blob: 40a483c70214d6d239c432d28274dde56f73a1ef [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert BATCH_TILE >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <math.h>
#include <xnnpack/common.h>
#include <xnnpack/vunary.h>
#include <fp16/bitcasts.h>
// Note redefine as uint32[] to avoid redundant bitcasts.
extern XNN_INTERNAL const uint32_t xnn_table_exp2_k_over_2048[2048];
void xnn_f32_sigmoid_ukernel__scalar_lut2048_p1_div_x${BATCH_TILE}(
size_t n,
const float* x,
float* y,
const void* params)
{
assert(n % sizeof(float) == 0);
const float vmagic_bias = 0x1.800000p23f;
// The largest z for which sigmoidf(-z) is normalized.
// This number is also the largest z for which expf(-z) is normalized.
const float vdenorm_cutoff = 0x1.5D589Ep+6f;
const float vminus_log2e_x2048 = -0x1.715476p11f;
// Last 18 bits are zeroes
const float vln2_o2048_hi = 0x1.600000p-12f;
const float vln2_o2048_lo = 0x1.7217F8p-19f;
const float vone = 1.0f;
const float vc1 = -0x1.FFFFFEp-1f;
const uint32_t vindex_mask = UINT32_C(0x7FF);
$if BATCH_TILE > 1:
for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
$for N in range(BATCH_TILE):
const float vx${N} = x[${N}];
x += ${BATCH_TILE};
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
// then replace result with 1 - f[-z] if x >= 0.
$for N in range(BATCH_TILE):
const float vz${N} = fabsf(vx${N});
// Compute reduced argument n := round(-z * 2048 / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
// the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
// |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
// [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
// for such inputs at the very end of the algorithm.
$for N in range(BATCH_TILE):
float vn${N} = vz${N} * vminus_log2e_x2048 + vmagic_bias;
// Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
// normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
// = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
// 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from table using the 6 low bits of n, as integer.
// Note that the fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
// 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
// number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
// and thus the adjusted exponent is not lower than -126.
//
// Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
$for N in range(BATCH_TILE):
const uint32_t ve${N} = (fp32_to_bits(vn${N}) & ~vindex_mask) << 12;
// Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
$for N in range(BATCH_TILE):
const uint32_t vidx${N} = fp32_to_bits(vn${N}) & vindex_mask;
// Adjust exponent of the value l fetched from the table to get the final s value.
$for N in range(BATCH_TILE):
const float vs${N} = fp32_from_bits(xnn_table_exp2_k_over_2048[vidx${N}] + ve${N});
// Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
$for N in range(BATCH_TILE):
vn${N} -= vmagic_bias;
// Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
// Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
$for N in range(BATCH_TILE):
float vt${N} = vn${N} * vln2_o2048_hi + vz${N};
$for N in range(BATCH_TILE):
vt${N} = vn${N} * vln2_o2048_lo + vt${N};
// Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/4096, log(2)/4096]:
// P1(t) = 1 + t * c1
$for N in range(BATCH_TILE):
const float vp${N} = vt${N} * vc1;
// Reconstruct the exp(-z) value:
// y = s * (1 + t * c1)
// = s + s * (t * c1))
// = s + s * p
$for N in range(BATCH_TILE):
const float vy${N} = vp${N} * vs${N} + vs${N};
// Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
$for N in range(BATCH_TILE):
float vf${N} = vy${N} / (vy${N} + vone);
// For inputs above denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
$for N in range(BATCH_TILE):
if XNN_UNPREDICTABLE(vz${N} > vdenorm_cutoff) {
vf${N} = 0.0f;
}
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
$for N in range(BATCH_TILE):
if XNN_UNPREDICTABLE(vx${N} > 0.0f) {
vf${N} = vone - vf${N};
}
$for N in range(BATCH_TILE):
y[${N}] = vf${N};
y += ${BATCH_TILE};
}
$if BATCH_TILE == 1:
do {
const float vx = *x++;
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
// then replace result with 1 - f[-z] if x >= 0.
const float vz = fabsf(vx);
// Compute reduced argument n := round(-z * 2048 / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
// the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
// |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
// [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
// for such inputs at the very end of the algorithm.
float vn = vz * vminus_log2e_x2048 + vmagic_bias;
// Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
// normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
// = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
// 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from table using the 6 low bits of n, as integer.
// Note that the fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
// 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
// number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
// and thus the adjusted exponent is not lower than -126.
