blob: f0e262f0129389ec4237575b56802caa6c1d56b2 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/log.h>
#include <xnnpack/math.h>
#include <xnnpack/operator.h>
#include <xnnpack/params.h>
#include <xnnpack/subgraph.h>
enum xnn_status xnn_create_runtime(
xnn_subgraph_t subgraph,
xnn_runtime_t* runtime_out)
{
return xnn_create_runtime_v2(subgraph, NULL /* threadpool */, 0 /* flags */, runtime_out);
}
enum xnn_status xnn_create_runtime_v2(
xnn_subgraph_t subgraph,
pthreadpool_t threadpool,
uint32_t flags,
xnn_runtime_t* runtime_out)
{
struct xnn_runtime* runtime = NULL;
enum xnn_status status = xnn_status_uninitialized;
if (!xnn_params.initialized) {
xnn_log_error("failed to create runtime: XNNPACK is not initialized");
goto error;
}
status = xnn_status_out_of_memory;
runtime = xnn_allocate_zero_memory(sizeof(struct xnn_runtime));
if (runtime == NULL) {
xnn_log_error("failed to allocate %zu bytes for runtime descriptor", sizeof(struct xnn_runtime));
goto error;
}
runtime->ops = xnn_allocate_zero_memory(sizeof(struct xnn_operator_data) * subgraph->num_nodes);
if (runtime->ops == NULL) {
xnn_log_error("failed to allocate %zu bytes for opdata descriptors",
sizeof(struct xnn_operator_data) * subgraph->num_nodes);
goto error;
}
runtime->num_ops = subgraph->num_nodes;
struct xnn_value* values = subgraph->values;
for (size_t i = 0; i < subgraph->num_nodes; i++) {
const struct xnn_node* node = subgraph->nodes + i;
switch (node->type) {
case xnn_node_type_add2:
status = xnn_create_add_nd_f32(
node->activation.output_min,
node->activation.output_max,
node->flags,
&runtime->ops[i].op);
if (status != xnn_status_success) {
goto error;
}
runtime->ops[i].shape1.num_dims = values[node->inputs.raw[0]].shape.num_dims;
runtime->ops[i].shape2.num_dims = values[node->inputs.raw[1]].shape.num_dims;
memcpy(runtime->ops[i].shape1.dim, values[node->inputs.raw[0]].shape.dim, values[node->inputs.raw[0]].shape.num_dims * sizeof(size_t));
memcpy(runtime->ops[i].shape2.dim, values[node->inputs.raw[1]].shape.dim, values[node->inputs.raw[1]].shape.num_dims * sizeof(size_t));
runtime->ops[i].inputs[0] = node->inputs.raw[0];
runtime->ops[i].inputs[1] = node->inputs.raw[1];
runtime->ops[i].outputs[0] = node->outputs.raw[0];
break;
case xnn_node_type_convolution_2d:
status = xnn_create_convolution2d_nhwc_f32(
node->params.convolution_2d.input_padding_top,
node->params.convolution_2d.input_padding_right,
node->params.convolution_2d.input_padding_bottom,
node->params.convolution_2d.input_padding_left,
node->params.convolution_2d.kernel_height,
node->params.convolution_2d.kernel_width,
node->params.convolution_2d.subsampling_height,
node->params.convolution_2d.subsampling_width,
node->params.convolution_2d.dilation_height,
node->params.convolution_2d.dilation_width,
node->params.convolution_2d.groups,
node->params.convolution_2d.group_input_channels,
node->params.convolution_2d.group_output_channels,
node->params.convolution_2d.group_input_channels * node->params.convolution_2d.groups /* input_pixel_stride */,
node->params.convolution_2d.group_output_channels * node->params.convolution_2d.groups /* output_pixel_stride */,
values[node->inputs.convolution_2d.filter].data,
values[node->inputs.convolution_2d.bias].data,
node->activation.output_min,
node->activation.output_max,
node->flags,
&runtime->ops[i].op);
if (status != xnn_status_success) {
goto error;
}
runtime->ops[i].batch_size = values[node->inputs.raw[0]].shape.dim[0];
runtime->ops[i].input_height = values[node->inputs.raw[0]].shape.dim[1];
runtime->ops[i].input_width = values[node->inputs.raw[0]].shape.dim[2];
