blob: 8ea899ce654e598911050a0296609524c81dbbb9 [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/operator.h>
#include <xnnpack/log.h>
enum xnn_status xnn_create_sigmoid_nc_q8(
size_t channels,
size_t input_stride,
size_t output_stride,
uint8_t input_zero_point,
float input_scale,
uint8_t output_zero_point,
float output_scale,
uint8_t output_min,
uint8_t output_max,
uint32_t flags,
xnn_operator_t* sigmoid_op_out)
{
xnn_operator_t sigmoid_op = NULL;
enum xnn_status status = xnn_status_uninitialized;
if (!xnn_params.initialized) {
xnn_log_error("failed to create Sigmoid operator: XNNPACK is not initialized");
goto error;
}
status = xnn_status_invalid_parameter;
if (channels == 0) {
xnn_log_error(
"failed to create Sigmoid operator with %zu channels: number of channels must be non-zero", channels);
goto error;
}
if (input_stride < channels) {
xnn_log_error(
"failed to create Sigmoid operator with input element stride of %zu: "
"stride must be at least as large as the number of channels (%zu)",
input_stride, channels);
goto error;
}
if (output_stride < channels) {
xnn_log_error(
"failed to create Sigmoid operator with output element stride of %zu: "
"stride must be at least as large as the number of channels (%zu)",
output_stride, channels);
goto error;
}
if (input_scale <= 0.0f || !isnormal(input_scale)) {
xnn_log_error(
"failed to create Sigmoid operator with %.7g input scale: scale must be finite, normalized, and positive",
input_scale);
goto error;
}
if (output_scale <= 0.0f || !isnormal(output_scale)) {
xnn_log_error(
"failed to create Sigmoid operator with %.7g output scale: scale must be finite, normalized, and positive",
output_scale);
goto error;
}
if (output_min >= output_max) {
xnn_log_error(
"failed to create Sigmoid operator with [%" PRIu8 ", %" PRIu8 "] output range: range min must be below range max",
output_min, output_max);
goto error;
}
status = xnn_status_unsupported_parameter;
if (output_scale != 0x1.0p-8f) {
xnn_log_error(
"failed to create Sigmoid operator with %.7g output scale: only output scale of 1/256 is supported",
output_scale);
goto error;
}
if (output_zero_point != 0) {
xnn_log_error(
"failed to create Sigmoid operator with %" PRIu8 " output zero point: only output zero point of 0 is supported",
output_zero_point);
goto error;
}
status = xnn_status_out_of_memory;
sigmoid_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
if (sigmoid_op == NULL) {
xnn_log_error("failed to allocate %zu bytes for Sigmoid operator descriptor", sizeof(struct xnn_operator));
goto error;
}
sigmoid_op->lookup_table = xnn_allocate_simd_memory(256 * sizeof(uint8_t));
if (sigmoid_op->lookup_table == NULL) {
xnn_log_error("failed to allocate 256 bytes for Sigmoid lookup table");
goto error;
}
uint8_t* lookup_table = sigmoid_op->lookup_table;
const float scaled_min = (float) (int32_t) output_min;
const float scaled_max = (float) (int32_t) output_max;
for (int32_t i = 0; i < 256; i++) {
const float x = input_scale * (float) (i - (int32_t) (uint32_t) input_zero_point);
// Scale sigmoid(x) by 1 / output scale = 256.0
float scaled_sigmoid_x = 256.0f / (1.0f + expf(-x));
if (scaled_sigmoid_x < scaled_min) {
scaled_sigmoid_x = scaled_min;
}
if (scaled_sigmoid_x > scaled_max) {
scaled_sigmoid_x = scaled_max;
}
lookup_table[(uint32_t) i] = (uint8_t) lrintf(scaled_sigmoid_x);
}
sigmoid_op->channels = channels;
sigmoid_op->input_pixel_stride = input_stride;
sigmoid_op->output_pixel_stride = output_stride;
sigmoid_op->type = xnn_operator_type_sigmoid_nc_q8;
sigmoid_op->ukernel.type = xnn_ukernel_type_lut;
sigmoid_op->state = xnn_run_state_invalid;
*sigmoid_op_out = sigmoid_op;
return xnn_status_success;
error:
xnn_delete_operator(sigmoid_op);
return status;
}
enum xnn_status xnn_create_sigmoid_nc_f32(
size_t channels,
size_t input_stride,
size_t output_stride,
uint32_t flags,
xnn_operator_t* sigmoid_op_out)
{
xnn_operator_t sigmoid_op = NULL;
enum xnn_status status = xnn_status_uninitialized;
if (!xnn_params.initialized) {
xnn_log_error("failed to create Sigmoid operator: XNNPACK is not initialized");
goto error;
}
status = xnn_status_invalid_parameter;
if (channels == 0) {
xnn_log_error(
"failed to create Sigmoid operator with %zu channels: number of channels must be non-zero", channels);
goto error;
}
if (input_stride < channels) {
xnn_log_error(
"failed to create Sigmoid operator with input element stride of %zu: "
"stride must be at least as large as the number of channels (%zu)",
input_stride, channels);
goto error;
}
if (output_stride < channels) {
xnn_log_error(
"failed to create Sigmoid operator with output element stride of %zu: "
"stride must be at least as large as the number of channels (%zu)",
output_stride, channels);
goto error;
}
status = xnn_status_unsupported_hardware;
