blob: d90d62589100d0c54146b9006bcd690d92cfd1cf [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/log.h>
#include <xnnpack/math.h>
#include <xnnpack/params.h>
#include <xnnpack/subgraph.h>
enum xnn_status xnn_create_subgraph(
uint32_t external_value_ids,
uint32_t flags,
xnn_subgraph_t* subgraph_out)
{
struct xnn_subgraph* subgraph = NULL;
enum xnn_status status = xnn_status_uninitialized;
if (!xnn_params.initialized) {
xnn_log_error("failed to create subgraph: XNNPACK is not initialized");
goto error;
}
status = xnn_status_out_of_memory;
subgraph = xnn_allocate_zero_memory(sizeof(struct xnn_subgraph));
if (subgraph == NULL) {
xnn_log_error("failed to allocate %zu bytes for subgraph descriptor", sizeof(struct xnn_subgraph));
goto error;
}
subgraph->external_value_ids = external_value_ids;
subgraph->values = xnn_allocate_zero_memory(external_value_ids * sizeof(struct xnn_value));
if (subgraph->values == NULL) {
xnn_log_error("failed to allocate %zu bytes for subgraph values", external_value_ids * sizeof(struct xnn_value));
goto error;
}
for (size_t i = 0; i < external_value_ids; i++) {
subgraph->values[i].id = i;
}
subgraph->num_values = external_value_ids;
subgraph->num_reserved_values = external_value_ids;
*subgraph_out = subgraph;
return xnn_status_success;
error:
xnn_delete_subgraph(subgraph);
return status;
}
struct xnn_value* xnn_subgraph_new_internal_value(xnn_subgraph_t subgraph)
{
struct xnn_value* values = subgraph->values;
const size_t size = subgraph->num_values;
const size_t capacity = subgraph->num_reserved_values;
if (capacity < size + 1) {
const size_t new_capacity = max(min(capacity * 2, capacity + 512), capacity + 64);
assert(new_capacity >= size + 1);
values = xnn_reallocate_memory(values, new_capacity * sizeof(struct xnn_value));
if (values == NULL) {
xnn_log_error("failed to allocate %zu bytes for subgraph values",
capacity * sizeof(struct xnn_value));
return values;
}
memset(values + size, 0, (new_capacity - size) * sizeof(struct xnn_value));
subgraph->num_reserved_values = new_capacity;
subgraph->values = values;
}
subgraph->num_values = size + 1;
struct xnn_value* new_value = values + size;
new_value->id = size;
return new_value;
}
struct xnn_node* xnn_subgraph_new_node(xnn_subgraph_t subgraph)
{
struct xnn_node* nodes = subgraph->nodes;
const size_t size = subgraph->num_nodes;
const size_t capacity = subgraph->num_reserved_nodes;
if (capacity < size + 1) {
const size_t new_capacity = max(min(capacity * 2, capacity + 512), capacity + 64);
assert(new_capacity >= size + 1);
nodes = xnn_reallocate_memory(nodes, new_capacity * sizeof(struct xnn_node));
if (nodes == NULL) {
xnn_log_error("failed to allocate %zu bytes for subgraph nodes",
capacity * sizeof(struct xnn_node));
return nodes;
}
memset(nodes + size, 0, (new_capacity - size) * sizeof(struct xnn_node));
subgraph->num_reserved_nodes = new_capacity;
subgraph->nodes = nodes;
}
subgraph->num_nodes = size + 1;
struct xnn_node* new_node = nodes + size;
new_node->id = size;
return new_node;
}
enum xnn_status xnn_define_convolution_2d(
xnn_subgraph_t subgraph,
uint32_t input_padding_top,
uint32_t input_padding_right,
uint32_t input_padding_bottom,
uint32_t input_padding_left,
uint32_t kernel_height,
uint32_t kernel_width,
uint32_t subsampling_height,
uint32_t subsampling_width,
uint32_t dilation_height,
uint32_t dilation_width,
uint32_t groups,
size_t group_input_channels,
size_t group_output_channels,
float output_min,
float output_max,
uint32_t input_id,
uint32_t filter_id,
uint32_t bias_id,
uint32_t output_id,
uint32_t flags)
{
if (!xnn_params.initialized) {
xnn_log_error("failed to define Convolution operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (kernel_width == 0 || kernel_height == 0) {
xnn_log_error(
"failed to define Convolution operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero",
kernel_width, kernel_height);
return xnn_status_invalid_parameter;
}
if (subsampling_width == 0 || subsampling_height == 0) {
xnn_log_error(
"failed to define Convolution operator with %" PRIu32 "x%" PRIu32 " subsampling: "
"subsampling dimensions must be non-zero",
subsampling_width, subsampling_height);
return xnn_status_invalid_parameter;
}
if (dilation_width == 0 || dilation_height == 0) {
xnn_log_error(