runtime->ops[i].inputs[0] = node->inputs.raw[0];
runtime->ops[i].outputs[0] = node->outputs.raw[0];
break;
case xnn_node_type_clamp:
status = xnn_create_clamp_nc_f32(
values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* channels */,
values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* input stride */,
values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* output stride */,
node->activation.output_min,
node->activation.output_max,
node->flags,
&runtime->ops[i].op);
if (status != xnn_status_success) {
goto error;
}
runtime->ops[i].batch_size = 1;
for (size_t i = 0; i + 1 < values[node->inputs.raw[0]].shape.num_dims; i++) {
runtime->ops[i].batch_size *= values[node->inputs.raw[0]].shape.dim[i];
}
runtime->ops[i].inputs[0] = node->inputs.raw[0];
runtime->ops[i].outputs[0] = node->outputs.raw[0];
break;
case xnn_node_type_depthwise_convolution_2d:
status = xnn_create_convolution2d_nhwc_f32(
node->params.depthwise_convolution_2d.input_padding_top,
node->params.depthwise_convolution_2d.input_padding_right,
node->params.depthwise_convolution_2d.input_padding_bottom,
node->params.depthwise_convolution_2d.input_padding_left,
node->params.depthwise_convolution_2d.kernel_height,
node->params.depthwise_convolution_2d.kernel_width,
node->params.depthwise_convolution_2d.subsampling_height,
node->params.depthwise_convolution_2d.subsampling_width,
node->params.depthwise_convolution_2d.dilation_height,
node->params.depthwise_convolution_2d.dilation_width,
node->params.depthwise_convolution_2d.input_channels /* groups */,
1 /* group_input_channels */,
node->params.depthwise_convolution_2d.depth_multiplier /* group_output_channels */,
node->params.depthwise_convolution_2d.input_channels /* input_pixel_stride */,
node->params.depthwise_convolution_2d.input_channels * node->params.depthwise_convolution_2d.depth_multiplier /* output_pixel_stride */,
values[node->inputs.convolution_2d.filter].data,
values[node->inputs.convolution_2d.bias].data,
node->activation.output_min,
node->activation.output_max,
node->flags | XNN_FLAG_DEPTHWISE_CONVOLUTION,
&runtime->ops[i].op);
if (status != xnn_status_success) {
goto error;
}
runtime->ops[i].batch_size = values[node->inputs.raw[0]].shape.dim[0];
runtime->ops[i].input_height = values[node->inputs.raw[0]].shape.dim[1];
runtime->ops[i].input_width = values[node->inputs.raw[0]].shape.dim[2];
runtime->ops[i].inputs[0] = node->inputs.raw[0];
runtime->ops[i].outputs[0] = node->outputs.raw[0];
break;
case xnn_node_type_hardswish:
status = xnn_create_hardswish_nc_f32(
values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* channels */,
values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* input stride */,
values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* output stride */,
node->flags,
&runtime->ops[i].op);
if (status != xnn_status_success) {
goto error;
}
runtime->ops[i].batch_size = 1;
for (size_t i = 0; i + 1 < values[node->inputs.raw[0]].shape.num_dims; i++) {
runtime->ops[i].batch_size *= values[node->inputs.raw[0]].shape.dim[i];
}
runtime->ops[i].inputs[0] = node->inputs.raw[0];
runtime->ops[i].outputs[0] = node->outputs.raw[0];
break;
case xnn_node_type_multiply2:
status = xnn_create_multiply_nd_f32(
node->activation.output_min,
node->activation.output_max,
node->flags,
&runtime->ops[i].op);
if (status != xnn_status_success) {
goto error;
}
runtime->ops[i].shape1.num_dims = values[node->inputs.raw[0]].shape.num_dims;
runtime->ops[i].shape2.num_dims = values[node->inputs.raw[1]].shape.num_dims;