if (xnn_params.f32.sigmoid == NULL) {
xnn_log_error(
"failed to create Sigmoid operator: "
"only selected hardware configurations are supported");
goto error;
}
status = xnn_status_out_of_memory;
sigmoid_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
if (sigmoid_op == NULL) {
xnn_log_error("failed to allocate %zu bytes for xnn_operator structure", sizeof(struct xnn_operator));
goto error;
}
sigmoid_op->channels = channels;
sigmoid_op->input_pixel_stride = input_stride;
sigmoid_op->output_pixel_stride = output_stride;
sigmoid_op->type = xnn_operator_type_sigmoid_nc_f32;
sigmoid_op->ukernel.type = xnn_ukernel_type_sigmoid;
sigmoid_op->state = xnn_run_state_invalid;
*sigmoid_op_out = sigmoid_op;
return xnn_status_success;
error:
xnn_delete_operator(sigmoid_op);
return status;
}
enum xnn_status xnn_setup_sigmoid_nc_q8(
xnn_operator_t sigmoid_op,
size_t batch_size,
const uint8_t* input,
uint8_t* output,
pthreadpool_t threadpool)
{
if (sigmoid_op->type != xnn_operator_type_sigmoid_nc_q8) {
xnn_log_error("failed to setup Sigmoid (Q8) operator: operator type mismatch");
return xnn_status_invalid_parameter;
}
sigmoid_op->state = xnn_run_state_invalid;
if (!xnn_params.initialized) {
xnn_log_error("failed to setup Sigmoid operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (batch_size == 0) {
sigmoid_op->state = xnn_run_state_skip;
return xnn_status_success;
}
sigmoid_op->batch_size = batch_size;
sigmoid_op->input = input;
sigmoid_op->output = output;
const size_t channels = sigmoid_op->channels;
const size_t input_stride = sigmoid_op->input_pixel_stride;
const size_t output_stride = sigmoid_op->output_pixel_stride;
if ((((input_stride ^ channels) | (output_stride ^ channels)) == 0) || batch_size == 1) {
const size_t block_size = 1024;
sigmoid_op->context.lut_contiguous = (struct lut_contiguous_context) {
.x = input,
.x_stride = input_stride * sizeof(uint8_t),
.t = sigmoid_op->lookup_table,
.y = output,
.y_stride = output_stride * sizeof(uint8_t),
.ukernel = xnn_params.x8.lut,
};
sigmoid_op->compute.type = xnn_parallelization_type_1d_tile_1d;
sigmoid_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_lut_contiguous;
sigmoid_op->compute.range[0] = batch_size * channels * sizeof(uint8_t);
sigmoid_op->compute.tile[0] = block_size;
} else {
sigmoid_op->context.lut_strided = (struct lut_strided_context) {
.n = channels,
.x = input,
.x_stride = input_stride * sizeof(uint8_t),
.t = sigmoid_op->lookup_table,
.y = output,
.y_stride = output_stride * sizeof(uint8_t),
.ukernel = xnn_params.x8.lut,
};
sigmoid_op->compute.type = xnn_parallelization_type_1d;
sigmoid_op->compute.task_1d = (pthreadpool_task_1d_t) xnn_compute_lut_strided;
sigmoid_op->compute.range[0] = batch_size;
sigmoid_op->compute.tile[0] = 0;
}
sigmoid_op->state = xnn_run_state_ready;
return xnn_status_success;
}
enum xnn_status xnn_setup_sigmoid_nc_f32(
xnn_operator_t sigmoid_op,
size_t batch_size,
const float* input,
float* output,
pthreadpool_t threadpool)
{
if (sigmoid_op->type != xnn_operator_type_sigmoid_nc_f32) {
xnn_log_error("failed to setup Sigmoid (F32) operator: operator type mismatch");
return xnn_status_invalid_parameter;
}
sigmoid_op->state = xnn_run_state_invalid;
if (!xnn_params.initialized) {
xnn_log_error("failed to setup Sigmoid operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (batch_size == 0) {
sigmoid_op->state = xnn_run_state_skip;
return xnn_status_success;
}
const size_t channels = sigmoid_op->channels;
const size_t input_stride = sigmoid_op->input_pixel_stride;
const size_t output_stride = sigmoid_op->output_pixel_stride;
if ((((input_stride ^ channels) | (output_stride ^ channels)) == 0) || batch_size == 1) {
const size_t block_size = 4096;
sigmoid_op->context.univector_contiguous = (struct univector_contiguous_context) {
.x = input,
.x_stride = input_stride * sizeof(float),
.y = output,
.y_stride = output_stride * sizeof(float),
.ukernel = xnn_params.f32.sigmoid,
};
sigmoid_op->compute.type = xnn_parallelization_type_1d_tile_1d;
sigmoid_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_univector_contiguous;
sigmoid_op->compute.range[0] = batch_size * channels * sizeof(float);
sigmoid_op->compute.tile[0] = block_size;
} else {
sigmoid_op->context.univector_strided = (struct univector_strided_context) {
.n = channels * sizeof(float),
.x = input,
.x_stride = input_stride * sizeof(float),
.y = output,
.y_stride = output_stride * sizeof(float),
.ukernel = xnn_params.f32.sigmoid,
};
sigmoid_op->compute.type = xnn_parallelization_type_1d_tile_1d;
sigmoid_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_univector_strided;
sigmoid_op->compute.range[0] = batch_size;
sigmoid_op->compute.tile[0] = 1;
}
sigmoid_op->state = xnn_run_state_ready;
return xnn_status_success;
}