that are out-of-range will be treated as errors | 
|  | // rather than normalizing them like `absl::CivilSecond` does.  For example, | 
|  | // it is an error to parse the date "Oct 32, 2013" because 32 is out of range. | 
|  | // | 
|  | // A leap second of ":60" is normalized to ":00" of the following minute | 
|  | // with fractional seconds discarded.  The following table shows how the | 
|  | // given seconds and subseconds will be parsed: | 
|  | // | 
|  | //   "59.x" -> 59.x  // exact | 
|  | //   "60.x" -> 00.0  // normalized | 
|  | //   "00.x" -> 00.x  // exact | 
|  | // | 
|  | // Errors are indicated by returning false and assigning an error message | 
|  | // to the "err" out param if it is non-null. | 
|  | // | 
|  | // Note: If the input string is exactly "infinite-future", the returned | 
|  | // `absl::Time` will be `absl::InfiniteFuture()` and `true` will be returned. | 
|  | // If the input string is "infinite-past", the returned `absl::Time` will be | 
|  | // `absl::InfinitePast()` and `true` will be returned. | 
|  | // | 
|  | bool ParseTime(absl::string_view format, absl::string_view input, Time* time, | 
|  | std::string* err); | 
|  |  | 
|  | // Like ParseTime() above, but if the format string does not contain a UTC | 
|  | // offset specification (%z/%Ez/%E*z) then the input is interpreted in the | 
|  | // given TimeZone.  This means that the input, by itself, does not identify a | 
|  | // unique instant.  Being time-zone dependent, it also admits the possibility | 
|  | // of ambiguity or non-existence, in which case the "pre" time (as defined | 
|  | // by TimeZone::TimeInfo) is returned.  For these reasons we recommend that | 
|  | // all date/time strings include a UTC offset so they're context independent. | 
|  | bool ParseTime(absl::string_view format, absl::string_view input, TimeZone tz, | 
|  | Time* time, std::string* err); | 
|  |  | 
|  | // ============================================================================ | 
|  | // Implementation Details Follow | 
|  | // ============================================================================ | 
|  |  | 
|  | namespace time_internal { | 
|  |  | 
|  | // Creates a Duration with a given representation. | 
|  | // REQUIRES: hi,lo is a valid representation of a Duration as specified | 
|  | // in time/duration.cc. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeDuration(int64_t hi, | 
|  | uint32_t lo = 0) { | 
|  | return Duration(hi, lo); | 
|  | } | 
|  |  | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeDuration(int64_t hi, | 
|  | int64_t lo) { | 
|  | return MakeDuration(hi, static_cast<uint32_t>(lo)); | 
|  | } | 
|  |  | 
|  | // Make a Duration value from a floating-point number, as long as that number | 
|  | // is in the range [ 0 .. numeric_limits<int64_t>::max ), that is, as long as | 
|  | // it's positive and can be converted to int64_t without risk of UB. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration MakePosDoubleDuration(double n) { | 
|  | const int64_t int_secs = static_cast<int64_t>(n); | 
|  | const uint32_t ticks = static_cast<uint32_t>( | 
|  | std::round((n - static_cast<double>(int_secs)) * kTicksPerSecond)); | 
|  | return ticks < kTicksPerSecond | 
|  | ? MakeDuration(int_secs, ticks) | 
|  | : MakeDuration(int_secs + 1, ticks - kTicksPerSecond); | 
|  | } | 
|  |  | 
|  | // Creates a normalized Duration from an almost-normalized (sec,ticks) | 
|  | // pair. sec may be positive or negative.  ticks must be in the range | 
|  | // -kTicksPerSecond < *ticks < kTicksPerSecond.  If ticks is negative it | 
|  | // will be normalized to a positive value in the resulting Duration. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeNormalizedDuration( | 
|  | int64_t sec, int64_t ticks) { | 
|  | return (ticks < 0) ? MakeDuration(sec - 1, ticks + kTicksPerSecond) | 
|  | : MakeDuration(sec, ticks); | 
|  | } | 
|  |  | 
|  | // Provide access to the Duration representation. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr int64_t GetRepHi(Duration d) { | 
|  | return d.rep_hi_.Get(); | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr uint32_t GetRepLo(Duration d) { | 
|  | return d.rep_lo_; | 
|  | } | 
|  |  | 
|  | // Returns true iff d is positive or negative infinity. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool IsInfiniteDuration(Duration d) { | 
|  | return GetRepLo(d) == ~uint32_t{0}; | 
|  | } | 
|  |  | 
|  | // Returns an infinite Duration with the opposite sign. | 