memcpy(runtime->ops[i].shape1.dim, values[node->inputs.raw[0]].shape.dim, values[node->inputs.raw[0]].shape.num_dims * sizeof(size_t));
memcpy(runtime->ops[i].shape2.dim, values[node->inputs.raw[1]].shape.dim, values[node->inputs.raw[1]].shape.num_dims * sizeof(size_t));
runtime->ops[i].inputs[0] = node->inputs.raw[0];
runtime->ops[i].inputs[1] = node->inputs.raw[1];
runtime->ops[i].outputs[0] = node->outputs.raw[0];
break;
case xnn_node_type_prelu:
status = xnn_create_prelu_nc_f32(
values[node->inputs.raw[1]].shape.dim[values[node->inputs.raw[1]].shape.num_dims - 1] /* channels */,
values[node->inputs.raw[1]].shape.dim[values[node->inputs.raw[1]].shape.num_dims - 1] /* input stride */,
values[node->inputs.raw[1]].shape.dim[values[node->inputs.raw[1]].shape.num_dims - 1] /* output stride */,
values[node->inputs.raw[1]].data /* negative slope */,
-INFINITY,
+INFINITY,
node->flags,
&runtime->ops[i].op);
if (status != xnn_status_success) {
goto error;
}
runtime->ops[i].batch_size = 1;
for (size_t i = 0; i + 1 < values[node->inputs.raw[0]].shape.num_dims; i++) {
runtime->ops[i].batch_size *= values[node->inputs.raw[0]].shape.dim[i];
}
runtime->ops[i].inputs[0] = node->inputs.raw[0];
runtime->ops[i].outputs[0] = node->outputs.raw[0];
break;
case xnn_node_type_sigmoid:
status = xnn_create_sigmoid_nc_f32(
values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* channels */,
values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* input stride */,
values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* output stride */,
node->flags,
&runtime->ops[i].op);
if (status != xnn_status_success) {
goto error;
}
runtime->ops[i].batch_size = 1;
for (size_t i = 0; i + 1 < values[node->inputs.raw[0]].shape.num_dims; i++) {
runtime->ops[i].batch_size *= values[node->inputs.raw[0]].shape.dim[i];
}
runtime->ops[i].inputs[0] = node->inputs.raw[0];
runtime->ops[i].outputs[0] = node->outputs.raw[0];
break;
case xnn_node_type_softmax:
status = xnn_create_softmax_nc_f32(
values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* channels */,
values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* input stride */,
values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* output stride */,
node->flags,
&runtime->ops[i].op);
if (status != xnn_status_success) {
goto error;
}
runtime->ops[i].batch_size = 1;
for (size_t i = 0; i + 1 < values[node->inputs.raw[0]].shape.num_dims; i++) {
runtime->ops[i].batch_size *= values[node->inputs.raw[0]].shape.dim[i];
}
runtime->ops[i].inputs[0] = node->inputs.raw[0];
runtime->ops[i].outputs[0] = node->outputs.raw[0];
break;
case xnn_node_type_invalid:
xnn_log_fatal("unexpected node type %d in node #%zu", node->type, i);
XNN_UNREACHABLE;
break;
}
}
runtime->blobs = xnn_allocate_zero_memory(sizeof(struct xnn_blob) * subgraph->num_values);
if (runtime->blobs == NULL) {
xnn_log_error("failed to allocate %zu bytes for blob descriptors",
sizeof(struct xnn_blob) * subgraph->num_values);
goto error;
}
runtime->num_blobs = subgraph->num_values;
size_t buffer_size = 0;
for (size_t i = 0; i < subgraph->num_values; i++) {
const struct xnn_value* value = &subgraph->values[i];
struct xnn_blob* blob = &runtime->blobs[i];
if (value->datatype != xnn_datatype_invalid && value->type == xnn_value_type_dense_tensor) {
blob->size = xnn_tensor_get_size(subgraph, i);
blob->data = (void*) value->data;
if (blob->data == NULL) {
if ((value->flags & (XNN_VALUE_FLAG_EXTERNAL_INPUT | XNN_VALUE_FLAG_EXTERNAL_OUTPUT)) == 0) {
// Value is purely internal to the runtime, and must be allocated in its workspace.
