blob: 2a02afa51fb5f00fe56db2f709f9570bb252482d [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert BATCH_TILE % 4 == 0
$assert BATCH_TILE >= 4
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <psimd.h>
#include <xnnpack/common.h>
#include <xnnpack/vunary.h>
void xnn_f32_sigmoid_ukernel__psimd_p5_div_x${BATCH_TILE}(
size_t n,
const float* x,
float* y,
const void* params)
{
assert(n % sizeof(float) == 0);
const psimd_f32 vmagic_bias = psimd_splat_f32(0x1.8000FEp23f);
// The largest z for which sigmoidf(-z) is normalized.
// This number is also the largest z for which expf(-z) is normalized.
const psimd_f32 vdenorm_cutoff = psimd_splat_f32(0x1.5D589Ep+6f);
const psimd_f32 vminus_log2e = psimd_splat_f32(-0x1.715476p+0f);
// Last 7 bits are zeroes
const psimd_f32 vln2_hi = psimd_splat_f32(0x1.62E400p-1f);
const psimd_f32 vln2_lo = psimd_splat_f32(0x1.7F7D1Cp-20f);
const psimd_f32 vone = psimd_splat_f32(1.0f);
const psimd_f32 vc1 = psimd_splat_f32(-0x1.FFFFF6p-1f);
const psimd_f32 vc2 = psimd_splat_f32( 0x1.FFFDC6p-2f);
const psimd_f32 vc3 = psimd_splat_f32(-0x1.555A80p-3f);
const psimd_f32 vc4 = psimd_splat_f32( 0x1.573A1Ap-5f);
const psimd_f32 vc5 = psimd_splat_f32(-0x1.0F9F9Cp-7f);
$if BATCH_TILE > 4:
for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
const psimd_f32 vx${ABC[0:4]} = psimd_load_f32(x);
$for N in range(4, BATCH_TILE, 4):
const psimd_f32 vx${ABC[N:N+4]} = psimd_load_f32(x + ${N});
x += ${BATCH_TILE};
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
// then replace result with 1 - f[-z] if x >= 0.
$for N in range(0, BATCH_TILE, 4):
const psimd_f32 vz${ABC[N:N+4]} = psimd_abs_f32(vx${ABC[N:N+4]});
// Compute reduced argument n := round(-z / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
// large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
// inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
// anyway. We fixup the result for such inputs at the very end of the algorithm.
$for N in range(0, BATCH_TILE, 4):
psimd_f32 vn${ABC[N:N+4]} = psimd_qfma_f32(vmagic_bias, vz${ABC[N:N+4]}, vminus_log2e);
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
$for N in range(0, BATCH_TILE, 4):
const psimd_f32 vs${ABC[N:N+4]} = (psimd_f32) ((psimd_u32) vn${ABC[N:N+4]} << 23);
// Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
$for N in range(0, BATCH_TILE, 4):
vn${ABC[N:N+4]} = psimd_sub_f32(vn${ABC[N:N+4]}, vmagic_bias);
// Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
$for N in range(0, BATCH_TILE, 4):
psimd_f32 vt${ABC[N:N+4]} = psimd_qfma_f32(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_hi);
$for N in range(0, BATCH_TILE, 4):
vt${ABC[N:N+4]} = psimd_qfma_f32(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_lo);
// Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
// P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
$for N in range(0, BATCH_TILE, 4):
psimd_f32 vp${ABC[N:N+4]} = psimd_qfma_f32(vc4, vt${ABC[N:N+4]}, vc5);
$for N in range(0, BATCH_TILE, 4):
vp${ABC[N:N+4]} = psimd_qfma_f32(vc3, vt${ABC[N:N+4]}, vp${ABC[N:N+4]});
$for N in range(0, BATCH_TILE, 4):
vp${ABC[N:N+4]} = psimd_qfma_f32(vc2, vt${ABC[N:N+4]}, vp${ABC[N:N+4]});
$for N in range(0, BATCH_TILE, 4):
vp${ABC[N:N+4]} = psimd_qfma_f32(vc1, vt${ABC[N:N+4]}, vp${ABC[N:N+4]});
// Reconstruct the exp(-z) value:
// e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
$for N in range(0, BATCH_TILE, 4):
vt${ABC[N:N+4]} = psimd_mul_f32(vt${ABC[N:N+4]}, vs${ABC[N:N+4]});
$for N in range(0, BATCH_TILE, 4):
const psimd_f32 ve${ABC[N:N+4]} = psimd_qfma_f32(vs${ABC[N:N+4]}, vt${ABC[N:N+4]}, vp${ABC[N:N+4]});
// Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
$for N in range(0, BATCH_TILE, 4):
psimd_f32 vf${ABC[N:N+4]} = psimd_div_f32(ve${ABC[N:N+4]}, psimd_add_f32(ve${ABC[N:N+4]}, vone));
// For inputs above denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
$for N in range(0, BATCH_TILE, 4):
vf${ABC[N:N+4]} = psimd_andnotmask_f32(vz${ABC[N:N+4]} > vdenorm_cutoff, vf${ABC[N:N+4]});
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
$for N in range(0, BATCH_TILE, 4):
vf${ABC[N:N+4]} = psimd_signblend_f32(vx${ABC[N:N+4]}, vf${ABC[N:N+4]}, psimd_sub_f32(vone, vf${ABC[N:N+4]}));
psimd_store_f32(y, vf${ABC[0:4]});
$for N in range(4, BATCH_TILE, 4):
psimd_store_f32(y + ${N}, vf${ABC[N:N+4]});
y += ${BATCH_TILE};
}
for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
const psimd_f32 vx = psimd_load_f32(x);
x += 4;
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
// then replace result with 1 - f[-z] if x >= 0.