|  | // REQUIRES: IsInfiniteDuration(d) | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration OppositeInfinity(Duration d) { | 
|  | return GetRepHi(d) < 0 | 
|  | ? MakeDuration((std::numeric_limits<int64_t>::max)(), ~uint32_t{0}) | 
|  | : MakeDuration((std::numeric_limits<int64_t>::min)(), | 
|  | ~uint32_t{0}); | 
|  | } | 
|  |  | 
|  | // Returns (-n)-1 (equivalently -(n+1)) without avoidable overflow. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr int64_t NegateAndSubtractOne( | 
|  | int64_t n) { | 
|  | // Note: Good compilers will optimize this expression to ~n when using | 
|  | // a two's-complement representation (which is required for int64_t). | 
|  | return (n < 0) ? -(n + 1) : (-n) - 1; | 
|  | } | 
|  |  | 
|  | // Map between a Time and a Duration since the Unix epoch.  Note that these | 
|  | // functions depend on the above mentioned choice of the Unix epoch for the | 
|  | // Time representation (and both need to be Time friends).  Without this | 
|  | // knowledge, we would need to add-in/subtract-out UnixEpoch() respectively. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixDuration(Duration d) { | 
|  | return Time(d); | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration ToUnixDuration(Time t) { | 
|  | return t.rep_; | 
|  | } | 
|  |  | 
|  | template <std::intmax_t N> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v, | 
|  | std::ratio<1, N>) { | 
|  | static_assert(0 < N && N <= 1000 * 1000 * 1000, "Unsupported ratio"); | 
|  | // Subsecond ratios cannot overflow. | 
|  | return MakeNormalizedDuration( | 
|  | v / N, v % N * kTicksPerNanosecond * 1000 * 1000 * 1000 / N); | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v, | 
|  | std::ratio<60>) { | 
|  | return (v <= (std::numeric_limits<int64_t>::max)() / 60 && | 
|  | v >= (std::numeric_limits<int64_t>::min)() / 60) | 
|  | ? MakeDuration(v * 60) | 
|  | : v > 0 ? InfiniteDuration() : -InfiniteDuration(); | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v, | 
|  | std::ratio<3600>) { | 
|  | return (v <= (std::numeric_limits<int64_t>::max)() / 3600 && | 
|  | v >= (std::numeric_limits<int64_t>::min)() / 3600) | 
|  | ? MakeDuration(v * 3600) | 
|  | : v > 0 ? InfiniteDuration() : -InfiniteDuration(); | 
|  | } | 
|  |  | 
|  | // IsValidRep64<T>(0) is true if the expression `int64_t{std::declval<T>()}` is | 
|  | // valid. That is, if a T can be assigned to an int64_t without narrowing. | 
|  | template <typename T> | 
|  | constexpr auto IsValidRep64(int) -> decltype(int64_t{std::declval<T>()} == 0) { | 
|  | return true; | 
|  | } | 
|  | template <typename T> | 
|  | constexpr auto IsValidRep64(char) -> bool { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Converts a std::chrono::duration to an absl::Duration. | 
|  | template <typename Rep, typename Period> | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono( | 
|  | const std::chrono::duration<Rep, Period>& d) { | 
|  | static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid"); | 
|  | return FromInt64(int64_t{d.count()}, Period{}); | 
|  | } | 
|  |  | 
|  | template <typename Ratio> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64(Duration d, Ratio) { | 
|  | // Note: This may be used on MSVC, which may have a system_clock period of | 
|  | // std::ratio<1, 10 * 1000 * 1000> | 
|  | return ToInt64Seconds(d * Ratio::den / Ratio::num); | 
|  | } | 
|  | // Fastpath implementations for the 6 common duration units. | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d, std::nano) { | 
|  | return ToInt64Nanoseconds(d); | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d, std::micro) { | 
|  | return ToInt64Microseconds(d); | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d, std::milli) { | 
|  | return ToInt64Milliseconds(d); | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d, | 
|  | std::ratio<1>) { | 
|  | return ToInt64Seconds(d); | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d, | 
|  | std::ratio<60>) { | 
|  | return ToInt64Minutes(d); | 
|  | } | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d, | 
|  | std::ratio<3600>) { | 
|  | return ToInt64Hours(d); | 
|  | } | 
|  |  | 
|  | // Converts an absl::Duration to a chrono duration of type T. | 
|  | template <typename T> | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION T ToChronoDuration(Duration d) { | 
|  | using Rep = typename T::rep; | 
|  | using Period = typename T::period; | 