buffer_size = round_up_po2(buffer_size + blob->size, XNN_EXTRA_BYTES);
} else {
// Value is non-static and external to the runtime: must be specified via a call to xnn_setup_runtime.
blob->external = true;
}
}
}
}
runtime->workspace = xnn_allocate_simd_memory(buffer_size);
if (runtime->workspace == NULL) {
xnn_log_error("failed to allocate %zu bytes to runtime workspace", buffer_size);
goto error;
}
size_t buffer_offset = 0;
for (size_t i = 0; i < subgraph->num_values; i++) {
const struct xnn_value* value = &subgraph->values[i];
struct xnn_blob* blob = &runtime->blobs[i];
if (value->datatype != xnn_datatype_invalid && value->type == xnn_value_type_dense_tensor) {
if (value->data == NULL && !blob->external) {
// Value is purely internal to the runtime, allocate it in the workspace.
blob->data = (void*) ((uintptr_t) runtime->workspace + buffer_offset);
buffer_offset = round_up_po2(buffer_offset + blob->size, XNN_EXTRA_BYTES);
}
}
}
runtime->threadpool = threadpool;
*runtime_out = runtime;
return xnn_status_success;
error:
xnn_delete_runtime(runtime);
return status;
}
enum xnn_status xnn_setup_runtime(
xnn_runtime_t runtime,
size_t num_external_values,
const struct xnn_external_value* external_values)
{
// Validate inputs without changing internal state.
// This ensures that runtime stays in consistent state in case validation fails midway.
for (size_t i = 0; i < num_external_values; i++) {
const struct xnn_external_value* external_value = &external_values[i];
const uint32_t value_id = external_value->id;
if (value_id >= runtime->num_blobs) {
xnn_log_error("failed to setup runtime: out-of-bounds ID %" PRIu32 " in external value #%zu",
value_id, i);
return xnn_status_invalid_parameter;
}
const struct xnn_blob* blob = &runtime->blobs[value_id];
if (!blob->external) {
xnn_log_error("failed to setup runtime: Value %" PRIu32 " is not external", value_id);
return xnn_status_invalid_parameter;
}
}
// Apply runtime state changes.
for (size_t i = 0; i < num_external_values; i++) {
const struct xnn_external_value* external_value = &external_values[i];
const uint32_t value_id = external_value->id;
struct xnn_blob* blob = &runtime->blobs[value_id];
blob->data = external_value->data;
}
for (size_t i = 0; i < runtime->num_ops; i++) {
const struct xnn_operator_data* op = &runtime->ops[i];
enum xnn_status status = xnn_status_success;
switch (op->op->type) {
case xnn_operator_type_add_nd_f32:
assert(runtime->blobs[op->inputs[0]].data != NULL);
assert(runtime->blobs[op->inputs[1]].data != NULL);
assert(runtime->blobs[op->outputs[0]].data != NULL);
status = xnn_setup_add_nd_f32(
op->op,
op->shape1.num_dims,
op->shape1.dim,
op->shape2.num_dims,
op->shape2.dim,
runtime->blobs[op->inputs[0]].data,
runtime->blobs[op->inputs[1]].data,
runtime->blobs[op->outputs[0]].data,
runtime->threadpool);
break;
case xnn_operator_type_convolution_nhwc_f32:
assert(runtime->blobs[op->inputs[0]].data != NULL);
assert(runtime->blobs[op->outputs[0]].data != NULL);
status = xnn_setup_convolution2d_nhwc_f32(
op->op,
op->batch_size,