"failed to define Convolution operator with %" PRIu32 "x%" PRIu32 " dilation: "
"dilation dimensions must be non-zero",
dilation_width, dilation_height);
return xnn_status_invalid_parameter;
}
if (groups == 0) {
xnn_log_error(
"failed to define Convolution operator with %" PRIu32 " groups: number of groups must be non-zero", groups);
return xnn_status_invalid_parameter;
}
if (group_input_channels == 0) {
xnn_log_error(
"failed to define Convolution operator with %zu input channels per group: "
"number of channels must be non-zero",
group_input_channels);
return xnn_status_invalid_parameter;
}
if (group_output_channels == 0) {
xnn_log_error(
"failed to define Convolution operator with %zu output channels per group: "
"number of channels must be non-zero",
group_output_channels);
return xnn_status_invalid_parameter;
}
if (isnan(output_min)) {
xnn_log_error(
"failed to define Convolution operator with NaN output lower bound: lower bound must be non-NaN");
return xnn_status_invalid_parameter;
}
if (isnan(output_max)) {
xnn_log_error(
"failed to define Convolution operator with NaN output upper bound: upper bound must be non-NaN");
return xnn_status_invalid_parameter;
}
if (output_min >= output_max) {
xnn_log_error(
"failed to define Convolution operator with [%.7g, %.7g] output range: "
"lower bound must be below upper bound",
output_min, output_max);
return xnn_status_invalid_parameter;
}
if (input_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Convolution operator with input ID #%" PRIu32 ": invalid Value ID",
input_id);
return xnn_status_invalid_parameter;
}
if (filter_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Convolution operator with filter ID #%" PRIu32 ": invalid Value ID",
filter_id);
return xnn_status_invalid_parameter;
}
if (bias_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Convolution operator with bias ID #%" PRIu32 ": invalid Value ID",
bias_id);
return xnn_status_invalid_parameter;
}
if (output_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Convolution operator with output ID #%" PRIu32 ": invalid Value ID",
output_id);
return xnn_status_invalid_parameter;
}
struct xnn_node* node = xnn_subgraph_new_node(subgraph);
if (node == NULL) {
return xnn_status_out_of_memory;
}
node->type = xnn_node_type_convolution_2d;
node->params.convolution_2d.input_padding_top = input_padding_top;
node->params.convolution_2d.input_padding_right = input_padding_right;
node->params.convolution_2d.input_padding_bottom = input_padding_bottom;
node->params.convolution_2d.input_padding_left = input_padding_left;
node->params.convolution_2d.kernel_height = kernel_height;
node->params.convolution_2d.kernel_width = kernel_width;
node->params.convolution_2d.subsampling_height = subsampling_height;
node->params.convolution_2d.subsampling_width = subsampling_width;
node->params.convolution_2d.dilation_height = dilation_height;
node->params.convolution_2d.dilation_width = dilation_width;
node->params.convolution_2d.groups = groups;
node->params.convolution_2d.group_input_channels = group_input_channels;
node->params.convolution_2d.group_output_channels = group_output_channels;
node->activation.output_min = output_min;
node->activation.output_max = output_max;
node->num_inputs = 3;
node->inputs.raw[0] = input_id;
node->inputs.raw[1] = filter_id;
node->inputs.raw[2] = bias_id;
node->num_outputs = 1;
node->outputs.raw[0] = output_id;
node->flags = flags;
return xnn_status_success;
};
enum xnn_status xnn_define_depthwise_convolution_2d(
xnn_subgraph_t subgraph,
uint32_t input_padding_top,
uint32_t input_padding_right,
uint32_t input_padding_bottom,
uint32_t input_padding_left,
uint32_t kernel_height,
uint32_t kernel_width,
uint32_t subsampling_height,
uint32_t subsampling_width,
uint32_t dilation_height,
uint32_t dilation_width,
uint32_t depth_multiplier,
size_t input_channels,
float output_min,
float output_max,
uint32_t input_id,
uint32_t filter_id,
uint32_t bias_id,
uint32_t output_id,
uint32_t flags)
{
if (!xnn_params.initialized) {
xnn_log_error("failed to define Depthwise Convolution operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (kernel_width == 0 || kernel_height == 0) {
xnn_log_error(
"failed to define Depthwise Convolution operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero",
kernel_width, kernel_height);