|  | static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid"); | 
|  | if (time_internal::IsInfiniteDuration(d)) | 
|  | return d < ZeroDuration() ? (T::min)() : (T::max)(); | 
|  | const auto v = ToInt64(d, Period{}); | 
|  | if (v > (std::numeric_limits<Rep>::max)()) return (T::max)(); | 
|  | if (v < (std::numeric_limits<Rep>::min)()) return (T::min)(); | 
|  | return T{v}; | 
|  | } | 
|  |  | 
|  | }  // namespace time_internal | 
|  |  | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<(Duration lhs, | 
|  | Duration rhs) { | 
|  | return time_internal::GetRepHi(lhs) != time_internal::GetRepHi(rhs) | 
|  | ? time_internal::GetRepHi(lhs) < time_internal::GetRepHi(rhs) | 
|  | : time_internal::GetRepHi(lhs) == (std::numeric_limits<int64_t>::min)() | 
|  | ? time_internal::GetRepLo(lhs) + 1 < | 
|  | time_internal::GetRepLo(rhs) + 1 | 
|  | : time_internal::GetRepLo(lhs) < time_internal::GetRepLo(rhs); | 
|  | } | 
|  |  | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator==(Duration lhs, | 
|  | Duration rhs) { | 
|  | return time_internal::GetRepHi(lhs) == time_internal::GetRepHi(rhs) && | 
|  | time_internal::GetRepLo(lhs) == time_internal::GetRepLo(rhs); | 
|  | } | 
|  |  | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration operator-(Duration d) { | 
|  | // This is a little interesting because of the special cases. | 
|  | // | 
|  | // If rep_lo_ is zero, we have it easy; it's safe to negate rep_hi_, we're | 
|  | // dealing with an integral number of seconds, and the only special case is | 
|  | // the maximum negative finite duration, which can't be negated. | 
|  | // | 
|  | // Infinities stay infinite, and just change direction. | 
|  | // | 
|  | // Finally we're in the case where rep_lo_ is non-zero, and we can borrow | 
|  | // a second's worth of ticks and avoid overflow (as negating int64_t-min + 1 | 
|  | // is safe). | 
|  | return time_internal::GetRepLo(d) == 0 | 
|  | ? time_internal::GetRepHi(d) == | 
|  | (std::numeric_limits<int64_t>::min)() | 
|  | ? InfiniteDuration() | 
|  | : time_internal::MakeDuration(-time_internal::GetRepHi(d)) | 
|  | : time_internal::IsInfiniteDuration(d) | 
|  | ? time_internal::OppositeInfinity(d) | 
|  | : time_internal::MakeDuration( | 
|  | time_internal::NegateAndSubtractOne( | 
|  | time_internal::GetRepHi(d)), | 
|  | time_internal::kTicksPerSecond - | 
|  | time_internal::GetRepLo(d)); | 
|  | } | 
|  |  | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration InfiniteDuration() { | 
|  | return time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(), | 
|  | ~uint32_t{0}); | 
|  | } | 
|  |  | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono( | 
|  | const std::chrono::nanoseconds& d) { | 
|  | return time_internal::FromChrono(d); | 
|  | } | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono( | 
|  | const std::chrono::microseconds& d) { | 
|  | return time_internal::FromChrono(d); | 
|  | } | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono( | 
|  | const std::chrono::milliseconds& d) { | 
|  | return time_internal::FromChrono(d); | 
|  | } | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono( | 
|  | const std::chrono::seconds& d) { | 
|  | return time_internal::FromChrono(d); | 
|  | } | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono( | 
|  | const std::chrono::minutes& d) { | 
|  | return time_internal::FromChrono(d); | 
|  | } | 
|  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono( | 
|  | const std::chrono::hours& d) { | 
|  | return time_internal::FromChrono(d); | 
|  | } | 
|  |  | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixNanos(int64_t ns) { | 
|  | return time_internal::FromUnixDuration(Nanoseconds(ns)); | 
|  | } | 
|  |  | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixMicros(int64_t us) { | 
|  | return time_internal::FromUnixDuration(Microseconds(us)); | 
|  | } | 
|  |  | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixMillis(int64_t ms) { | 
|  | return time_internal::FromUnixDuration(Milliseconds(ms)); | 
|  | } | 
|  |  | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixSeconds(int64_t s) { | 
|  | return time_internal::FromUnixDuration(Seconds(s)); | 
|  | } | 
|  |  | 
|  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromTimeT(time_t t) { | 
|  | return time_internal::FromUnixDuration(Seconds(t)); | 
|  | } | 
|  |  | 
|  | ABSL_NAMESPACE_END | 
|  | }  // namespace absl | 
|  |  | 
|  | #endif  // ABSL_TIME_TIME_H_ |