blob: 29389caf130835d5e283e7c509bfa888dc6a4c40 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert BATCH_TILE % 8 == 0
$assert BATCH_TILE >= 8
$assert RR_STEPS in [1, 2]
$assert DIV_ALGO in ["div", "nr1fma", "nr2fma"]
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$SIMD_TILE = BATCH_TILE // 8
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/common.h>
#include <xnnpack/vunary.h>
static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
void xnn_f32_sigmoid_ukernel__avx2_rr${RR_STEPS}_p5_${DIV_ALGO}_x${BATCH_TILE}(
size_t n,
const float* x,
float* y,
const void* params)
{
assert(n % sizeof(float) == 0);
const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
// The smallest x for which sigmoidf(x) is normalized.
// This number is also the smallest x for which expf(x) is normalized.
const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
$if RR_STEPS == 1:
const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
$else:
const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
const __m256 vone = _mm256_set1_ps(1.0f);
const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
$if BATCH_TILE > 8:
for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
const __m256 vx${ABC[0]} = _mm256_loadu_ps(x);
$for N in range(1, SIMD_TILE):
const __m256 vx${ABC[N]} = _mm256_loadu_ps(x + ${N * 8});
x += ${BATCH_TILE};
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
// then replace result with 1 - f[z] if x >= 0.
$for N in range(SIMD_TILE):
const __m256 vz${ABC[N]} = _mm256_or_ps(vx${ABC[N]}, vsign_mask);
// Compute reduced argument n := round(z / log(2)).
// We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
// to an integer, then subtracing the large number back. The trick with adding large number is valid only within
// certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
// [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
// the algorithm.
$for N in range(SIMD_TILE):
__m256 vn${ABC[N]} = _mm256_fmadd_ps(vz${ABC[N]}, vlog2e, vmagic_bias);
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
$for N in range(SIMD_TILE):
const __m256 vs${ABC[N]} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${ABC[N]}), 23));
// Subtract the large number back to get final n := round(z / log(2)).
$for N in range(SIMD_TILE):
vn${ABC[N]} = _mm256_sub_ps(vn${ABC[N]}, vmagic_bias);
// Compute reduced argument t := z - n * log(2).
$if RR_STEPS == 1:
$for N in range(SIMD_TILE):
__m256 vt${ABC[N]} = _mm256_fmadd_ps(vn${ABC[N]}, vminus_ln2, vz${ABC[N]});
$else:
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
$for N in range(SIMD_TILE):
__m256 vt${ABC[N]} = _mm256_fmadd_ps(vn${ABC[N]}, vminus_ln2_hi, vz${ABC[N]});
$for N in range(SIMD_TILE):
vt${ABC[N]} = _mm256_fmadd_ps(vn${ABC[N]}, vminus_ln2_lo, vt${ABC[N]});
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
$for N in range(SIMD_TILE):
__m256 vp${ABC[N]} = _mm256_fmadd_ps(vc5, vt${ABC[N]}, vc4);
$for N in range(SIMD_TILE):
vp${ABC[N]} = _mm256_fmadd_ps(vp${ABC[N]}, vt${ABC[N]}, vc3);
$for N in range(SIMD_TILE):
vp${ABC[N]} = _mm256_fmadd_ps(vp${ABC[N]}, vt${ABC[N]}, vc2);
$for N in range(SIMD_TILE):
vp${ABC[N]} = _mm256_fmadd_ps(vp${ABC[N]}, vt${ABC[N]}, vc1);
// Reconstruct the exp(z) value:
// e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
$for N in range(SIMD_TILE):
vt${ABC[N]} = _mm256_mul_ps(vt${ABC[N]}, vs${ABC[N]});
$for N in range(SIMD_TILE):
const __m256 ve${ABC[N]} = _mm256_fmadd_ps(vt${ABC[N]}, vp${ABC[N]}, vs${ABC[N]});
// Denominator of the sigmoid fraction: 1.0 + exp(z)
$for N in range(SIMD_TILE):
const __m256 vd${ABC[N]} = _mm256_add_ps(ve${ABC[N]}, vone);
$if DIV_ALGO == "div":
// Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
$for N in range(SIMD_TILE):
__m256 vf${ABC[N]} = _mm256_div_ps(ve${ABC[N]}, vd${ABC[N]});
$else:
// Use Newton-Raphson method to compute reciprocal of denominator.
// Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
// Thus the reciprocal of the denominator never overflows.
