blob: 242c9cc781086965bd75e79f1b0ab29dd7fac40e [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert ELEMENTS_TILE % 16 == 0
$assert ELEMENTS_TILE >= 16
$SIMD_TILE = ELEMENTS_TILE // 16
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/common.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/vscaleextexp.h>
void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x${ELEMENTS_TILE}(
size_t elements,
const float* x,
float* y,
float scale_value,
float scale_exp)
{
assert(elements % sizeof(float) == 0);
const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
const __m512 vc0 = _mm512_set1_ps(1.0f);
const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
const __m512 vscalev = _mm512_set1_ps(scale_value);
const __m512 vscalee = _mm512_set1_ps(scale_exp);
for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) {
// Load ${ELEMENTS_TILE} (${SIMD_TILE}x16) inputs at a time.
const __m512 vx0 = _mm512_loadu_ps(x);
$for N in range(1, SIMD_TILE):
const __m512 vx${N} = _mm512_loadu_ps(x + ${N * 16});
x += ${ELEMENTS_TILE};
// Compute reduced argument elements := round(x / log(2)).
$for N in range(SIMD_TILE):
const __m512 vn${N} = _mm512_roundscale_ps(_mm512_mul_ps(vx${N}, vlog2e), 0);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
$for N in range(SIMD_TILE):
__m512 vt${N} = _mm512_fmadd_ps(vn${N}, vminus_ln2_hi, vx${N});
$for N in range(SIMD_TILE):
vt${N} = _mm512_fmadd_ps(vn${N}, vminus_ln2_lo, vt${N});
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
$for N in range(SIMD_TILE):
__m512 vp${N} = _mm512_fmadd_ps(vc5, vt${N}, vc4);
$for N in range(SIMD_TILE):
vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc3);
$for N in range(SIMD_TILE):
vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc2);
$for N in range(SIMD_TILE):
vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc1);
$for N in range(SIMD_TILE):
vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc0);
// Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where
// - vnX is "exponent"
// - vpX is "mantissa"
//
// exp2(ae) * av * exp2(be) * bv =
// = exp2(ae + be) * (av * bv)
$for N in range(SIMD_TILE):
__m512 vf${N} = _mm512_mul_ps(vp${N}, vscalev);
$for N in range(SIMD_TILE):
const __m512 ve${N} = _mm512_add_ps(vn${N}, vscalee);
// Multiply "mantissa" by the exp2("exponent").
$for N in range(SIMD_TILE):
vf${N} = _mm512_scalef_ps(vf${N}, ve${N});
// Store 128 (8x16) results at a time.
_mm512_storeu_ps(y, vf0);
$for N in range(SIMD_TILE):
_mm512_storeu_ps(y + ${N * 16}, vf${N});
y += ${ELEMENTS_TILE};
}
for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
// Load 16 inputs at a time.
const __m512 vx = _mm512_loadu_ps(x);
x += 16;
// Compute reduced argument elements := round(x / log(2)).
const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
__m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
vp = _mm512_fmadd_ps(vp, vt, vc3);
vp = _mm512_fmadd_ps(vp, vt, vc2);
vp = _mm512_fmadd_ps(vp, vt, vc1);
vp = _mm512_fmadd_ps(vp, vt, vc0);
// Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
__m512 vf = _mm512_mul_ps(vp, vscalev);
const __m512 ve = _mm512_add_ps(vn, vscalee);
// Multiply "mantissa" by the exp2("exponent").
vf = _mm512_scalef_ps(vf, ve);
// Store 16 results at a time.
_mm512_storeu_ps(y, vf);
y += 16;
}
if XNN_UNLIKELY(elements != 0) {
// Prepare mask for valid 32-bit elements (depends on elements).
elements >>= 2 /* log2(sizeof(float)) */;
const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
// Load up to 15 inputs at a time.
const __m512 vx = _mm512_maskz_loadu_ps(vmask, x);
// Compute reduced argument elements := round(x / log(2)).
const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
__m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
vp = _mm512_fmadd_ps(vp, vt, vc3);
vp = _mm512_fmadd_ps(vp, vt, vc2);
vp = _mm512_fmadd_ps(vp, vt, vc1);
vp = _mm512_fmadd_ps(vp, vt, vc0);
// Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
__m512 vf = _mm512_mul_ps(vp, vscalev);
const __m512 ve = _mm512_add_ps(vn, vscalee);
// Multiply "mantissa" by the exp2("exponent").
vf = _mm512_scalef_ps(vf, ve);
// Store up to 15 results at a time.
_mm512_mask_storeu_ps(y, vmask, vf);
}
_mm256_zeroupper();
}