return xnn_status_invalid_parameter;
}
if (subsampling_width == 0 || subsampling_height == 0) {
xnn_log_error(
"failed to define Depthwise Convolution operator with %" PRIu32 "x%" PRIu32 " subsampling: "
"subsampling dimensions must be non-zero",
subsampling_width, subsampling_height);
return xnn_status_invalid_parameter;
}
if (dilation_width == 0 || dilation_height == 0) {
xnn_log_error(
"failed to define Depthwise Convolution operator with %" PRIu32 "x%" PRIu32 " dilation: "
"dilation dimensions must be non-zero",
dilation_width, dilation_height);
return xnn_status_invalid_parameter;
}
if (depth_multiplier == 0) {
xnn_log_error(
"failed to define Depthwise Convolution operator with %" PRIu32 " depth multiplier: "
"depth multiplier must be non-zero",
depth_multiplier);
return xnn_status_invalid_parameter;
}
if (input_channels == 0) {
xnn_log_error(
"failed to define Depthwise Convolution operator with %zu input channels: "
"number of channels must be non-zero",
input_channels);
return xnn_status_invalid_parameter;
}
if (isnan(output_min)) {
xnn_log_error(
"failed to define Depthwise Convolution operator with NaN output lower bound: lower bound must be non-NaN");
return xnn_status_invalid_parameter;
}
if (isnan(output_max)) {
xnn_log_error(
"failed to define Depthwise Convolution operator with NaN output upper bound: upper bound must be non-NaN");
return xnn_status_invalid_parameter;
}
if (output_min >= output_max) {
xnn_log_error(
"failed to define Depthwise Convolution operator with [%.7g, %.7g] output range: "
"lower bound must be below upper bound",
output_min, output_max);
return xnn_status_invalid_parameter;
}
if (input_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Depthwise Convolution operator with input ID #%" PRIu32 ": invalid Value ID",
input_id);
return xnn_status_invalid_parameter;
}
if (filter_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Depthwise Convolution operator with filter ID #%" PRIu32 ": invalid Value ID",
filter_id);
return xnn_status_invalid_parameter;
}
if (bias_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Depthwise Convolution operator with bias ID #%" PRIu32 ": invalid Value ID",
bias_id);
return xnn_status_invalid_parameter;
}
if (output_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Depthwise Convolution operator with output ID #%" PRIu32 ": invalid Value ID",
output_id);
return xnn_status_invalid_parameter;
}
struct xnn_node* node = xnn_subgraph_new_node(subgraph);
if (node == NULL) {
return xnn_status_out_of_memory;
}
node->type = xnn_node_type_depthwise_convolution_2d;
node->params.depthwise_convolution_2d.input_padding_top = input_padding_top;
node->params.depthwise_convolution_2d.input_padding_right = input_padding_right;
node->params.depthwise_convolution_2d.input_padding_bottom = input_padding_bottom;
node->params.depthwise_convolution_2d.input_padding_left = input_padding_left;
node->params.depthwise_convolution_2d.kernel_height = kernel_height;
node->params.depthwise_convolution_2d.kernel_width = kernel_width;
node->params.depthwise_convolution_2d.subsampling_height = subsampling_height;
node->params.depthwise_convolution_2d.subsampling_width = subsampling_width;
node->params.depthwise_convolution_2d.dilation_height = dilation_height;
node->params.depthwise_convolution_2d.dilation_width = dilation_width;
node->params.depthwise_convolution_2d.depth_multiplier = depth_multiplier;
node->params.depthwise_convolution_2d.input_channels = input_channels;
node->activation.output_min = output_min;
node->activation.output_max = output_max;
node->num_inputs = 3;
node->inputs.raw[0] = input_id;
node->inputs.raw[1] = filter_id;
node->inputs.raw[2] = bias_id;
node->num_outputs = 1;
node->outputs.raw[0] = output_id;
node->flags = flags;
return xnn_status_success;
};
enum xnn_status xnn_define_add2(
xnn_subgraph_t subgraph,
float output_min,
float output_max,
uint32_t input1_id,
uint32_t input2_id,
uint32_t output_id,
uint32_t flags)
{
if (!xnn_params.initialized) {
xnn_log_error("failed to define Add2 operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (isnan(output_min)) {
xnn_log_error(
"failed to define Add2 operator with NaN output lower bound: lower bound must be non-NaN");
return xnn_status_invalid_parameter;
}
if (isnan(output_max)) {
xnn_log_error(