$for N in range(SIMD_TILE):
__m256 vr${ABC[N]} = _mm256_rcp_ps(vd${ABC[N]});
$for N in range(SIMD_TILE):
vr${ABC[N]} = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr${ABC[N]}, vd${ABC[N]}, vone), vr${ABC[N]}, vr${ABC[N]});
$if DIV_ALGO == "nr2fma":
$for N in range(SIMD_TILE):
vr${ABC[N]} = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr${ABC[N]}, vd${ABC[N]}, vone), vr${ABC[N]}, vr${ABC[N]});
// Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
$for N in range(SIMD_TILE):
__m256 vf${ABC[N]} = _mm256_mul_ps(ve${ABC[N]}, vr${ABC[N]});
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
$for N in range(SIMD_TILE):
vf${ABC[N]} = _mm256_andnot_ps(_mm256_cmp_ps(vz${ABC[N]}, vdenorm_cutoff, _CMP_LT_OS), vf${ABC[N]});
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
$for N in range(SIMD_TILE):
vf${ABC[N]} = _mm256_blendv_ps(_mm256_sub_ps(vone, vf${ABC[N]}), vf${ABC[N]}, vx${ABC[N]});
_mm256_storeu_ps(y, vf${ABC[0]});
$for N in range(1, SIMD_TILE):
_mm256_storeu_ps(y + ${N * 8}, vf${ABC[N]});
y += ${BATCH_TILE};
}
for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
const __m256 vx = _mm256_loadu_ps(x);
x += 8;
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
// then replace result with 1 - f[z] if x >= 0.
const __m256 vz = _mm256_or_ps(vx, vsign_mask);
// Compute reduced argument n := round(z / log(2)).
// We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
// to an integer, then subtracing the large number back. The trick with adding large number is valid only within
// certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
// [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
// the algorithm.
__m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
// Subtract the large number back to get final n := round(z / log(2)).
vn = _mm256_sub_ps(vn, vmagic_bias);
// Compute reduced argument t := z - n * log(2).
$if RR_STEPS == 1:
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
$else:
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vz);
vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
__m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
vp = _mm256_fmadd_ps(vp, vt, vc3);
vp = _mm256_fmadd_ps(vp, vt, vc2);
vp = _mm256_fmadd_ps(vp, vt, vc1);
// Reconstruct the exp(z) value:
// e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt = _mm256_mul_ps(vt, vs);
const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
// Denominator of the sigmoid fraction: 1.0 + exp(z)
const __m256 vd = _mm256_add_ps(ve, vone);
$if DIV_ALGO == "div":
// Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
__m256 vf = _mm256_div_ps(ve, vd);
$else:
// Use Newton-Raphson method to compute reciprocal of denominator.
// Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
// Thus the reciprocal of the denominator never overflows.
__m256 vr = _mm256_rcp_ps(vd);
vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
$if DIV_ALGO == "nr2fma":
vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
// Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
__m256 vf = _mm256_mul_ps(ve, vr);
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
_mm256_storeu_ps(y, vf);
y += 8;
}
if XNN_UNLIKELY(n != 0) {
assert(n >= 1 * sizeof(float));
assert(n <= 7 * sizeof(float));
__m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
const __m256 vx = _mm256_maskload_ps(x, vmask);
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
// then replace result with 1 - f[z] if x >= 0.
const __m256 vz = _mm256_or_ps(vx, vsign_mask);
// Compute reduced argument n := round(z / log(2)).
// We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
// to an integer, then subtracing the large number back. The trick with adding large number is valid only within
// certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
// [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
// the algorithm.
__m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
// Subtract the large number back to get final n := round(z / log(2)).
vn = _mm256_sub_ps(vn, vmagic_bias);
// Compute reduced argument t := z - n * log(2).
$if RR_STEPS == 1:
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
$else:
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vz);
vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
__m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
vp = _mm256_fmadd_ps(vp, vt, vc3);
vp = _mm256_fmadd_ps(vp, vt, vc2);
vp = _mm256_fmadd_ps(vp, vt, vc1);
// Reconstruct the exp(z) value:
// e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt = _mm256_mul_ps(vt, vs);
const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
// Denominator of the sigmoid fraction: 1.0 + exp(z)
const __m256 vd = _mm256_add_ps(ve, vone);
$if DIV_ALGO == "div":
// Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
__m256 vf = _mm256_div_ps(ve, vd);
$else:
// Use Newton-Raphson method to compute reciprocal of denominator.
// Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
// Thus the reciprocal of the denominator never overflows.
__m256 vr = _mm256_rcp_ps(vd);
vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
$if DIV_ALGO == "nr2fma":
vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
// Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
__m256 vf = _mm256_mul_ps(ve, vr);
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
// _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
__m128 vf_lo = _mm256_castps256_ps128(vf);
if (n & (4 * sizeof(float))) {
_mm_storeu_ps(y, vf_lo);
vf_lo = _mm256_extractf128_ps(vf, 1);
y += 4;
}
if (n & (2 * sizeof(float))) {
_mm_storel_pi((__m64*) y, vf_lo);
vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
y += 2;
}
if (n & (1 * sizeof(float))) {
_mm_store_ss(y, vf_lo);
}
}
}