//
// Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
const uint32_t ve = (fp32_to_bits(vn) & ~vindex_mask) << 12;
// Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
const uint32_t vidx = fp32_to_bits(vn) & vindex_mask;
// Adjust exponent of the value l fetched from the table to get the final s value.
const float vs = fp32_from_bits(xnn_table_exp2_k_over_2048[vidx] + ve);
// Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
vn -= vmagic_bias;
// Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
// Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
float vt = vn * vln2_o2048_hi + vz;
vt = vn * vln2_o2048_lo + vt;
// Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/4096, log(2)/4096]:
// P1(t) = 1 + t * c1
const float vp = vt * vc1;
// Reconstruct the exp(-z) value:
// y = s * (1 + t * c1)
// = s + s * (t * c1))
// = s + s * p
const float vy = vp * vs + vs;
// Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
float vf = vy / (vy + vone);
// For inputs above denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
if XNN_UNPREDICTABLE(vz > vdenorm_cutoff) {
vf = 0.0f;
}
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
if XNN_UNPREDICTABLE(vx > 0.0f) {
vf = vone - vf;
}
*y++ = vf;
n -= sizeof(float);
} while (n != 0);
$elif BATCH_TILE == 2:
if XNN_UNLIKELY(n != 0) {
const float vx = *x;
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
// then replace result with 1 - f[-z] if x >= 0.
const float vz = fabsf(vx);
// Compute reduced argument n := round(-z * 2048 / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
// the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
// |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
// [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
// for such inputs at the very end of the algorithm.
float vn = vz * vminus_log2e_x2048 + vmagic_bias;
// Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
// normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
// = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
// 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from table using the 6 low bits of n, as integer.
// Note that the fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
// 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
// number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
// and thus the adjusted exponent is not lower than -126.
//
// Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
const uint32_t ve = (fp32_to_bits(vn) & ~vindex_mask) << 12;
// Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
const uint32_t vidx = fp32_to_bits(vn) & vindex_mask;
// Adjust exponent of the value l fetched from the table to get the final s value.
const float vs = fp32_from_bits(xnn_table_exp2_k_over_2048[vidx] + ve);
// Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
vn -= vmagic_bias;
// Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
// Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
float vt = vn * vln2_o2048_hi + vz;
vt = vn * vln2_o2048_lo + vt;
// Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/4096, log(2)/4096]:
// P1(t) = 1 + t * c1
const float vp = vt * vc1;
// Reconstruct the exp(-z) value:
// y = s * (1 + t * c1)
// = s + s * (t * c1))
// = s + s * p
const float vy = vp * vs + vs;
// Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
float vf = vy / (vy + vone);
// For inputs above denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
if XNN_UNPREDICTABLE(vz > vdenorm_cutoff) {
vf = 0.0f;
}
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
if XNN_UNPREDICTABLE(vx > 0.0f) {
vf = vone - vf;
}
*y = vf;
}
$else:
if XNN_UNLIKELY(n != 0) {
do {
const float vx = *x++;
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
// then replace result with 1 - f[-z] if x >= 0.
const float vz = fabsf(vx);
// Compute reduced argument n := round(-z * 2048 / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
// the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
// |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
// [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
// for such inputs at the very end of the algorithm.
float vn = vz * vminus_log2e_x2048 + vmagic_bias;
// Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
// normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
// = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
// 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from table using the 6 low bits of n, as integer.
// Note that the fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
// 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
// number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
// and thus the adjusted exponent is not lower than -126.
//
// Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
const uint32_t ve = (fp32_to_bits(vn) & ~vindex_mask) << 12;
// Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
const uint32_t vidx = fp32_to_bits(vn) & vindex_mask;
// Adjust exponent of the value l fetched from the table to get the final s value.
const float vs = fp32_from_bits(xnn_table_exp2_k_over_2048[vidx] + ve);
// Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
vn -= vmagic_bias;
// Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
// Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
float vt = vn * vln2_o2048_hi + vz;
vt = vn * vln2_o2048_lo + vt;
// Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/4096, log(2)/4096]:
// P1(t) = 1 + t * c1
const float vp = vt * vc1;
// Reconstruct the exp(-z) value:
// y = s * (1 + t * c1)
// = s + s * (t * c1))
// = s + s * p
const float vy = vp * vs + vs;
// Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
float vf = vy / (vy + vone);
// For inputs above denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
if XNN_UNPREDICTABLE(vz > vdenorm_cutoff) {
vf = 0.0f;
}
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
if XNN_UNPREDICTABLE(vx > 0.0f) {
vf = vone - vf;
}
*y++ = vf;
n -= sizeof(float);
} while (n != 0);
}
}