"failed to define Add2 operator with NaN output upper bound: upper bound must be non-NaN");
return xnn_status_invalid_parameter;
}
if (output_min >= output_max) {
xnn_log_error(
"failed to define Add2 operator with [%.7g, %.7g] output range: "
"lower bound must be below upper bound",
output_min, output_max);
return xnn_status_invalid_parameter;
}
if (input1_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Add2 operator with the first input ID #%" PRIu32 ": invalid Value ID",
input1_id);
return xnn_status_invalid_parameter;
}
if (input2_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Add2 operator with the second input ID #%" PRIu32 ": invalid Value ID",
input2_id);
return xnn_status_invalid_parameter;
}
if (output_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Add2 operator with output ID #%" PRIu32 ": invalid Value ID",
output_id);
return xnn_status_invalid_parameter;
}
struct xnn_node* node = xnn_subgraph_new_node(subgraph);
if (node == NULL) {
return xnn_status_out_of_memory;
}
node->type = xnn_node_type_add2;
node->activation.output_min = output_min;
node->activation.output_max = output_max;
node->num_inputs = 2;
node->inputs.raw[0] = input1_id;
node->inputs.raw[1] = input2_id;
node->num_outputs = 1;
node->outputs.raw[0] = output_id;
node->flags = flags;
return xnn_status_success;
}
enum xnn_status xnn_define_multiply2(
xnn_subgraph_t subgraph,
float output_min,
float output_max,
uint32_t input1_id,
uint32_t input2_id,
uint32_t output_id,
uint32_t flags)
{
if (!xnn_params.initialized) {
xnn_log_error("failed to define Multiply2 operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (isnan(output_min)) {
xnn_log_error(
"failed to define Multiply2 operator with NaN output lower bound: lower bound must be non-NaN");
return xnn_status_invalid_parameter;
}
if (isnan(output_max)) {
xnn_log_error(
"failed to define Multiply2 operator with NaN output upper bound: upper bound must be non-NaN");
return xnn_status_invalid_parameter;
}
if (output_min >= output_max) {
xnn_log_error(
"failed to define Multiply2 operator with [%.7g, %.7g] output range: "
"lower bound must be below upper bound",
output_min, output_max);
return xnn_status_invalid_parameter;
}
if (input1_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Multiply2 operator with the first input ID #%" PRIu32 ": invalid Value ID",
input1_id);
return xnn_status_invalid_parameter;
}
if (input2_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Multiply2 operator with the second input ID #%" PRIu32 ": invalid Value ID",
input2_id);
return xnn_status_invalid_parameter;
}
if (output_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Multiply2 operator with output ID #%" PRIu32 ": invalid Value ID",
output_id);
return xnn_status_invalid_parameter;
}
struct xnn_node* node = xnn_subgraph_new_node(subgraph);
if (node == NULL) {
return xnn_status_out_of_memory;
}
node->type = xnn_node_type_multiply2;
node->activation.output_min = output_min;
node->activation.output_max = output_max;
node->num_inputs = 2;
node->inputs.raw[0] = input1_id;
node->inputs.raw[1] = input2_id;
node->num_outputs = 1;
node->outputs.raw[0] = output_id;
node->flags = flags;
return xnn_status_success;
}
enum xnn_status xnn_define_prelu(
xnn_subgraph_t subgraph,
uint32_t input_id,
uint32_t slope_id,
uint32_t output_id,
uint32_t flags)
{
if (!xnn_params.initialized) {
xnn_log_error("failed to define PReLU operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (input_id >= subgraph->num_values) {
xnn_log_error(
"failed to define PReLU operator with input ID #%" PRIu32 ": invalid Value ID",
input_id);
return xnn_status_invalid_parameter;
}
if (slope_id >= subgraph->num_values) {
xnn_log_error(
"failed to define PReLU operator with slope ID #%" PRIu32 ": invalid Value ID",
slope_id);
return xnn_status_invalid_parameter;
}
if (output_id >= subgraph->num_values) {
xnn_log_error(
"failed to define PReLU operator with output ID #%" PRIu32 ": invalid Value ID",
output_id);
return xnn_status_invalid_parameter;
}
struct xnn_node* node = xnn_subgraph_new_node(subgraph);
if (node == NULL) {
return xnn_status_out_of_memory;
}
node->type = xnn_node_type_prelu;
node->num_inputs = 2;
node->inputs.raw[0] = input_id;
node->inputs.raw[1] = slope_id;
node->num_outputs = 1;
node->outputs.raw[0] = output_id;