op->input_height,
op->input_width,
runtime->blobs[op->inputs[0]].data,
runtime->blobs[op->outputs[0]].data,
runtime->threadpool);
break;
case xnn_operator_type_clamp_nc_f32:
assert(runtime->blobs[op->inputs[0]].data != NULL);
assert(runtime->blobs[op->outputs[0]].data != NULL);
status = xnn_setup_clamp_nc_f32(
op->op,
op->batch_size,
runtime->blobs[op->inputs[0]].data,
runtime->blobs[op->outputs[0]].data,
runtime->threadpool);
break;
case xnn_operator_type_hardswish_nc_f32:
assert(runtime->blobs[op->inputs[0]].data != NULL);
assert(runtime->blobs[op->outputs[0]].data != NULL);
status = xnn_setup_hardswish_nc_f32(
op->op,
op->batch_size,
runtime->blobs[op->inputs[0]].data,
runtime->blobs[op->outputs[0]].data,
runtime->threadpool);
break;
case xnn_operator_type_multiply_nd_f32:
assert(runtime->blobs[op->inputs[0]].data != NULL);
assert(runtime->blobs[op->inputs[1]].data != NULL);
assert(runtime->blobs[op->outputs[0]].data != NULL);
status = xnn_setup_multiply_nd_f32(
op->op,
op->shape1.num_dims,
op->shape1.dim,
op->shape2.num_dims,
op->shape2.dim,
runtime->blobs[op->inputs[0]].data,
runtime->blobs[op->inputs[1]].data,
runtime->blobs[op->outputs[0]].data,
runtime->threadpool);
break;
case xnn_operator_type_prelu_nc_f32:
assert(runtime->blobs[op->inputs[0]].data != NULL);
assert(runtime->blobs[op->outputs[0]].data != NULL);
status = xnn_setup_prelu_nc_f32(
op->op,
op->batch_size,
runtime->blobs[op->inputs[0]].data,
runtime->blobs[op->outputs[0]].data,
runtime->threadpool);
break;
case xnn_operator_type_sigmoid_nc_f32:
assert(runtime->blobs[op->inputs[0]].data != NULL);
assert(runtime->blobs[op->outputs[0]].data != NULL);
status = xnn_setup_sigmoid_nc_f32(
op->op,
op->batch_size,
runtime->blobs[op->inputs[0]].data,
runtime->blobs[op->outputs[0]].data,
runtime->threadpool);
break;
case xnn_operator_type_softmax_nc_f32:
assert(runtime->blobs[op->inputs[0]].data != NULL);
assert(runtime->blobs[op->outputs[0]].data != NULL);
status = xnn_setup_softmax_nc_f32(
op->op,
op->batch_size,
runtime->blobs[op->inputs[0]].data,
runtime->blobs[op->outputs[0]].data,
runtime->threadpool);
break;
default:
xnn_log_fatal("unexpected operator type %d in operator #%zu", op->op->type, i);
XNN_UNREACHABLE;
}
if (status != xnn_status_success) {
xnn_log_error("failed to setup runtime: error in operator #%zu", i);
return status;
}
}
return xnn_status_success;
}
enum xnn_status xnn_invoke_runtime(
xnn_runtime_t runtime)
{
for (size_t i = 0; i < runtime->num_ops; i++) {
const enum xnn_status status = xnn_run_operator(runtime->ops[i].op, runtime->threadpool);
if (status != xnn_status_success) {
return status;
}
}
return xnn_status_success;
}
enum xnn_status xnn_delete_runtime(
xnn_runtime_t runtime)
{
if (runtime != NULL) {
if (runtime->ops != NULL) {
for (size_t i = 0; i < runtime->num_ops; i++) {
xnn_delete_operator(runtime->ops[i].op);
}
xnn_release_memory(runtime->ops);
xnn_release_memory(runtime->blobs);
xnn_release_memory(runtime->workspace);
}
xnn_release_memory(runtime);
}
return xnn_status_success;
}