const psimd_f32 vz = psimd_abs_f32(vx);
// Compute reduced argument n := round(-z / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
// large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
// inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
// anyway. We fixup the result for such inputs at the very end of the algorithm.
psimd_f32 vn = psimd_qfma_f32(vmagic_bias, vz, vminus_log2e);
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
const psimd_f32 vs = (psimd_f32) ((psimd_u32) vn << 23);
// Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
vn = psimd_sub_f32(vn, vmagic_bias);
// Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
psimd_f32 vt = psimd_qfma_f32(vz, vn, vln2_hi);
vt = psimd_qfma_f32(vt, vn, vln2_lo);
// Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
// P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
psimd_f32 vp = psimd_qfma_f32(vc4, vt, vc5);
vp = psimd_qfma_f32(vc3, vt, vp);
vp = psimd_qfma_f32(vc2, vt, vp);
vp = psimd_qfma_f32(vc1, vt, vp);
// Reconstruct the exp(-z) value:
// e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt = psimd_mul_f32(vt, vs);
const psimd_f32 ve = psimd_qfma_f32(vs, vt, vp);
// Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
psimd_f32 vf = psimd_div_f32(ve, psimd_add_f32(ve, vone));
// For inputs above denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = psimd_andnotmask_f32(vz > vdenorm_cutoff, vf);
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
vf = psimd_signblend_f32(vx, vf, psimd_sub_f32(vone, vf));
psimd_store_f32(y, vf);
y += 4;
}
if XNN_UNLIKELY(n != 0) {
const psimd_f32 vx = psimd_load_f32(x);
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
// then replace result with 1 - f[-z] if x >= 0.
const psimd_f32 vz = psimd_abs_f32(vx);
// Compute reduced argument n := round(-z / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
// large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
// inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
// anyway. We fixup the result for such inputs at the very end of the algorithm.
psimd_f32 vn = psimd_qfma_f32(vmagic_bias, vz, vminus_log2e);
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
const psimd_f32 vs = (psimd_f32) ((psimd_u32) vn << 23);
// Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
vn = psimd_sub_f32(vn, vmagic_bias);
// Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
psimd_f32 vt = psimd_qfma_f32(vz, vn, vln2_hi);
vt = psimd_qfma_f32(vt, vn, vln2_lo);
// Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
// P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
psimd_f32 vp = psimd_qfma_f32(vc4, vt, vc5);
vp = psimd_qfma_f32(vc3, vt, vp);
vp = psimd_qfma_f32(vc2, vt, vp);
vp = psimd_qfma_f32(vc1, vt, vp);
// Reconstruct the exp(-z) value:
// e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt = psimd_mul_f32(vt, vs);
const psimd_f32 ve = psimd_qfma_f32(vs, vt, vp);
// Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
psimd_f32 vf = psimd_div_f32(ve, psimd_add_f32(ve, vone));
// For inputs above denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = psimd_andnotmask_f32(vz > vdenorm_cutoff, vf);
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
vf = psimd_signblend_f32(vx, vf, psimd_sub_f32(vone, vf));
if (n & (2 * sizeof(float))) {
psimd_store2_f32(y, vf);
vf = psimd_concat_hi_f32(vf, vf);
y += 2;
}
if (n & (1 * sizeof(float))) {
psimd_store1_f32(y, vf);
}
}
}