node->flags = flags;
return xnn_status_success;
}
enum xnn_status xnn_define_clamp(
xnn_subgraph_t subgraph,
float output_min,
float output_max,
uint32_t input_id,
uint32_t output_id,
uint32_t flags)
{
if (!xnn_params.initialized) {
xnn_log_error("failed to define Clamp operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (input_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Clamp operator with input ID #%" PRIu32 ": invalid Value ID",
input_id);
return xnn_status_invalid_parameter;
}
if (output_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Clamp operator with output ID #%" PRIu32 ": invalid Value ID",
output_id);
return xnn_status_invalid_parameter;
}
struct xnn_node* node = xnn_subgraph_new_node(subgraph);
if (node == NULL) {
return xnn_status_out_of_memory;
}
node->type = xnn_node_type_clamp;
node->activation.output_min = output_min;
node->activation.output_max = output_max;
node->num_inputs = 1;
node->inputs.raw[0] = input_id;
node->num_outputs = 1;
node->outputs.raw[0] = output_id;
node->flags = flags;
return xnn_status_success;
}
enum xnn_status xnn_define_hardswish(
xnn_subgraph_t subgraph,
uint32_t input_id,
uint32_t output_id,
uint32_t flags)
{
if (!xnn_params.initialized) {
xnn_log_error("failed to define HardSwish operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (input_id >= subgraph->num_values) {
xnn_log_error(
"failed to define HardSwish operator with input ID #%" PRIu32 ": invalid Value ID",
input_id);
return xnn_status_invalid_parameter;
}
if (output_id >= subgraph->num_values) {
xnn_log_error(
"failed to define HardSwish operator with output ID #%" PRIu32 ": invalid Value ID",
output_id);
return xnn_status_invalid_parameter;
}
struct xnn_node* node = xnn_subgraph_new_node(subgraph);
if (node == NULL) {
return xnn_status_out_of_memory;
}
node->type = xnn_node_type_hardswish;
node->num_inputs = 1;
node->inputs.raw[0] = input_id;
node->num_outputs = 1;
node->outputs.raw[0] = output_id;
node->flags = flags;
return xnn_status_success;
}
enum xnn_status xnn_define_sigmoid(
xnn_subgraph_t subgraph,
uint32_t input_id,
uint32_t output_id,
uint32_t flags)
{
if (!xnn_params.initialized) {
xnn_log_error("failed to define Sigmoid operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (input_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Sigmoid operator with input ID #%" PRIu32 ": invalid Value ID",
input_id);
return xnn_status_invalid_parameter;
}
if (output_id >= subgraph->num_values) {
xnn_log_error(
"failed to define Sigmoid operator with output ID #%" PRIu32 ": invalid Value ID",
output_id);
return xnn_status_invalid_parameter;
}
struct xnn_node* node = xnn_subgraph_new_node(subgraph);
if (node == NULL) {
return xnn_status_out_of_memory;
}
node->type = xnn_node_type_sigmoid;
node->num_inputs = 1;
node->inputs.raw[0] = input_id;
node->num_outputs = 1;
node->outputs.raw[0] = output_id;
node->flags = flags;
return xnn_status_success;
}
enum xnn_status xnn_define_softmax(
xnn_subgraph_t subgraph,
uint32_t input_id,
uint32_t output_id,
uint32_t flags)
{
if (!xnn_params.initialized) {
xnn_log_error("failed to define SoftMax operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (input_id >= subgraph->num_values) {
xnn_log_error(
"failed to define SoftMax operator with input ID #%" PRIu32 ": invalid Value ID",
input_id);
return xnn_status_invalid_parameter;
}
if (output_id >= subgraph->num_values) {
xnn_log_error(
"failed to define SoftMax operator with output ID #%" PRIu32 ": invalid Value ID",
output_id);
return xnn_status_invalid_parameter;
}
struct xnn_node* node = xnn_subgraph_new_node(subgraph);
if (node == NULL) {
return xnn_status_out_of_memory;
}
node->type = xnn_node_type_softmax;
node->num_inputs = 1;
node->inputs.raw[0] = input_id;
node->num_outputs = 1;
node->outputs.raw[0] = output_id;
node->flags = flags;
return xnn_status_success;
}
enum xnn_status xnn_delete_subgraph(
xnn_subgraph_t subgraph)
{
if (subgraph != NULL) {
memset(subgraph->nodes, 0, sizeof(struct xnn_node) * subgraph->num_nodes);
xnn_release_memory(subgraph->nodes);
memset(subgraph->values, 0, sizeof(struct xnn_value) * subgraph->num_values);
xnn_release_memory(subgraph->values);
memset(subgraph, 0, sizeof(struct xnn_subgraph));
xnn_release_memory(subgraph);
}
return xnn_status_success;
}